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We construct stationary solutions for the Sadinger-Poisson system of equations fordimensional states. We find that these have the
solitonic profile of the ground state solution of the scalar case 1 for all the fields. We numerically study the cases= 1,2, 3,4, 5,
because these multifield scenarios have been proposed as a generalization of the scalar field dark-miatsgrecially state vectors with

n = 3 andn = 5 fields. In order to verify the formation of core-halo density profiles we simulate multi-core mergers of equilibrium
configurations and show that every field accommodates itself with its own solitonic+halo profile, showing in this way that equilibrium
solutions are attractor cores.
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1. Introduction In the context of structure formation, the core formation
of multiple scalar field dark matter core formation can be seen
in Refs. [8,9]. Later on in Ref. [10] the condensate formation

Ultralight Bosonic Dark Matter or Scalar Dark Matter through kinetic relaxation is studied for= 2s + 1 compo-

(SDM), currently under study, presents intriguing implica- nents, in particular spins fields withs = 1, 2, whose relax-

tions. While it behaves similarly to Cold Dark Matter _ . "~
. . ... ation times are modeled for equal and unequal boson masses
(CDM) on large scales, at local galactic scales, it exhibit .
etween the components of the field.

a core-tail structure due to its small mass, typically of order , i ) )
In this paper we concentrate in the core-tail formation

10724 — 1072%V /c?. This small mass results in a large de . ati , e like in Ref. [6 "
Broglie wavelength, preventing the formation of cuspy den-S'Mu ations using multi-core mergers like in Ref. [6]. Unlike

sity profiles. Consequently, this property is believed to offer” _Refs. [6.7] whﬁre _VDIMdiS Strt:died’ we;study the (f:ase with
a potential solution to the cusp-core and too big to fail prob-" a 1r; 2’_3’ 4,5, td.at Inc ul .?.S Itj € cases= f.l’ é'i Ref. [10]
lems associated with CDM. Further details and constraint§"d the intermediate multifield non-spin fields= 2, 4. We

of this dark matter model are extensively discussed in recerﬁ:a,rt from. Fhe construpuon O,f stationary solutpns and S'.[Udy
reviews [1-5]. their stability along with their attractor properties. We find

that the core is formed in all cases, not only as a whole but

Being the core formation surrounded by a halo the signagach component accommodates in a core that can be fitted
ture of this ultralight bosonic multiple or single wave func- yith the well known solitonic profile of the ground state sta-
tionS, once the SDM has shown to have interesting properti%nary solution of the Scminger_Poisson system of equa-
it is possible to formulate other variants of the idea. One ofjons [11,12].
them is the use of multiple scalar fields, for example triplets 114 paper is organized as follows. In Sec. 2 we write
that constitute spin-1 fields. In Ref. [6] a comparative anal-yown the equations describing the evolution of the system
ysis of the ultralight Scalar Dark Matter (SDM) and VeCtor gnq in Sec. 3 we construct stationary solutions. In Sec. 4 we

Dark Matter (VDM) made of a three-component vector field it the stability of solutions whereas in Sec. 5 we show their
is developed. Their investigation is based on the analysis ofractor properties. Finally in Sec. 6 we draw some conclu-
multicore mergers with the aim of finding characteristic dif- gjong

ferences of each dark matter model. Based on simulations

it is found the formation of core-tail structures, and it is ob-

served that interference effects are less pronounced in VD .

compared to SDM, potentially yielding discrepancies in thgﬁ' Model and equations
heating of luminous matter. Other aspects are also studie
including the core-halo mass scaling relation and structurat
differences between SDM and VDM in the envelope region.
The analysis was extended for different degrees of correla- . 1 .. R

tion between the field components in Ref. [7], where the aim 10,V = *§V2‘1’ + VY, (1)
is the formation of Proca stars from structure formation initial )

conditions. ViV =p—{p), ()

he SP equations for an— d dimensional state, with and
he boson mass: g absorbed constants reads
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wherel = (Uy, Vs, ..., ¥,), Vis the gravitational potential
generated by the total densjty= >_""_, |¥;|?, and(p) rep-

resents the average of the total density over the entire domain. d;  ¢; 4

An important point to emphasize is that the systéjy(R) dr - r2’ )
remains invariant under thetransformation: déb; )

. —12 123 121/ \4 —+ = 2(V —wj) Pr?, ®)

{Z,0,V,p} = {72, A2, \V, \*p}, 3) dr
just like in the scalar case=1[12]. aMm =72 (6)
dr ’
3. Stationary solution (ZTV — J‘f (7)
r r

To find stationary solutions of the systeft)-(2), we assume

that each component of the state vector behaves like a stdo determine solutions of these equations, boundary condi-
tionary wave: U; = 1;e~“it, wherey; are real functions tions must be specifiedp;(0) = <, ¢; = 0, M(0) = 0,

with j = 1,2,...,n. Furthermore, we assume that the sys-V(0) = V., andlim, .o ¥; = lim, . ¢; = 0. Itis worth

tem has spherical symmetry. Under these assumptions, theting that the choice df, can be arbitrary because the sys-
system|1)-(2) can be expressed as a first-order system withiem is invariant under the transformation— V +V;,, where

respect to the radial coordinate w; — w; + V for some constarity.
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FIGURE 1. Each row displays the numerical solutions for the eigenprobiT) of each component of the state vector, along with the
corresponding fitted wave field according to formll®)( The first, second, third, fourth and fifth rows correspond to the solutions with
n =1, 2, 3,4 and 5, respectively. The amplitude of the different states is restricted to the copgditioh.
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Notice that if we redefine the variables through the re-original system for specific amplitudes in each component,
lations; = w;-i/?j and¢; = }Z;jc-qgj, the new variables sat- as illustrated in Fig. 1. Moreover, in the context of bosonic
isfy the boundary conditiong;(0) = 1, ¢;(0) = 0, and  dark matter, if the bosons are all of the same mass, there is no
lim, . %; = lim, ... 4; = 0. We also assume that all other option that accomodate in varios states with the same
components of the state vector have the same eneeggy, eigenvalue. The figure presents the solutions of the original
w; = w. This is a necessary condition when the mass of théystem alongside the fitting provided by EA3) for state
various components is the same. Consequently, the first twgector with dimensiom = 1, 2, 3, 4 and 5. With these
Egs. @45) become independent of thieéndex, as they repre- results, we demonstrate that the fitting formula can be em-
sent the same equations with identical boundary conditionglloyed to approximate the ground states ofithdimensional

This reduction leads the system to the following equations: case. However, it is essential to investigate the impact when
using this approximation, such as the initial conditions for the

dy _ 9 8) time-dependent system.

dr r?’

de - - .

d—f =2(V —w)r? (9) 4. Stability of solutions
aM — 122 (10) In a general context, the assessment of stability for approx-
dr e imated ground states with profild3) involves the solution
av M of system 1)-(2). We inject the configurations in a three-
ar 2 (11)  dimensional domain described with Cartesian coordinates

- . ) D = [Zmin, Zmax°, €Mploying an extension of CAFE [14,15].
wherep. = ||vc]|® = > 7, (¥5)°. Now, let us recall that The CAFE code uses an implicit Crank-Nicholson scheme
in the case of a single field, the solution can be uniquelysing the Fast Fourier Transform (FFT) to evolve the state

determined by the condition(0) = 1 or, equivalently, yector, and at each step of evolution, the Poisson equation is
|4(0)|?> = 1. This can be generalized to thedimensional  golved also using a FFT method.
case by setting the valye = 1 according to the invariance For the stability analysis, a trivial perturbation occurs,

(3), where we now t‘i‘i& - 1969fe§f of freedom to choose \here the ground state is disturbed by its approximation and
the values)s over 5"~ = {¢. € R"[p. = 1}. Note that e truncation error in the numerical methods during evolu-

the system of dimension is equivalent to the system with {5 Each component of the state vector experiences an iden-
n = 1, but each component of thedimensional state vec- ¢4 disturbance.

tor is rescaled by the amplitudg; related to the stationary To assess the stability of the fundamental state ofithe

solution of the system with = 1. _ _ dimensional system, we choose initial conditions based on
Considering this, it is known that the density associated;,q approximations of Eq18). In other words, the initial

with the ground state can be approximated by the formulg,gitions for the systenilf-(2) for each component of the

[13]: state vector are
2 -8
p(r) = pe |1+ 0.091 (:) ] . (12) ;(7,0) = ¢;(|]), J=12..n (15)
In this formulap, ~ (1.3056/r.)* is the central density, and
r. is the core radius. The components of the state vector in — o1
then—dimensional case can be expressed as: 1.00 n=§
i oo Lo
2 4 | n "
. ” 0.98 [ == ncs A [ A A
o= reoon (7)] 0w S At
¢ 0.96
S NI
where the amplitudesy¢ must satisfy the relation voall ,’ H \ |,’V\\ [ | ,I’ | |‘\/\\ | l‘/\,\ | \'f\
S0y W2 = (1.3056/r.)* for an arbitrary value ofr.. i || Ul |, .\l “\I \l ‘I |[ \ | \”'
The mass associated with each component of the state vectc 4,V V | | \l | LI ‘l \l \v
is given by the expression: |, \J \I :
o 0.90 A |
M; = 4r / b (r)[*r2dr ~ 11.587195*rs.  (14) 0 50 100 150 200 250
0 t

Then, the total mass of the density distribution satisfies- g gure 2. Central value of density as a function of time for state

Z?:1 M; ~ 33~6§7/7“c- ~ vectors of dimensiom = 1, 2, 3, 4 and 5, demonstrating that the
The assumption that all components have the same eigescillation of the ground state is independent of the dimension of
value can be justified through the numerical solution of thethe system.
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wherez € D are the Cartesian coordinates. In this case, thef the fundamental states, as indicated in Ref. [12]. Addi-

system can be reduced to the= 1 problem, introducing a tionally, a stability test of the complete system is conducted

new variable as in the stationary case; = \Ifj/ch., which by evolving then-dimensional case forn = 1, 2, 3, 4 and

is independent of the indegix The system takes on the form: 5. A point is chosen randomly fap. € S"~!, where each
component of the state vect&g is non-zero. The system is

_ 1 .- _
10U = —§V2\I/ + VU, (16)  evolved in the domaiD = [-10, 10]3, which is over seven

) _ _ times larger than the size of the core radiusensuring that
VIV = pc (|97 = (|¥]7)), (17)  boundary conditions have a negligible impact on the evolu-

tion of the ground state whem = 1 [15], for a duration of

ith the initial iti . .
with the initial condition 250 time units.

SN\ 2
14 0.091 <|I|> ] : (18) The central value of the density is monitored, as shown in
‘ Fig. 2. The figure illustrates how the density oscillates near
Assuming normalized stateg.(= 1), the system reduces its initial value, indicating stability against trivial perturba-
exactly to the scalar problem (= 1), affirming the stability  tions independently of the dimension of the system.

U(Z,0) =

FIGURE 3. Dynamics of the density profile illustrated with five snapshots at times0, 69, 137, 206, and 275 in each column. First,
second, third, fourth and fifth rows correspond to state vector of dimensieri, 2, 3, 4 and 5, respectively. In the casewf 5 notice the
formation of two cores, which is casual due to the randomness of initial conditions; the fittings of density for this case are performed over
the bigger one.
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5. Attractor properties tions [3). The domain is discretized with a spatial resolution
h = 5/8 and a time resolution that satisfies the Courant con-
In order to investigate whether the density of the fundamendition A¢/h? < 0.25. The system is evolved during 275 units
tal state is an attractor in thedimensional system, we carry of code time, which corresponds to 14Gyr for a boson mass
out simulations fom = 1, 2, 3, 4 and 5. As initial condi- of 10722 eV.

tions for the system, we pla@d /n solitons of each state for Figure 3 shows snapshots of the density profile at times
the cases = 1, 2, 3 and 4, whereas far = 5 we place 5 ¢ ~ 0,69, 137,206, and275 in each column, for state vector
solitons in each state. These components of the state vectof dimensionn = 1,2,3,4 and 5 in each row. Regardless
are randomly distributed over the domaih = [-40,40]®>  of the dimensiom, a core-halo structure forms over time, as
and random radii with\ € [1.25,1.5] of the scaling rela- mentioned in more detail in Ref. [15] far= 1. We calculate

n=1 n=2 n=3 n=4

— avg.
-= fit
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== fit

— avg. — avg.
- it - fit
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FIGURE 4. The temporal and spatial average of the density profile is depicted as a function of the radial coerdieatesented by the

solid blue line. Additionally, a fit according to EdL2) is illustrated using the dotted line for state vectors of dimensioes1, 2, 3, 4 and

5 in each column. Finally, the grey thick line on top of the average is the latest 30 snapshots used to calculate the average of density once th
structure has relaxed.
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FIGURE 5. Each row displays the temporal and spatial normalized averages of individual components of the state vector with dimensions
n =1, 2, 3, 4 and 5, respectively, represented by solid lines. Dotted lines correspond to core fittings with the squapf Eq. (
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TABLE |. Parameters obtained from fits far and|y§|? for the multimerger simulation for a state vector of dimensios1, 2, 3, 4 and 5.

n re 95| 95| |vs5[? 4] |y5)?

1 0.3264+0.0020 (1.3056/r.)*

2 0.363040.0025 20.96+ 1.034 159.8+ 4.372

3 0.3484+0.0022  9.806k 0.5849 127.9+ 3.154 60.91 1.415

4 0.3583+0.0023  6.547-0.2835  6.672-0.3336 88.25+ 2.245 80.07 1.975

5  0.3390+0.0020  7.405k 0.3719 70.55+ 1.846 34.96-0.7766  78.61-2.079  43.42+ 0.9572

a spatial average over the solid angle and time in the last 108ssumption, because here we do not consider stationarity, not
units of time. This average has the solitonic core surroundedven spherical symmetry, we show that simply these config-
by the halo profilel12) can be fitted to this average by tun- urations form in an attractor way.

ing the parameter,, and the results are illustrated in Fig. 4
Once the configuration relaxes, it oscillates both in time an .

in space around this average profile. In this figure we plot thgs' Conclusions

lf’iteSt 30 snapshots of the evqlution that produces a thick 9"%Ye have described the equivalence between the ground state
Ime_grl?_und the av;araﬁe der?sny. Vsi d h of then-dimensional system and the scalar case=(1), sup-
atm?tﬁ st?pt urt ?r’ tBe a]}pq yst'ﬁ ext(Tn S ]Esbttee}c dconborting the hypothesis that they share the same eigenenergy
bonent ot the state vector. by 1ixing the valuerploblaine by directly solving the stationary problem. The dynamics of
frqm adjust_lng the average density, we determine the apprape approximation of the-dimensional ground state are an-
priate a_lmplltudes of the squared mOdl.Jles O_f ea_ch componeg‘yzed by directly evolving the vectorial SP system. We find
according to Eq./13). The results, depicted in Fig. 5, reveal that the ground state is stable independently, ébr n —1
that each component exhibits a core with a solitonic profile2 3, 4, 5, and this stability can be reduced to the case 'of the
consistent with the ground state of thalimensional system. S(,:allar,pré)blem with, = 1. Finally, we conducted simula-

The figures are normalized with respect to the vakueand tions of multi-core mergers with initial conditions with zero

_ 4 : ) .

fﬁ - (1'305?/T0)f ’ Wh'CE can be fourt1d :cnﬂ']l'ablte{alongi W'tr_:_ angular momentum and confirmed that the ground state re-
€ parameters for each component ot the staté vector. TWe,Hing an attractor of the system for the valuesa ekplored.

observations are in turn: the first one is that these are aver-

aged density profiles, as dynamic and space-dependent, just

likewise those structures found in structure formation simu-Acknowledgments
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