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Solutions of the Schr̈odinger-Poisson equations forn−dimensional states
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We construct stationary solutions for the Schrödinger-Poisson system of equations forn−dimensional states. We find that these have the
solitonic profile of the ground state solution of the scalar casen = 1 for all the fields. We numerically study the casesn = 1, 2, 3, 4, 5,
because these multifield scenarios have been proposed as a generalization of the scalar field dark mattern = 1, specially state vectors with
n = 3 andn = 5 fields. In order to verify the formation of core-halo density profiles we simulate multi-core mergers of equilibrium
configurations and show that every field accommodates itself with its own solitonic+halo profile, showing in this way that equilibrium
solutions are attractor cores.

Keywords: Self-gravitating systems; dark matter; Bose condensates.

DOI: https://doi.org/10.31349/RevMexFis.71.020704

1. Introduction

Ultralight Bosonic Dark Matter or Scalar Dark Matter
(SDM), currently under study, presents intriguing implica-
tions. While it behaves similarly to Cold Dark Matter
(CDM) on large scales, at local galactic scales, it exhibits
a core-tail structure due to its small mass, typically of order
10−24 − 10−20eV/c2. This small mass results in a large de
Broglie wavelength, preventing the formation of cuspy den-
sity profiles. Consequently, this property is believed to offer
a potential solution to the cusp-core and too big to fail prob-
lems associated with CDM. Further details and constraints
of this dark matter model are extensively discussed in recent
reviews [1-5].

Being the core formation surrounded by a halo the signa-
ture of this ultralight bosonic multiple or single wave func-
tions, once the SDM has shown to have interesting properties
it is possible to formulate other variants of the idea. One of
them is the use of multiple scalar fields, for example triplets
that constitute spin-1 fields. In Ref. [6] a comparative anal-
ysis of the ultralight Scalar Dark Matter (SDM) and Vector
Dark Matter (VDM) made of a three-component vector field
is developed. Their investigation is based on the analysis of
multicore mergers with the aim of finding characteristic dif-
ferences of each dark matter model. Based on simulations
it is found the formation of core-tail structures, and it is ob-
served that interference effects are less pronounced in VDM
compared to SDM, potentially yielding discrepancies in the
heating of luminous matter. Other aspects are also studied,
including the core-halo mass scaling relation and structural
differences between SDM and VDM in the envelope region.
The analysis was extended for different degrees of correla-
tion between the field components in Ref. [7], where the aim
is the formation of Proca stars from structure formation initial
conditions.

In the context of structure formation, the core formation
of multiple scalar field dark matter core formation can be seen
in Refs. [8,9]. Later on in Ref. [10] the condensate formation
through kinetic relaxation is studied forn = 2s + 1 compo-
nents, in particular spin−s fields withs = 1, 2, whose relax-
ation times are modeled for equal and unequal boson masses
between the components of the field.

In this paper we concentrate in the core-tail formation
simulations using multi-core mergers like in Ref. [6]. Unlike
in Refs. [6,7] where VDM is studied, we study the case with
n = 1, 2, 3, 4, 5, that includes the casess = 1, 2 in Ref. [10]
and the intermediate multifield non-spin fieldsn = 2, 4. We
start from the construction of stationary solutions and study
their stability along with their attractor properties. We find
that the core is formed in all cases, not only as a whole but
each component accommodates in a core that can be fitted
with the well known solitonic profile of the ground state sta-
tionary solution of the Schrödinger-Poisson system of equa-
tions [11,12].

The paper is organized as follows. In Sec. 2 we write
down the equations describing the evolution of the system
and in Sec. 3 we construct stationary solutions. In Sec. 4 we
test the stability of solutions whereas in Sec. 5 we show their
attractor properties. Finally in Sec. 6 we draw some conclu-
sions.

2. Model and equations

The SP equations for ann− d dimensional state, with~ and
the boson massmB absorbed constants reads

i∂t
~Ψ = −1

2
∇2~Ψ + V ~Ψ, (1)

∇2V = ρ− 〈ρ〉, (2)
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where~Ψ = (Ψ1,Ψ2, ..., Ψn), V is the gravitational potential
generated by the total densityρ =

∑n
j=1 |Ψj |2, and〈ρ〉 rep-

resents the average of the total density over the entire domain.
An important point to emphasize is that the system (1)-(2)

remains invariant under theλ-transformation:

{~x, ~Ψ, V, ρ} → {λ−1~x, λ2~Ψ, λ2V, λ4ρ}, (3)

just like in the scalar casen = 1 [12].

3. Stationary solution

To find stationary solutions of the system (1)-(2), we assume
that each component of the state vector behaves like a sta-
tionary wave:Ψj = ψje

−iωjt, whereψj are real functions
with j = 1, 2, ..., n. Furthermore, we assume that the sys-
tem has spherical symmetry. Under these assumptions, the
system (1)-(2) can be expressed as a first-order system with
respect to the radial coordinater:

dψj

dr
=

φj

r2
, (4)

dφj

dr
= 2 (V − ωj)ψjr

2, (5)

dM

dr
= r2ρ, (6)

dV

dr
=

M

r2
. (7)

To determine solutions of these equations, boundary condi-
tions must be specified:ψj(0) = ψc

j , φj = 0, M(0) = 0,
V (0) = Vc, andlimr→∞ ψj = limr→∞ φj = 0. It is worth
noting that the choice ofVc can be arbitrary because the sys-
tem is invariant under the transformationV → V +V0, where
ωj → ωj + V0 for some constantV0.

FIGURE 1. Each row displays the numerical solutions for the eigenproblem (4-7) of each component of the state vector, along with the
corresponding fitted wave field according to formula (13). The first, second, third, fourth and fifth rows correspond to the solutions with
n = 1, 2, 3, 4 and 5, respectively. The amplitude of the different states is restricted to the conditionρc = 1.
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Notice that if we redefine the variables through the re-
lationsψj = ψc

j ψ̃j andφj = ψc
j φ̃j , the new variables sat-

isfy the boundary conditions̃ψj(0) = 1, φ̃j(0) = 0, and
limr→∞ ψ̃j = limr→∞ φ̃j = 0. We also assume that all
components of the state vector have the same energy,i.e.,
ωj = ω. This is a necessary condition when the mass of the
various components is the same. Consequently, the first two
Eqs. (4-5) become independent of thej index, as they repre-
sent the same equations with identical boundary conditions.
This reduction leads the system to the following equations:

dψ̃

dr
=

φ̃

r2
, (8)

dφ̃

dr
= 2 (V − ω) ψ̃r2, (9)

dM

dr
= r2ρcψ̃

2, (10)

dV

dr
=

M

r2
, (11)

whereρc = ||~ψc||2 =
∑n

j=1(ψ
c
j)

2. Now, let us recall that
in the case of a single field, the solution can be uniquely
determined by the conditionψ(0) = 1 or, equivalently,
|ψ(0)|2 = 1. This can be generalized to then-dimensional
case by setting the valueρc = 1 according to the invariance
(3), where we now haven− 1 degrees of freedom to choose
the valuesψc

j overSn−1 = {~ψc ∈ Rn | ρc = 1}. Note that
the system of dimensionn is equivalent to the system with
n = 1, but each component of then-dimensional state vec-
tor is rescaled by the amplitudeψc

j related to the stationary
solution of the system withn = 1.

Considering this, it is known that the density associated
with the ground state can be approximated by the formula
[13]:

ρ(r) = ρc

[
1 + 0.091

(
r

rc

)2
]−8

. (12)

In this formulaρc ≈ (1.3056/rc)4 is the central density, and
rc is the core radius. The components of the state vector in
then−dimensional case can be expressed as:

ψj(r) = ψc
j

[
1 + 0.091

(
r

rc

)2
]−4

, (13)

where the amplitudesψc
j must satisfy the relation∑n

j=1 |ψc
j |2 = (1.3056/rc)4 for an arbitrary value ofrc.

The mass associated with each component of the state vector
is given by the expression:

Mj = 4π

∫ ∞

0

|ψj(r)|2r2dr ≈ 11.587|ψc
j |2r3

c . (14)

Then, the total mass of the density distribution satisfiesM =∑n
j=1 Mj ≈ 33.667/rc.
The assumption that all components have the same eigen-

value can be justified through the numerical solution of the

original system for specific amplitudes in each component,
as illustrated in Fig. 1. Moreover, in the context of bosonic
dark matter, if the bosons are all of the same mass, there is no
other option that accomodate in varios states with the same
eigenvalue. The figure presents the solutions of the original
system alongside the fitting provided by Eq. (13) for state
vector with dimensionn = 1, 2, 3, 4 and 5. With these
results, we demonstrate that the fitting formula can be em-
ployed to approximate the ground states of then-dimensional
case. However, it is essential to investigate the impact when
using this approximation, such as the initial conditions for the
time-dependent system.

4. Stability of solutions

In a general context, the assessment of stability for approx-
imated ground states with profile (13) involves the solution
of system (1)-(2). We inject the configurations in a three-
dimensional domain described with Cartesian coordinates
D = [xmin, xmax]3, employing an extension of CAFE [14,15].
The CAFE code uses an implicit Crank-Nicholson scheme
using the Fast Fourier Transform (FFT) to evolve the state
vector, and at each step of evolution, the Poisson equation is
solved also using a FFT method.

For the stability analysis, a trivial perturbation occurs,
where the ground state is disturbed by its approximation and
the truncation error in the numerical methods during evolu-
tion. Each component of the state vector experiences an iden-
tical disturbance.

To assess the stability of the fundamental state of then-
dimensional system, we choose initial conditions based on
the approximations of Eq. (13). In other words, the initial
conditions for the system (1)-(2) for each component of the
state vector are

Ψj(~x, 0) = ψj(|~x|), j = 1, 2, ..., n, (15)

FIGURE 2. Central value of density as a function of time for state
vectors of dimensionn = 1, 2, 3, 4 and 5, demonstrating that the
oscillation of the ground state is independent of the dimension of
the system.
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where~x ∈ D are the Cartesian coordinates. In this case, the
system can be reduced to then = 1 problem, introducing a
new variable as in the stationary case:Ψ̄j = Ψj/ψc

j , which
is independent of the indexj. The system takes on the form:

i∂tΨ̄ = −1
2
∇2Ψ̄ + V Ψ̄, (16)

∇2V = ρc(|Ψ̄|2 − 〈|Ψ̄|2〉), (17)

with the initial condition

Ψ̄(~x, 0) =

[
1 + 0.091

( |~x|
rc

)2
]−4

. (18)

Assuming normalized states (ρc = 1), the system reduces
exactly to the scalar problem (n = 1), affirming the stability

of the fundamental states, as indicated in Ref. [12]. Addi-
tionally, a stability test of the complete system is conducted
by evolving then-dimensional case forn = 1, 2, 3, 4 and
5. A point is chosen randomly for~ψc ∈ Sn−1, where each
component of the state vector~ψc is non-zero. The system is
evolved in the domainD = [−10, 10]3, which is over seven
times larger than the size of the core radiusrc, ensuring that
boundary conditions have a negligible impact on the evolu-
tion of the ground state whenn = 1 [15], for a duration of
250 time units.

The central value of the density is monitored, as shown in
Fig. 2. The figure illustrates how the density oscillates near
its initial value, indicating stability against trivial perturba-
tions independently of the dimension of the system.

FIGURE 3. Dynamics of the density profile illustrated with five snapshots at timest = 0, 69, 137, 206, and 275 in each column. First,
second, third, fourth and fifth rows correspond to state vector of dimensionn = 1, 2, 3, 4 and 5, respectively. In the case ofn = 5 notice the
formation of two cores, which is casual due to the randomness of initial conditions; the fittings of density for this case are performed over
the bigger one.

Rev. Mex. Fis.71020704



SOLUTIONS OF THE SCHR̈ODINGER-POISSON EQUATIONS FORN−DIMENSIONAL STATES 5

5. Attractor properties

In order to investigate whether the density of the fundamen-
tal state is an attractor in then-dimensional system, we carry
out simulations forn = 1, 2, 3, 4 and 5. As initial condi-
tions for the system, we place24/n solitons of each state for
the casesn = 1, 2, 3 and 4, whereas forn = 5 we place 5
solitons in each state. These components of the state vector
are randomly distributed over the domainD = [−40, 40]3

and random radii withλ ∈ [1.25, 1.5] of the scaling rela-

tions (3). The domain is discretized with a spatial resolution
h = 5/8 and a time resolution that satisfies the Courant con-
dition∆t/h2 < 0.25. The system is evolved during 275 units
of code time, which corresponds to 14Gyr for a boson mass
of 10−22 eV.

Figure 3 shows snapshots of the density profile at times
t ∼ 0, 69, 137, 206, and275 in each column, for state vector
of dimensionn = 1, 2, 3, 4 and 5 in each row. Regardless
of the dimensionn, a core-halo structure forms over time, as
mentioned in more detail in Ref. [15] forn = 1. We calculate

FIGURE 4. The temporal and spatial average of the density profile is depicted as a function of the radial coordinater, represented by the
solid blue line. Additionally, a fit according to Eq. (12) is illustrated using the dotted line for state vectors of dimensionsn = 1, 2, 3, 4 and
5 in each column. Finally, the grey thick line on top of the average is the latest 30 snapshots used to calculate the average of density once the
structure has relaxed.

FIGURE 5. Each row displays the temporal and spatial normalized averages of individual components of the state vector with dimensions
n = 1, 2, 3, 4 and 5, respectively, represented by solid lines. Dotted lines correspond to core fittings with the square of Eq. (13).
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TABLE I. Parameters obtained from fits forrc and|ψc
j |2 for the multimerger simulation for a state vector of dimensionn =1, 2, 3, 4 and 5.

n rc |ψc
1|2 |ψc

2|2 |ψc
3|2 |ψc

4|2 |ψc
5|2

1 0.3264± 0.0020 (1.3056/rc)
4

2 0.3630± 0.0025 20.96± 1.034 159.8± 4.372

3 0.3484± 0.0022 9.806± 0.5849 127.9± 3.154 60.91± 1.415

4 0.3583± 0.0023 6.547± 0.2835 6.672± 0.3336 88.25± 2.245 80.07± 1.975

5 0.3390± 0.0020 7.405± 0.3719 70.55± 1.846 34.96± 0.7766 78.61± 2.079 43.42± 0.9572

a spatial average over the solid angle and time in the last 100
units of time. This average has the solitonic core surrounded
by the halo profile (12) can be fitted to this average by tun-
ing the parameterrc, and the results are illustrated in Fig. 4
Once the configuration relaxes, it oscillates both in time and
in space around this average profile. In this figure we plot the
latest 30 snapshots of the evolution that produces a thick grey
line around the average density.

Taking a step further, the analysis extends to each com-
ponent of the state vector. By fixing the value ofrc obtained
from adjusting the average density, we determine the appro-
priate amplitudes of the squared modules of each component
according to Eq. (13). The results, depicted in Fig. 5, reveal
that each component exhibits a core with a solitonic profile,
consistent with the ground state of then-dimensional system.
The figures are normalized with respect to the valuesrc and
ρc = (1.3056/rc)4, which can be found in Table I along with
the parameters for each component of the state vector. Two
observations are in turn: the first one is that these are aver-
aged density profiles, as dynamic and space-dependent, just
likewise those structures found in structure formation simu-
lations, something not everywhere pointed out and that needs
to be taken with care; the second one is that the averaged
density profile of each component corresponds to those of
the solutions constructed in Sec. 3, showing in this way that
the assumption of equal mass of each component leads to
equal eigenfrequencies of the solution, which can be seen as
an independent proof of concept of the equal eigen-frequency

assumption, because here we do not consider stationarity, not
even spherical symmetry, we show that simply these config-
urations form in an attractor way.

6. Conclusions

We have described the equivalence between the ground state
of then-dimensional system and the scalar case (n = 1), sup-
porting the hypothesis that they share the same eigenenergy
by directly solving the stationary problem. The dynamics of
the approximation of then-dimensional ground state are an-
alyzed by directly evolving the vectorial SP system. We find
that the ground state is stable independently ofn for n =1,
2, 3, 4, 5, and this stability can be reduced to the case of the
scalar problem withn = 1. Finally, we conducted simula-
tions of multi-core mergers with initial conditions with zero
angular momentum and confirmed that the ground state re-
mains an attractor of the system for the values ofn explored.

Acknowledgments
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1. A. Súarez, V. H. Robles, and T. Matos, A Review on the Scalar
Field/Bose-Einstein Condensate Dark Matter Model,Astro-
phys. Space Sci. Proc. 38 (2014) 107,https://doi.org/
10.1007/978-3-319-02063-19 .

2. L. Hui, Wave dark matter,Annual Review of Astronomy and As-
trophysics59 (2021) 247,https://doi.org/10.1146/
annurev-astro-120920-010024 .

3. E. G. M. Ferreira, Ultra-Light Dark Matter,The Astronomy and
Astrophysics Review29 (2021) 7,https://doi.org/10.
1007/s00159-021-00135-6 .

4. P.-H. Chavanis, Self-gravitating bose-einstein conden-
sates, in Quantum Aspects of Black Holes, edited
by Xavier Calmet (Springer International Publishing,

Cham, 2015) pp. 151,https://doi.org/10.1007/
978-3-319-10852-06 .

5. J. C. Niemeyer, Small-scale structure of fuzzy and axion-like
dark matter,Progress in Particle and Nuclear Physics113
(2020) 103787,https://doi.org/10.1016/j.ppnp.
2020.103787 .

6. M. A. Amin, Mudit Jain, Rohith Karur, and Philip Mocz,
Small-scale structure in vector dark matter,Journal of Co-
mology and Astroparticle Physics2022 (2022) 014,https:
//doi.org/10.1088/1475-7516/2022/08/014 .

7. J. Chen, X. Du, M. Zhou, A. Benson, and D. J. E. Marsh,
Gravitational boseeinstein condensation of vector/hidden pho-

Rev. Mex. Fis.71020704

https://doi.org/10.1007/978-3-319-02063-1 9�
https://doi.org/10.1007/978-3-319-02063-1 9�
https://doi.org/10.1146/annurev-astro-120920-010024�
https://doi.org/10.1146/annurev-astro-120920-010024�
https://doi.org/10.1007/s00159-021-00135-6�
https://doi.org/10.1007/s00159-021-00135-6�
https://doi.org/10.1007/978-3-319-10852-0 6�
https://doi.org/10.1007/978-3-319-10852-0 6�
https://doi.org/ 10.1016/j.ppnp.2020.103787�
https://doi.org/ 10.1016/j.ppnp.2020.103787�
https://doi.org/10.1088/1475-7516/2022/08/014�
https://doi.org/10.1088/1475-7516/2022/08/014�


SOLUTIONS OF THE SCHR̈ODINGER-POISSON EQUATIONS FORN−DIMENSIONAL STATES 7

ton dark matter,Phys. Rev. D108 (2023) 083021,https:
//doi.org/10.1103/PhysRevD.108.083021 .

8. H. Huang, H.-Y. Schive, and T. Chiueh, Cosmological simu-
lations of twocomponent wave dark matter,Monthly Notices
of the Royal Astronomical Society522 (2023) 515,https:
//doi.org/10.1093/mnras/stad998 .

9. N. Glennon, N. Musoke, and C. Prescod- Weinstein, Sim-
ulations of multi eld ultralight axionlike dark matter,Phys.
Rev. D107(2023) 063520,https://doi.org/10.1103/
PhysRevD.107.063520 .

10. M. Jain, M. A. Amin, J. Thomas, and Wisha Wanich-
wecharungruang, Kinetic relaxation and bose-star formation
in multicomponent dark matter,Phys. Rev. D108 (2023)
043535, https://doi.org/10.1103/PhysRevD.
108.043535 .
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