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An approximate new bound state solution of the three-dimensional deformedd8aier equation under the deformed phase-space sym-
metries for the modified Deng-Fan Yukawa potential model that is obtained from the combination of the corresponding expression in three-
dimensional non-relativistic quantum mechanics symmetries and some central tesrys(—fr)/r (1 — exp (—ar)),

exp (—2ar)/r (1 — exp (—ar))?, exp (—3ar)/r (1 — exp (—ar))?, exp (—ar)/r?, exp (—ar)/r® and1/r*] coupled with the in-
finitesimal non-commutativity vectd® and the angular momentum operalar With the help of the parametric generalized Bopp’s shifts
method, the independent time perturbation theory method, and an approximation scheme, the analytical energies of the studied were obtaine
for both symmetries, for different quantum numbers. The new non-relativistic energy equation under the studied potential for the homoge-
nous diatomic molecules (HODMs) ¢HI2); the heterogeneous diatomic molecules (CO, HCI, LiH); the neutral transition metal hydrides
(ScH, TiH, VH, CrH); the transition-metal lithide (CuLi); the transition-metal carbides (TiC, NiC); the transition metal nitrite (ScN) and the
transition metal fluoride (ScF) and in the presence of deformation phase-space are dependent on the discrete atomic quantuiyi numbers (
andm), the dissociation energy, the equilibrium bond length, and the screening pararpefer,(anda), the deformation phase parameters

(Py© andSy ). The new resulting energy equation is utilized to calculate spin-averaged mass spectra of the heavy mesons under the studiec
potential and Deng-Fan Yukawa potential model in three-dimensional non-relativistic quantum mechanics and 3it's extended symmetries.
Furthermore, we have calculated the partition function, from which thermodynamic properties such as mean energy, specific heat capacity
entropy, and free energy are derived in both three-dimensional non-relativistic quantum mechanics and the deformed phase-space symmetri
symmetries. Notably, the two special cases, representing the modified Yukawa potential and the modified Deng-Fan potential were treatec
in extended phase-space symmetry for energies and thermodynamic properties. Our current study promises to apply to different areas ¢
physics in various domains, including atomic and molecular physics.
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1. Introduction atomic molecules. Njoket al. (2022) [5] investigated the
analytical solution of the SE with the shifted DFP within the

Generally, Deng-Fan potential (DFP) model introduced byParametric NU formalism and applied it to the ro-vibrational
Deng and Fan in 1957 [1] is used to describe electromagnetignergies of nine diatomic molecules; KO, LiH, HCI, ScH,
transitions and interactions existing between homogeneouzCN. TiH, ScF andl for both low and high-lying states for
and heterogeneous diatomic molecules [2]. Oyewendl.  Pothi = 0 andi 7 0. On the other hand, in theoretical nu-
[3] (2013) solved the Schdinger equation (SE) with the clear physics, the Yukawa potential (YP) (also known by a
Deng-Fan molecular potential using the Nikiforov-Uvarov Screened Coulomb potential) that was birth in 1935 [6, 7] is
(NU) method and obtained the approximate analytical boundecognized as a phenomeno logical central potential between
state energy eigenvalues and the corresponding wave funf¥0 protons and neutrons [8,9]. The YP has been applied ex-
tions of the homogenous diatomic molecules (HODMs),(H tensively, appearing as an significant model [5-7] for defining
I,); the heterogeneous diatomic molecules (HEDMs) (Co}he theoretical framework of the nuclear force medium and
HCI, LiH); the neutral transition metal hydrides (NMHs) explaining the intuitive physical picture, as well as for deriv-
(ScH, TiH, VH, CrH); the transition-metal lithide (TML) ing other forms that are similar in appearance but distinct in
(CuLi); the transition-metal carbides (TMC) (TiC, NiC); Substance [10]. Cast al. studied the interisland absorption
the transition metal nitrite (TMN) (ScN) and the transition coefficients and the changes in refractive index in spherical
metal fluoride (TMF)(ScF). Ikoet al. (2021) [4] solved the ~quantum dots using Deng-Fan Yukawa [11]. Other studies
Klein-Gordon equation (KGE) with the DFP using the NU- in the literature were found to be related to the Garal.
functional-analysis in higher dimensions and by employinginvestigation [12—-16]. We introduce a newly suggested po-
the improved Pekeris-type approximation scheme, obtainetgntial, we called it the modified Deng-Fan Yukawa potential

the relativistic and nonrelativistic energy spectra of the DFFModel (MDF-YP) which created by combining the Deng-Fan
of hydrogen chloride (HCI) and lithium hydride (LiH ) di- Yukawa potential model with a few central terms connected
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with the angular momentum operathrand the infinitesi- magnetic forces within the framework of Maxwell's equa-
mal non-commutativity vecta® that product resulting to the tions, or what is known as electromagnetism, which describes
impact of phase-space deformation. Motivated by the worlcharges changing with time. This program developed in the
of [11], we suggest the NC effect on the bound state enertast century, especially around 1967, to include weak interac-
gies and thermodynamic properties of the modified Deng-Fations, and the old unification model became an expression of
Yukawa potential model arising from the deformed phaseelectroweak interactions (the Glashow, Salem and Weinberg
space in the context of three-dimensional non-relativistianodel). Through the other success of including strong in-
non-commutative phase-space (3D(NR-NCPS)) symmetrieseractions, the unification model includes three fundamental
To our knowledge, no literature review has been done on thigteractions, especially after the Higgs was confirmed. The
kind of investigation. This work will focus on the modi- biggest problem is that gravitational forces are not involved
fied Deng-Fan Yukawa potential model in the 3D(NR-NCPS)in this program. Naturally, the new theory of 3D(NR-NCPS)
symmetries framework. The combined potentidls (d) un-  symmetries is the strongest candidate for solving this major
der investigation are represented as problem in the field of unifying all four cosmic forces. The
1 oV, (r) following outlines the remainder of the paper: An overview
———2LO+0(e*. (1) of the 3D-SE within the Deng-Fan Yukawa potential model
2r  Or framework is given in Sec. 2. Section 3 investigates the three-
Here the Deng-Fan Yukawa potential (DF-YP), which of dimensional deformed Sdbulinger equation using the well-
the form in this work, in three-dimensional non-relativistic recognized generalized Bopp’s shifts approach to determine
quantum mechanics (3D(NR-QM)) regimes, is represente¢he MDF-YP model’s effective potential. Additionally, we
as [11]: determine the corrected non-relativistic energy produced by
bexp(—ar) \? . exp(—ar) the influence of the perturbed effective poten@gf” (r) of
Vay (1) =D, (1—) ~Vo———=, (2) the MDF-YP model using conventional perturbation theory.
1-exp (~ar) Under the MDF-YP model, we get the global modified ener-
whereb = exp (ar.) — 1, . is the molecular bond length, gies for non-relativistic particles, including the homogenous
D, is the dissociation energy. The internuclear separationgiatomic molecules (HODMs) (¥ I.); the heterogeneous
in the 3D-NCPS and 3D-QM symmetries are represented bgliatomic molecules (HEDMs) (CO, HCI, LiH); the neutral
d andr, respectively. The scalar product of the infinites- transition metal hydrides (NMHs) (ScH, TiH, VH, CrH);
imal non-commutativity vecto® and the angular momen- the transition-metal lithide (TML) (CulLi); the transition-
kb . ) . " o
tum operatorL yields the couplingL.® =L.©®. As for metal carbides (TMC) (TiC, NiC); the transition metal nitrite
the symbolO (©2), it means ignoring the terms that start (TMN) (ScN) and the transition metal fluoride (TMF)(ScF).
from ©2 and above. It is worth noting previous studies thatSection 4 studies MDF-YP model homogeneous and hetero-
are directly and indirectly related to the topic of our cur- geneous composite systems in 3D(NR-NCPS) symmetries.
rent research. Let us first refer to our personal research ihhe impact of phase-space deformation on the thermal char-
the frameworks of relativistic and non-relativistic NC quan- acteristics of the modified Deng-Fan Yukawa potential, in-
tum mechanics symmetries [17—25]. It is well known thatcluding partition function, mean energy, free energy, specific

the 3D(NR-QM) is based on the non-commutativity of the heat, and entropy, is the subject of Sec. 5, the special cases
momentums™? (ps p (1), P!, (1)) and the correspond- related to energy in the extended phase-space framework also

123 72l : . . . =
ing generalized coordinates®™” (x5 . z* (£). zi (£)) only. mclud_e the overall thermodynamic properties as a partlcular _
g9 eé‘ (i, @ (8), ), (1)) only [casein the extended phase-space through appropriate substi-

>
While its extension in 3D(NR-NCPS) symmetries based on"*> . . )

tions for each case. Finally, succinct closing remarks are
(4))provided in the last part.

Vay (d) = Vay (r)

other postulates; the first new additive postulate corresponﬂiJ
to the non-commuting of position-position (See Eq.
and the non-commuting of momentum-momentum operators

(See Eq. (5)) [26-31]. Formally, 3D(NR-NCPS) symme- .

tries can be divided into three categories: the first class corr?: A Summary of SE in the 3D(NR-QM) sym-
spond to non-commutative space-space (NCSS), the second Metry using the Deng-Fan Yukawa poten-
class correspond to non-commutative phase-phase (NCPP), tial model

while the third class corresponds non-commutative phase-

space (NCPS). The work of Connes [32—-34] and Seibergin the frameworks of 3D(NR-QM) symmetry, it is helpful
Witten [35] was an important tool in developing the new con-to remember the eigenvalues and corresponding eigenfunc-
cepts of NCQM theory to find applications with a physical tions under the influence of the Deng-Fan Yukawa poten-
context, particularly in quantum field theory. It should be tial to build a physical model describing a physical system
noted that Chaturvedit al. in 1993 [36, 37] first formulated that interacted with the MDF-YP model in 3D(NR-NCPS)
non-relativistic NCQM. Several centuries ago, the progranregimes. The radial SE for the Deng-Fan Yukawa potential
for unifying forces began to collect all electric forces andmodel can be written as follows:
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2
(CZ: +2p (EZ%’ - D, (1 _ bexp(—‘”)) Ly R (zan) 1+ 1)) R (r) = 0. @3)

1—exp(—ar) r 2ur?

The HODMs (H, |,); the HEDMs (CO, HCI, LiH); the NMHs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC,
NiC); the TMN (ScN) and the TMF (ScF) are composed of two partictes &ndms) that have a reduced magsequal to
foz/f) mn/Zizlmn- The valueEZ? are the non-relativistic eigenvaluds,, /) are represent the principal quantum number

and spin-orbit quantum number, respectively. Garal, in Ref. [11], apply the NU method to obtain the expression of the
radial partR,,; (r) as a function of the hypergeometric polynomials (hypergeometric polynomials) as follows:

R, (r) = Npis™ An (1-— 8)%4_% Vitden oF) (—n, b 1 — 2A,58) . (4)
Here, the variable is equal teexp (—ar) while A,,;, €,; andN,,; are given by:

Apy = % |:De - EZZU + l(l-;;)az} >

e =1(1+1)+ 24D.b?,

bt = 0= 2,[2 [D. — it + D, (20 + %) + D7) ®

an =

1/2
I(n+2+2vA0) 2an!T (n+2+2vA,0 )T (2n+2+2VA 1)
(2420 An) | 2 (VAR S VI D (g R ) D (2 '

Since the Deng-Fan Yukawa potential model has an isotropic property (depended only &iows the known forms’ com-
plete complex non-relativistic wave function solutién(r, 23, ) of the known formg R,,; (r)/r)Y.L (23) exp(—iE;f?{t) with

—I] < m < +]l|]. Hence, we can conclude the complete complex wave fundtion 23, ¢) in usual 3D-RQM symmetries
as,

s™ Anl

U (r,Q3,t) = N, exp (—zEZ?t) (1- s)%+% Vitden gy (=1, b 1 — 20,5 8) Y (Q3) . (6)

r

While the corresponding vaIueEjf? of the Deng-Fan Yukawa potential model in 3D(NR-QM) regimes can be represented in
a closed and compact form as

Q. \* QvQ?
Ez?:Qa_Qb(n"'Py"_n_Fry :Qa_2Qch_ ;2 +pr2 , (7)
with Q,, Q, and@. are respectively:
a=Dc+ a212(ij1)7 Qb = %a
()é2 (o7
Q.= — p, (2b+ ‘%) — D2, ®)

y=3+5/1+4(0+1) + %D.02) and p=n+7.

It is helpful in briefly studying the total energy of each of the fundamental stég}és:orresponding to the quantum numbers
(n = 0,1,m), as well as the first excited staﬁfly corresponding to the quantum numbers 1,1, m), where Eq.(24) in these
two cases becomes as follows:

2

B =Qu-Qu(v+%),

Edy:Q _Q 1+ +Qc 2.
1 a b T 1y

When an electron transitions from an excited state, described as a quantunnstaté,{, m), to the fundamental state,
described as a quantum state € 0,7, m), it will emit or absorb electromagnetic radiation, the frequemﬁ’/ of which is
determined by the following relation:

©)

Wi = |BfY - EgY|. (10)
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A simple calculation gives the emitted or absorbed electromagnetic radiafjoim the context of 3D(NR-QM) symmetry as

follows:
2 2
(i) - (e %) az

The following section will investigate the MDF-YP model in 3D(NR-NCPS) symmetries.

W —
Wpp = Qb

3. Investigate DSE solutions in the 3D(NR-NCPS) regime under the MDF-YP model
3.1. Review 3D(NR-NCPS) regime

3D(NR-NCPS) symmetries formalism, based on new algebra of self-adjoint differential opeddtodd () andd’, (¢)) and

(w2, 7 (t) and~?, (t)) that come in three different kinds of Sélainger, Heisenberg, and interaction pictures (SP, HP and IP)

in three varieties. These varieties that satisfy a deformed algebra are the canonical structure variety, the Lie structure variety,
and the quantum plane variety as follows (QSV, LSV and QSV, in short) [38—47]:

[ds,m5], = [db (t), 7 ()], = [di, (t) 75 (1)), = ihespdap, (12)
[d,d3], = [di (), df (0], = [d5 (1) df (D], = iQag, (13)
[7‘(2, 71'[%] .= [WZ (1) ,Wg (t)} L= [w; (t), 77% (t)]* = iQug, (14)

with
(Qaﬂ,ﬁa[}) = (eaﬁd = daﬂ, Eagg = gﬂy) t€qp € CSV7 (15)
(s, Dap) Zh (dgs’hr”,wg*“ ) hi, € LSV, (16)

and

3
(Qaﬁ7ﬁa5) = Z Gi’g (d%‘,h,i)dgs,h,i)’W(Ws,}z,i)w((;s,h,i)) . ng € QPV. (17)
§,v=1

The symbol@, S], is a new commutator which mea(@..S — 5.Q), 0,., and&,w are antisymmetric real constastx 3)
matrices, which satisfied the physical conditidfys,] = €,,,,[0] and[0,..] = ¢, [0] are equal to (lengtR)and (momentums)
,here(0,0) are the real non-commutative phase-space parametersuarisl the Kronecker symbol. The indic¢s, 5) equal
to the valueq1, 2, 3), ande,, is just an antisymmetric tensor operator that is satisfigd= —e,,, = 1 for ; # v and
e = 0. The effective Planck constant;; equal to the corresponding valugsplus (6/4)% that is present the impact
of phase-space deformation on commutaigy, p;] 3D(NR-QM) symmetries. For the purpose of simplifying the writing of
mathematical equations, we have adopted the most commonly used natural units, corresponding to adopting both the reduced
Planck constant and the speed of lightin a vacuum as equal to one. In 3D(NR-NCPS) and 3D(NR—QM) symmetries, the
deformed generalized coordinatég” ’)(d;, d"(t) andd: (t)) and deformed generalizing momentuni§”? (7r 7 (¢) and

7 (t)) and the corresponding operators in 3D(NR-QM) symmetrre$ ¢ (x5, zli(t) andz!, () andp(* ohot) h(t) and

o P
pﬂ( ))) satisfied the uncertainty relation that corresponds to the Eq. (12) becomes:

Azs Ap3| = |Azh Aph| =

Ll > h6(¥5/2:>
Adi Arg| = AdgAwg = |Ad}, >

heff0ap/2

Nonetheless, a new uncertainty relation is shown through Egs. (1.4) and (1.5):

=)

iAdhAdi ’AdlAdl 9B (19

’Ads >
|AmS Ans| = iAngwf}i = |A7TQA7TV| > Efﬁ)

Rev. Mex. Fis71020401



INVESTIGATING THE EFFECTS OF PHASE-SPACE NON-COMMUTATIVITY COORDINATES ON THE MODIFIED DENG-FAN YUKAWA. .5

For QSV, LSV and QS\(E,(}V) , Effy)) are equal to, respectively:

—(1) —(2 7
2 :&V),:EW) = (0,0) l€u !
—(1) —(2
2 ':‘E,Ll/))':'fuj) = (B,uuaf}/#y) ’ (20)

—(1) —(2
(E2.282) = (Lpwrce.

with 8,,,, /., andL,,, /o, are equal to the average values:

B = ‘<§ ( ;%,dﬁf7h,z-))>’ 7

21)
3 a s,h,i (
Yuv = ‘<Z ( l“,ﬂ-((l/ )) s
and
3 o s,hyi s,h,i
Loy = <z (Gagal™ag) ),
“r (22)
a s,h,i s,h,i
QU = <§<GW[57T,(1 )Wg )>>

There is no equivalent in the current literature (3D(NR-QM) symmetries) for the novel subdivided three-uncertainty relations in
Eqg. (19). We have extended the modified equal-time non-commutative canonical commutation relations in 3D-NCPS symme-
tries to include the standard Sdédinger, Heisenberg and interaction pictures. The new deformed scalar ptfdue} (x, p)

is defined by the Weyl-Moyai-product for a canonical structure variety expressed as [48-55]:

1 o —af3 —2
-5 (9 B0y fO,h + 0" Do O, h) (z,p) + O (9 ,92) : (23)
hered,« andd,. are equal t@)/dxz~ andd/dp®, respectively. We must preserve new expectation relation in the 3D(NR-
NCPS) regimes, respectively:

(f*h)(z,p) = (fh)(z,p)

s(UIA|W)s =g (¥ [AG,, (O] O)m = (¥ |AL,, ()| ¥); =
S AL W)s =5 (W[ AR, (8)| )3 =7 (W | AL (8)] W)ie. (24)

nc nc

This enables the creation of two scales of space and phase cells with vc{l&ﬁﬁé@sﬂ). The second component(i/2)
(08 0,a fO,5h)(z,p)) Of EQ. (23) represents the physical consequences of phase-space non-commutativity, while the third

component{(i/Q)(?aﬁﬁpa fOysh) (z,p)) represents the physical consequences of phase-phase non-commutativity.

3.2. Investigating GBSM

The principal approaches to resolving the impact of the (NR-NC) phase-space on the SE utilizing the MDF-YP model will
be discussed in this subsection. The novel notions mentioned in the introduction have been identified explicitly in Egs. (12),
(13), (14), and (23) are considered in new relationships described by new non-commutative canonical commutation relations
(NNCCCRs) and the concept of the Weyl-Moyal star product. We may rewrite the usual radial SE in Eq. (3) in 3D(NR-NCPS)
using these data as follows:

2
<d2 ou(EY — D, (1 - beXp(o”)> 41, 2P (;O”) _ W+ ) )> % Ry (1) = 0. (25)

dr? nl 1 —exp (—ar) 212

Researchers in solving the four fundamental (SE, KGE, DE and the Duffin-Kemmer-Petiau equation), including non-commutativ
guantum principles, rely on two equivalent methods. The first method is represented by reformulating the different new physical
fields in the NC-quantum group, such s, (Dirac spinor) ®,,; (Klein-Gordon field operatork;, (virbien in quantum grav-

ity), F 3 (electromagnetic antisymmetric tensorlitfl) symmetry) and others in terms of their corresponding physical fields

in the usual quantum grou(,;, ®.;, e, Fs and other among), in proportion to the NC paramet(8, s, 623, 013) /2,

which is similar to the Taylor development [55-60], whereas the second method is represented by reformulating the non-
commutative operatory(andr) with its view of the quantum operatorg @ndp) known When employing either of them, the
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6 A. MAIRECHE

physical outcomes are expected to be identical. F. Bopp introduced a new quantizationantepf —(q = = — (/2)0,
andm = p + (i/2)0,) instead of the standard correspondencatfdp)—(q = = andq = p + (i/2)9,), which is known
as the generalized Bopp’s shift method (GBSM) [61-65]. This quantization method is known to researchers as Bopp quan-
tization [64]. The Weyl-Moyal star produgt(x, p) * g(z, p) promotes GBSM by being replaced fyq = = — (i/2)0,,
m = p+(i/2)0;)*g(z, p) [65]. As a result, we may obtain transformations from the Weyl-Moyal star produtd ¢he typical
product using the MDF-YP model, as shown below.
D. (1 - Mf % Ry (1) = D, (1 - Mf Ry (),

1—exp(—ar) 1—exp(—ar)

V22 R (r) = —Vp2REeD R (1), (26)
A Ryt (1) = S Ry (1)
and
2 2
p v
= Rn :7R7L . 27
3 Tt () = 5 P (7) (27)

We should inform the reader that the generalized Bopp’s shift method succeeded by applying it to the four fundamental equa-
tions classified according to spin (integer, half-integer, or zero) and energy value (low or high). For SE [66—73] and the other

three relativistic equations represented by the KGE [74—80], the DE [81-86], and the Duffin-Kemmer-Petiau equation [87-90],

GBSM has achieved great success. It is worth noticing that GBSM allows us to reduce Eg. (25) to its new simple form:

<d2 +2u (E;f;f - D, (1 = bex“‘“”) Ly @Rl M ”)) R (r) = 0. (28)

dr? 1 —exp(—ar) d 2ud?

The deformed algebraic structure (new non-commutative algebra) of covariant canonical non-commutation relations with the
notion of the Weyl-Moyal star product presented in Egs. (3), (4) and (5) reduce to simple new NNCCCRs as follows:
First, the reduced new NNCCCRs in the Sixtinger picture:

[d;,ng = ifiessaap = [d5, 5] = ida,
[dg,d;]* = 00 = [dz,d%} = 0, (29)
[wg,ng = iBap = |7 75| = Bas.
Second, the reduced new NNCCCRs in the Heisenberg picture:
(4l (0),7h ()] = i8as = [ah (1), 7 ()] = 6,
(@ (), dls ()] =i = |dh (1) (D] = iBas, (30)
[wg (6),7h (t)L = ifap = [71'2 (t),7h (t)} = i0ap.
Third, the reduced new NNCCCRs in the interaction picture:
|5 (8), 7l ()] = ihegsdas = [ai ()7 ()] = iGas,
[ (0) iy (0] = i0ag = [di (2) ., ()] = 00, (31)
[wg (t), 7 (t)L = 0,5 = [wg (), 7 (t)} = 0.
In 3D(NR-NCPS) symmetries, one possible way of implementing the algebra defined by Egs. (29), (30) and (31) are to

construct the non-commutative set of variablés, (¢" (t) and¢’, (t)) and (5, =" (t) and 7%, (t)) from the corresponding

commutative variablestf,, =" (t) and, (¢)) and @5, p! (¢) andp!, ()) by employing linear transformations. This can be

generally done by using the Seiberg-Witten map, given by:

3
&5 = a5, — zlegvpg +0(0?),
g y (32)
sas+0(07)

e

S __ S
T =Pyt

v=1
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and
dl(t) = 2t (1) — 3 Leph (1) + 0 (8?),
h h Ugl@ h 72 (33)
ACEFACKIE R ACKEI R
and

vl (34)

We have applied Einstein’s term regarding the addition process in the above-mentioned equations, where the repeated indice
v once up and once down correspond to the addition process from 1 to 3.This allows us to find the opdratofd?( =2
andVy, (d)), in the 3D(NR-NCPS) symmetries, equal to:

d? :r2—L.@+O(@2),
35
{zﬁ(p=2,3rz+§ﬁ+0(@2), (35)
and
72 = p? + L.60+0 (92) ,
b 2 exp(—ar) 1 OV, 2 (36)
Vay (@) = De (1—W) — V=Rt L, e+ 0 (07).

It is worth noting that the couplinds.® andL.d are expressed to the angular momentum opelatiistained from rotation of

two vectors £ andp) that are equal 9, , , €ijr0Fpiat andy>, ;. eijkgkpjxi, respectively. On the other hand, this double
coupling, which expresses the interaction of physical properties and topological deformations, are expressed by the scala
product(L, 612 + Ly0a3 + L.012) /2 and L6012 + L,023 + L.613. When we substitute Egs. (35) and (36) into Eq. (28), we

get the following like-SE:

2

d dy bexp (—ar) \> exp(—ar) 1({+1) pert
dr? o (Enl be (1 1 —exp(—ar) +Vo r 2pr? +21Zg," (1 0)

Ry (r)=0, (37)

with

1 9Vy, (r) 7[ (I+1)
2r  Or 2urt

Z5et (r,0) = ( ) L.O+0(07%). (38)

The above equation combines the physical characteritjts-) (0Vy, (r)/0r) andr?/2u of the MDF-YP model with the
angular momentum operaty, as well as the topological features generated by phase-space deformations. After performing
the mathematical calculations, one obtaing2r)(9Vy, (r)/0r) andm? /2.

1 OVyy(r) abexp(—ar) (abfozb2)exp(f2a7‘) ab? exp(—3ar) Vy exp(—ar) Vo exp(—ar)
2r Bzvl” =D. r(1—exp(—ar)) + De r(l—exp(—ar))?  “€r(l—exp(—ar))? + % 72 + 70 r3 ’

X (39)
™ 2 .0 0

5 =5+ 5040 (9 ) :

As a result of the topological features of the deformation phase-space, the spontaneously generéfﬁ;"g  teyrfr, ©) and the
global working Hamiltonian operatdf ¥ (p,r, ©, ) that equal to the modified kinetic energy(p, 6) /21 plus the effective
potentiaIVe‘?yfim (r,©) of the MDF-YP model:

H% (p,r,0,0) = Hyy (p,r) + H,

pert

( 7@76)7

‘rdy o) ‘rdy Zp is o ( )
ert

eff—nc( J ) eff( ) dy ( ? )
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8 A. MAIRECHE
with

H, (r,0,0) = 25" (r,0) + 52 4+ 0 (52, @2) ,

Z(gi);rt (,r’ @) _ Dcabexp(—ar) (1 + (1-b)exp(—ar)  bexp(—2ar) )L@

r(1—oxp(~ar) Tow(—ar)  (-exp(—an)?
4 (QTVO expi;ar) + %exps‘;ar) _ 1(1+1)) L.O+0O (@2) ,

2urt

(41)

2
Hay (p.w) = B + D, (1 - f2pzen )" yyeeten,

1—exp(—ar) r

We can express the global effective potential in 3D(NR-NCPS) symméfﬁé?ff (r,®) as a function of corresponding
follows of the effective potentidlfdeyff (r) in 3BD(NR-QM) symmetries as:

Vo= (r,0) = VI () + 257" (r,0) + 0 (67) (42)

with
eff bexp(—ar) 2 exp(—ar) 1(1+1) 43
de (T) = De (1 - 1—cxp(—o¢r)) -V [ + 2ur? ( )

Furthermore, Eq. (37) cannot be solved analytically for any $tgt® because of the centrifugal termsp (—ar)/r(1 — exp
(—ar)), exp (—2ar)/r (1 — exp (—ar))?, exp (—3ar)/r (1 — exp (—ar))®, exp (—ar)/r2, exp (— ar)/r3 and1/r%) and

the studied potential itself. In fact, the global Hamiltoni&l{¥ (p,r,©,6) and effective potentiaV/; ~<If (r,©) given in

Eq. (45) has a strong singularity— 0; we need to use the suitable improved approximation of the centrifugal term proposed
by Greene and Aldrich [91] and applied by Catial. [11]. The radial part of the three-dimensional deformed 8dimger
equation with the MDF-YP model contains the previous centrifugal terms since we asséroe However, the MDF-YP
model is a kind of potential that cannot be solved exactly when the centrifugal term is taken into account enlessis
assumed. The conventional approximation used in this paper:

a? a? 1 o o

1
r2 (1 —exp (—ar))? - (1-s)? A —exp (—ar) T1-s (44)

Thus, performing the calculations, one gets the following results:

D abexp(—ar) __ Dob—35—,

€r(l—exp(—ar)) — (1— 5)2 ’

ab—abz) exp(—2ar)
r(1—exp(—ar))?

D,

52
= Deb(l — b) QQW,

2 < 3
7De ab exp(fdom)3 _ 7D60t2b2 s .
r(1—exp(—ar)) (1-s) (45)
aVp exp(—ar) _ o’Vy s
2 r2 2 (1—-s)2?

mexp(—ar) _ Vool s
2 r3 T2 (1-s)®

Ut 141) o
2urt T 2 (1—s)t"

This gives the perturbative effective Hamiltoniaij? ., (r, 0, 5) and effective perturbed potentﬂagf’y"1t (r,©) givenin Eq. (46)
as follows:

Hggrt (r’ 635) = ( )L (] + +O (9 62>

(46)
Z5M (r,0) =T (s)L.O® +0 (6?).
with
_ _ais ass? azs® ass
T() = aZp T oy oty Fao Faan ; 1 (47)
Deb+a2V0:ala Deb(l—b)a2:a2—DeOzb :a?” %Ta:a4 and _%:aﬁ.
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INVESTIGATING THE EFFECTS OF PHASE-SPACE NON-COMMUTATIVITY COORDINATES ON THE MODIFIED DENG-FAN YUKAWA. .9

The potential under study, to become a MDF-YP model in 3D(NR-NCPS) symmetries, the Deng-Fan Yukawa potential model
is expanded by including new radial termg(1 — s)?, s2/(1 —s)*, s3/(1 — s)*, s/(1 — s)*and1/(1 — s)*. Furthermore,

the new additive part of the Hamiltonian operafdigjrt (r,©,0) is also includes two infinitesimal couplinds (©,6) that
interacted with previous radial terms. This is logical from a physical point of view because it explains the interaction between
the physical properties of the studied potenfiadnd the topological properties resulting from the deformation of phase-space
that is described wit{©, ). This enables us to treat the new additive part of the Hamiltonian opeﬁﬁ@‘;g (r,0,0) as

a perturbation operator in the symmetries of 3D(NR-NCPS) symmetries, compared to the main pHigniiat:) (parent
Hamiltonian operator); the inequalifyggrt (r, @,5) < Hgy (p, x) has been achieved. All of the physical arguments for using
time-independent perturbation theory are met. As a result, we can provide a thorough prescription for estimating the energy

level of generalizedn, I, m)"" excited states.

3.3. Non-relativistic expectation values under the MDF-YP model in 3D(NR-NCPS) regimes

Now, we want to apply the independent time standard perturbative theory and we find the non-relativistic expectation val-
ues (s/(1— )} = Fly (21— )0 = 3 (83— )Y, = Fi (/01— 5", = Fi, and

(1/(1— s)4t>dglm = ng ) for the HODMs (H, |»); the HEDMs (CO, HCI, LiH); the NMHs (ScH, TiH, VH, CrH); the
TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the TMF (ScF) , taking into account the unperturbed wave functions

U (r,Q3,t) which we have seen previously in Eq. (19) in the case of 3D(NR-NCPS) symmetries. Following simple calcula-
tions, we obtain the expectation valuesi(, F 3, F 5, I 3, andfj, ) in the first order using standard perturbation theory as

dy
follows:

+oo
Fh, =N / sTAVAMFL (] _ VI T L B (b 1 — 200;8)]P dr (48)
0
—+oo
Fﬁy = N2, / s~ 2VAn+2 (1—s)" hden =2 [2F1 (=1, bpi; 1 — 2A55 s)]2 dr, (49)
0
+oo
F3, = N2, / s72VRAES (1 ) VIS LBy (o, by 1 — 20,03 9)) dr, (50)
0
—+oo
Féy = N2, / s 2VAn+ (1—s)" Thden =2 [2F1 (=1, bpi; 1 — 2A55 s)]2 dr, (51)
0
and
—+oo
r3, =N / s VI (1 — )T By (=, s 1 — 2005 5)) 2 dr (52)

0

We are introducing the change of variable- exp (—ar). This maps the regiord(< » < oo — 0 < s < 1) and allows us to
obtaindr = —dz/ax, and transform Egs. (48), (49), (50), (51) and (52) into the following form:

2 7
Fh, = %/s*WATlH*l (1 — )V LR (=n, by 1 — 2003 8))° ds, (53)
“ 0
N? Y
Fi =2 / s 2VER2L (] GVIFAG=2 i () 9|2 ds, (54)
0
N? o ATde
ng = 7”1/5_2‘//\7"“*'3_1 (1-29) e =3 [2F1 (=1, b 1 — 2A55 s)]2 ds, (55)
0
N2 r e
Fay = / §T2VRMHITL (] ) VIR T2 By (b 1 — 2005 8)) ds, (56)
0
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10 A. MAIRECHE

and
N2 e =t
F 5, = —u / sTAVATL (1 = )V L By (e by 1 — 20,5 8)] ds. (57)
(0%
0

The above integrals can be evaluated in two ways: either by using the formulas used by Aletreld®?2] and Taset al. [93]

to obtain the general excited state directly, or by using the physical values of the principal quantum nugesb@ri(...) to
evaluate the above integrals and then generalize the result to the gené;&l)th excited state. The first method will be less
expensive and faster in signing the required solutions:

+1
/x27_1 (1- :13)2('”1) LF1 (—q,q+2(a+vy+1);29v+1; :zc)]2 dx
@ g+2(a+1) /2T (29)T (g+2(a+1)T 2y +1)

= . 58
(g+2(a+1)/242y/2)T(¢+2v+ DT (¢ + 27+ 2(a+ 1)) (58)
The following solutions are obtained by comparing the integrals in Egs. (58) with Egs. (53) - (57):
;g T (1= 2VA0) T (ny/TFde — 1) T (2 — 2v/A) (59)
dy = Ynl F(n*2 /AnlJrz)F(nJr\/me\/Anl) ’
2 7 (2 —2vA0) T (ny/T+ den — 2) T (3 - 2v/A0) (60)
WM T (43— 2R T (n+ VI T dew — 2VAW)
po gl (3= 2vVA) T (n+v/T+den — 3) T (4 — 2VA,) (61)
dy = "l F(n+4—2M)F(n+m—2vAnl) ’
pa gt T (1= 2/A0) T (nty/TF4dey — 2) T (2 - 2V/A) 62)
WM (42— 2 A) T (n 4+ VT T d6m — 2y/A — 1)
and
;o g T(E2VA) T (n2(a+ )T (1 - 2VAw) (63)
WD (41— 20/A) T (n+ I+ de — 2v/A + —3)
with@,.,,8-,,0.,, 0., andd., are equal to
nl (n+ VIAF e = 1/2) N2l (/I3 % e = 1) N2l (n+ /T34 e — 3/2) N2,
a (n+ VAT e — m) " (n+ m_mm) " (n+ VAT e — WM) ’
nl (n+ VI/A+ e = 1) N2, nl (n+ VI7A+ e = 3/2) N2,
and )
a(n—|— 1/4+enl—1/2—\/ATl) a(n—k\/m—\//\nl—?)/?)
respectively.

3.4. The MDF-YP model’s effect on non-relativistic energies as a result of phase-space deformations

What stands out here is the use of our physical methods based on the principle of superposition to calculate the total values
of non-relativistic energy under the MDF-YP model in 3D(NR-NCPS) symmetry. As mentioned before, the total effective
potentiaIVd’Zc‘eff (r,©) is the sum of three potential§™ (r,©), 1 (I + 1)/r2andVdp;Tlt (r,©) is responsible for the creation

of total non-relativistic energies within the context of 3D(NR-NCPS) regimes. Naturally, the effective potlzfﬂﬂa(bs) plus

[ (I + 1)/r? are responsible for the non-relativistic enerﬁ# of SE in the Deng-Fan Yukawa potential model in 3D(NR-QM)
symmetry, as shown in Eqg. (23), which are dominant in the absence of phase-phase-space deformations. In 3D(NR-NCPS)
symmetries, the naturally generated potenthjg” (r,®) due to phase-phase-space deformations will be self-sources of
corrected no-relativistic energy. Given that the NC two parameéde(®,,, 623, 013) /2 andf (612, 623, 613) /2 are arbitrary,

we deal with them on the relevant physical need. To begin, the perturbed spin-orbit influence can be derived from the perturbed
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INVESTIGATING THE EFFECTS OF PHASE-SPACE NON-COMMUTATIVITY COORDINATES ON THE MODIFIED DENG-FAN YUKAWA. 11

potentiaInye” (r, ©) corresponding to the HODMSs @1,); the HEDMs (CO, HCI, LiH); the NMHs (ScH, TiH, VH, CrH);

the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the TMF (ScF). The perturbed spin-orbit effective potentials

are obtained by substituting the angular momentum L operator’s coupling with the non-commutative phase-space vectors
O(012,023,0613) /2 andd (012, 623, 613) /2 with the new equivalent couplings as follows:

(L.©,L8) — (,8) L.S or (f.@’,i’.?) ~(©.9)T.5, (64)

with (O, 0) are equal to {/03, + 03, + 0%, \/9 + 62,). We have oriented the spinef the HODMs (h, I»); the
HEDMs (CO, HCI, LiH); the NMHs (ScH TiH, VH CrH); the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the
TMF (ScF) to become parallels to the vec®X6.2, 03, 013) /2 andf (612, 63, 613) /2 which interacted with the MDF-YP
model. This connection between topological and physical properties came according to our conception on the basis of the
available degree of freedom. As we know, using the degree of freedom in the equations of motion is equivalent to adding
the gauge fixing term to the Lagrangian. Since the degree of freedom does not apply if this term is added to the Lagrangian
expression, it can be applied explicitly if we adopt the Lagranglan without this term, and this is what we did. This physical
philosophy came to consider the two topological vec(@s 9 ) as an arbitrary. The mathematical aspect of the problem is
simple because when we con5|der two parallel vectors, , We can express the proportlon between them in terms of the value o
the other. if we consider the vectot parallel to the vectos (A//B) thus we haveB| A equal to| A] B. The expression
for the perturbed Hamiltonian that we saw in Eq. (46) will then be as follows:
d - 0
HY (r,0,0) =T (s)L.S+ ﬂL.S. (65)

The corresponding partially corrected energ@E"T 59, obtained by applying the independent time standard perturbative
theory in the first order of phase-space non- commutatlvity parameters using unperturbed complex wave function in Eq. (19),
as follows

N / U (1, Q3. 8) HY (r,0,8) U (1, s, t) r2d2lr. (66)

Hered2 equal tosin(6)dfdp. Direct simplifications give
AE; ™ = / Ry (r) HY (r,0,0) Ry (r) dr. (67)

After performing the mathematical calculations, one obtains:

r'e 3 1 5
AE;T= = (@ (X) (0, De,yre, Vo, @) + 2/) (L-S) (i) - (68)

(nlm)

Here <X>(nlm) (n, De,re, Vo, @) is global expectation values that can be determined from:

5
(X)) (0 Deyre, Vo, a) = Y aully, (n, De,re, Vo, @) . (69)
p=1

The values , (n, De,7e, Vo, ) (u = 1,5) are determine from Egs. (59), (60), (61), (62) and (63) while the means value
(L.S) obtained by applying the following well-known transformation:

<(3>L.S—>(J2—L2—S2)/2<(Z>' (70)

Because, in 3D(NR-NCPS) symmetry, the operatcﬁgl({,( J2, L2, S% andJ.) can construct a complete set of conserved
physics quantities. Thus, the eigenvalues of the ope(dtor- L? — S?) are equal to the value’s for the HODMs (H, 15);
the HEDMs (CO, HCI, LiH); the NMHSs (ScH, TiH, VH, CrH); the TML(CulLi); the TMC (TiC, NiC); the TMN (ScN) and the
TMF (ScF) arg1/2)(j(j+1)-1 (I + 1)—s(s+1)). Thevalueg € [l — s|, |l + s|] and the spirs can be equal t§1/2,0, 1, ...}.
Thus, a direct result, in 3D(NR-NCPS) symmetries, the partially corrected enér@lg}‘so (n, D.,re,Vo,0,0,0,4,1, s) =

(nlm)
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AEy"—* produced by the perturbed effective Hamiltoniéf}!,, (r, ©, ) for the (n, 1,m)"" under MDF-YP model are de-
termined from the following equation:

so d a 2 72
AE = A (@ Oy + 5, ) +0 (627°). (71)
The influence of the magnetic perturbative potential, which causes the effect of the perturbed HamP@fﬁ;;a(m, @,5)

under the MDF-YP model in the 3D(NR-NCPS) symmetries, is the second significant physical contribution. This physical
action can be achieved by performing the following transitions:

(%2)—(22)??. (72)

Here, XN is the strength of the magnetic field caused by the influence of phase-space geometry defoxnaatignare playing

the role of new infinitesimal non-commutativity parameters. The physical unf@]of (length? and [f] = (momentuny?

are equal tdx] [¥] and [6] = [x] [N], respectively ank = Ne,. The second choice emerges from the fact that the vectors

O (612, 023,013) /2 andf(f12,023,013) /2 are arbitrary or that the magnetic field is oriented along €he) @xis, which helps
simplify quantitative calculations without changing the physical point of view. The expression for the perturbed Hamiltonian
that we saw in Eq. (46) will then be as follows:

R
H (r,x,X) = NY (s) xL- + g XLtO (x*,x?) . (73)

All of these data allow for the discovery of the new square energy Alﬂf;g (n, Vo, V1, @, x, X, m) for the HODMs (H,
I2); the HEDMs (CO, HCI, LiH); the NMHSs (ScH, TiH, VH, CrH); the TML(CulLi); the TMC (TiC, NiC); the TMN (ScN) and
the TMF (ScF) due to the perturbed Zeeman effect produced by the influence of the MDF-YP mode[afoi,the)th excited
state in 3D(NR-NCPS) regimes:

AE}S =R (x <X>§glm) + ;L) m+0 (x*,X%) . (74)
After we have completed the first and second steps of self-production of energy, we will discover another very vital case
under the MDF-YP model in 3D(NR-NCPS) symmetries. This new physical phenomenon is produced automatically under
the influence of the perturbed Hamiltoniaff,’,, (r,©, ). We consider the HODMs (H |,); the HEDMs (CO, HCI, LiH);
the NMHSs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the TMF (ScF) undergoing
rotation with angular velocity2. The features of this subjective phenomenon are determined by replacing the arbitrary vectors
O(012,023,0613) /2 andd (012, 623, 613) /2 with (© and (2. Allowing us to replace the coupling®(© andL.6) with (CL.Q2

and(L.Q).The expression for the perturbed Hamiltonian that we saw in Eq. (46) will then be as follows:

HE% (1,6.0) = CT () L + 21240 (¢.0°). 75)
In the above equatior, and(¢ are two real proportional constants. To make the calculations more straightforward, we choose
a rotating velocity() parallel to the (Oz) axi§?=Qe,. This, of course, doesn't significantly change the physical properties of
the problem under study. Thus, the perturbed previously generated spin-orbit coupling dbeSatdl be transformed into a
new physical form as follows:

12 (60 =0 (0 0)+ 57 ) Lv0 (7). (76)

All of this data allows for the discovery of the new corrected square en®fgyj " (n, D, re, Vo, , ¢, ¢, m) of the HODMs
(Hz, 15); the HEDMs (CO, HCI, LiH); the NMHSs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN)
and the TMF (ScF) due to the perturbed Hamiltom?afft (r, C,Z), which is generated automatically by the influence of the
MDF-YP model for the(n, I, m)th excited state in 3D(NR-NCPS) symmetries as follows:

N (c (V () %y + ;ﬂ) am+0 (¢2.7°). (77)

It is essential to acknowledge that the authors of Ref. [94] investigated rotating isotropic and anisotropic harmonically con-
fined ultra-cold Fermi gases in two and three dimensions at zero temperature; however, in this case, the rotational term
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INVESTIGATING THE EFFECTS OF PHASE-SPACE NON-COMMUTATIVITY COORDINATES ON THE MODIFIED DENG-FAN YUKAWA. 13

was manually added to the Hamiltonian operator, while in our study, the deformation of phase-space under the MDF-YP
model causes the rotation operaftf’, (r, (,Z) to appear automatically. In the symmetries of the 3D(NR-NCPS) regimes,
we apply the principle of physical superposition to find the physical expression of the total non-relativistic new energies
Egg(mDe,re,Vo,a7SgC,P”C7g,l,s,m) = E% for the HODMs (H, I»); the HEDMs (CO, HCI, LiH); the NMHs (ScH,

TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the TMF (ScF) under the MDF-YP model, corre-
sponding to the generalized excited states obtained as follows

Qe
n—+-y

2
Esg = Qa — Qb (n + v+ ) + <X>(nlm) NSP (Snc) + Nph (Pnc) (78)
The connection between non-commutative space paramgférs=(0, x, () non-commutative phase parametét$® =
(0,%,¢) and the physical properties of studied systelN, m)/(A/24,R/2u,€2/2p) can be summarized into new repre-
sentationsV;? (©, x, ¢) andN?" (6, () that given by:

NP (©,x,¢) = OA + (R + () m

T , (79)
Nt (0,%.C) = 04 + (X3 + T2 ) m

Since we collected the partial corrective expressimﬁjg, AEmg and AE“’t that we saw in Egs. (71), (74), and (77).

The first three partsf, and—Q; (n + v + [Q./n + 7) ]) are non- relat|V|st|c energies under the Deng-Fan Yukawa potential
model obtained from equations of energy in Eq. (23) while the remaining terms in Eq. (78) represent the resulting correction
produced from deformation phase-space. It is essential to point out that because we have only used corrections of the first orde
of infinitesimal NC-(phase-space) paramei@sy, ¢) and (5, X, (_), perturbation theory cannot be used to find corrections of

the second ordef©?, 2, ¢?) and (6%, x%,¢?). Itis helpful to briefly study the total energy of each of the fundamental state
E¥(n = 0,Dg,re, Vo, a o, 8¢, Pre,g,l,s,m) = E% corresponding to the quantum numbets=£ 0,7, m), as well as the

first excited staté&?® (n = 1, D, 7., Vo, Spe, 3, Preyls,m) = Elv corresponding to the quantum numbers< 1,1, m),
where Eq.(78) in these two cases becomes as follows:

B2 = B + (V) ) N37 (S3°) + N3 (). (80
and
ELY = BLY 4 (V) N37 (S37) + NP (P 1)

When an electron transitions from an excited state described as a quantummstaté,(, m) to the fundamental states,
described as a quantum state= 0,1, m), it will emit or absorb electromagnetic radiation, the frequen&y (n, D., r., Vo,
Sy, g, s, m)= w? of which is determined by the relationship:

wl = |Ey% — B3| (82)

A simple calculation, gives the emit or absorbed electromagnetic radiagiarin the context of 3D(NR-NCPS) symmetry, as
follows:
dy — wdy NpP (S"C) <Av>ffé. (83)

wnc

Herewdy(n D.,r.,Vy,a) is the emitted or absorbed electromagnetic radiation in 3D(NR-QM) symmetry (Eq. (24)),while
(AZ}‘“” is equal to:

(AVY = (V)0 (0, Deye, Vo, @) = (V) () (0, De,re, Vo, @) (84)
with
<V>t(ilylm) (nv Dea Te, ‘/E)v 04) = hﬂll <X>Elnlm) (TL Dev Te, V07 )
dy e dy (85)
<V>(le) (n7 DEa Te, VO> Oé) - }L% <X>(nlm) (TL, D67 Te, VO7 a)

The termN;? (O, x;, () <Av>d” is traduce the impact of phase-space deformation omihé/o, V1, a). This effect can vanish
when NC-(phase-space) paramet(eﬁ‘g ) are reduced taerosimultaneously.
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4. Study of important particular cases of MDF-YP model in 3D(NR-NCPS) symmetries

In this section, we will examine the obtained new bound state eigenvalues of the deformidii@prequation with the MDF-
YP model in 3D(NR-NCPS) symmetries which we have seen in Eqg. (78). By suitable adjustment of the potential parameters
of the Deng-Fan Yukawa potential model, we are now in the process of treating into 3D(NR-NCPS) regime:

(a) If the dissociation energy, reduces to zero, Eq. (1) gives the modified Yukawa potehtjgl (d) in 3D(NR-NCPS)
symmetries as

Viy (d) = —Voe"(p(;a”—\;"(w 1) eXpl([‘igar)L.G—i—O (9?). (86)

From Eg. (78), we obtain the non-relativistic eigenvaldgg? (n, Vo, a, S¢, Py, j, 1, s,m) for non-relativistic particles,

corresponding to the generalizéd, [, m)th excited states in 3D-NRNCPS symmetries as:

E’:Lréy(n7 ‘/rO’Oé’ SZ)LC’ P£C7j7 l7 S7m)

_afl(l+1)  o? (

2u 8u

11
n+ =4+ =V1+400+1)+

2
Q?lL(1+1) /2u
2 2 )

n+3+3/1+401(1+1)
(V) (1, Vi, ) N2 + N0 ((83)%, (P)°) @)

The first two terms are consistent with the result obtained in of Ref. [95]. The other terms are received from the impact of
phase-space deformation on the potential of the modified Yukawa (See Refs. [17—-24]).

The corresponding new non-relativistic expectations vad[{e)%flm) (n, Vo, ) of the modified negative Coulombic poten-
tial model from the following limits:

n . d;
<V>('rflm) (n> Vo, a) = lirgo <X>(Slm) (n7 De,re, Vo, a) . (88)

(b) If the potential parametér, reduces to zero, Eq. (1) gives the modified Deng-Fan potential in 3D(NR-NCPS) symme-

tries as

bexp (—ar) )2 _ Deabexp (—ar)

Vie (@) = De (1 ~ 1—exp(—ar) r (1 —exp(—ar))

(1—b)exp(—ar)  bexp(—2ar) N
: (1 Ttz exp (—ar) (1 —exp (—ar))2>L.® +O(&Y). (©9)

rom Eq. , we obtain the non-relativistic eigenva n, D, a, , 4, ls,m) = or non-relativistic parti-
From Eq. (78 btain th lativistic eig &8 (n, D, v, Spe, Pre, j, 1 E¥ f lativistic part

nc

cles, corresponding to the generaliZed!, m)th excited states in 3D-NRNCPS symmetries as:

QA+ 9p p_ Dop?
2u € € dj 8] nc ph nc
B =Q,—Qy | nt+y+—2 - (VY ) (1 De, ey ) N3P (Sp€) + NE™ (P©)

+0 (020 X% (90)

The first two terms are consistent with the result obtained in Eq. (89) of refs. [96,97]. The other terms are obtained from the im-
pact of phase-space deformation on he modified Deng-Fan potential [25]. The corresponding new non-relativistic expectations

vaIues(V)‘(ifllm) (n, D.,r., ) Of the modified positive Coulombic potential model from the following limits:

<V>‘?7Cllm) (n7 D€7 Te, a) = ‘}lm <X>Elglm) (TL, D67 Te, Vb; Oé) . (91)
5. Spin-averaged mass spectra of the heavy mesons under the MDF-YP model in 3D(NR-QM) and
3D(NR-NCPS) symmetries

In this section, we calculate the mass spectra of the heavy mesons system such as (charframilioottomoniundb), that
have the quark and antiquark flavor, which is the main focus of this work. In this work the Deng-Fan Yukawa potential model
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model is used to investigate quark confinement, because these potentials have two distinctive features, strong interaction
asymptotic freedom and confinement. Equation (2) allow us to divide the Deng-Fan Yukawa potential model under study
into two main partsVldf (r) andVy’? (r) that play different roles in 3D(NR-QM) symmetries. The first part is the Deng-Fan
potential model:

e (7”) - D <1 B bexp (7047”) >2 (92)
! - l—exp(—ar))

Thus, this part is more singular and provides better confinement as compared to the generalized Cornell potential [98], which
has a similar termd/r2). The second paiit,’” (r), similar to the Coulomb potential, has the form:

W () = -2 (93)
This part plays the role of Coulomb force, like the Coulombic potential/() in the generalized Cornell potential [98].This
means that the second p&gt© (r) has the same behavior as the Coulombic potential. We calculate the new mass of quarkonium
M2 in 3D(NR-NCPS) symmetries, by applying our following relation as in:

: (Bdy—v 4 Bdy—m 4 Edv=T) for heavy mesons with spib:
M = 2m, + (94)
E% for heavy mesons with spif-
herem, is the quark mass whil&%y—+, Edv—m pdy=l and E4Y are the new energy eigenvalues that correspgne { + 1,
s=1),G=0Ls=1),0=1-1,s=1) and G=1s=0) under the MDF-YP model in 3D(NR-NCPS) symmetries. It
results from the generalization of the original relationship known in the literature [99, 100]:
MY =2m, + EY

nl >

(95)

whereEd” is the non-relativistic energy under the Deng-Fan Yukawa potential model which is determined by Eqg. (20). We
have replaced the energy eigenvaldgy with average value$l /3)(E2Y—* +Ed~™ +E-1) that have spin-1 with three
different values of the valueswhile for a spin@, the valuest’7, replaced WlthE,‘fg because it represents a single value. We

need to replace the factdr(j, [, s) with new generalized values as follows:

/2 For(j=1+1,s=1),

-1 For (j=1,s=1),

(=21 —2)/2For (j=1—1,5s=1),
0 For(j=1,s=0).

Al 8) = (96)

Allows us to obtain £4Y—+, E®~™ and E%~') and E% of the heavy mesons system such as (charmonitiand bottomo-
nium bb) as:

1. The energy value&9¥—* produced by the MDF-YP model and correspond to discrete quantum nugbers+ 1,
s = 1, can be expressed by the following formula:

dy—u _ Q2 d X < N1
B = Qu - 200~ (B 4 ) + 00l | (ot 5 wm+ (e 5 Jam+ (64 ) 5] @)

2_ The energy valueg9¥—™ produced by the MDF-YP model and correspond to discrete quantum numjibers § = 1),

nc

can be expressed by the following formula:

BN = Qq — 2QuQ. — (QbQ2 + Qup ) (X)) Kx + X) N, + (c + C) Qm — (9 + 0)] . (98)
p? 2p 2u 2p

3. The energy value£9¥~! produced by the MDF-YP model and correspond to discrete quantum numbers (- 1,
s = 1), can be expressed by the following formula:

EW'=Q, — 2Q,Q.— <QbQ2 + Qup ) +(X)¥ {(X—F > Rm-+ << + C) m=(+1) (@+9>] ©9
Y @ c ,0 (nlm) 21“ 2/,(, 2/’(‘ ’
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16 A. MAIRECHE

while the energy valuegd¥ produced by the MDF-YP model and correspond to discrete quantum nuifjbers s = 0),
can be expressed as follows:
QvQ? ¢

EfY = Qo — 2QQ. — ( 2t pr2> + (X, [(x - 2)2) Nm + (c + 2M> Qm} : (100)

The new mass spectrut %y (n, De,re, Vo, 0, Sp°, P;w) of the heavy-light mesons systems, such as charmoniuend
bottomoniumbb, in 3D(NR-NCPS) symmetries under the MDF-YP model, as a function of corresponding mass spectra
M;fly (n, De,re, Vo, ) = Mff}’ in 3D(NR-QM) regime and non-commutativity (phase-space) paraméjgrsand S; ¢, can

be obtained by substituting Egs. (96), (97), (98), and (99) into Eq. (93).

Ardy — 1 () im) KX + %) N + (C + %) Qm — (@ + %) (L + %)} For heavy mesons with spin-1
mo <X>Eiﬁzm) KX + 2%) RNm + (C + %) Qm} For heavy mesons with spin-0

(101)

We can express the spin-averaged mass spMjfaof the heavy mesons system such as (charmonitiand bottomonium
bb) for SE under Deng-Fan Yukawa potential model in 3D(NR-QM) symmetries by applying the law known in the literature:

2
MY =2mg + Qu — 2QuQ. — (Q;’)?C + prQ) ; (102)

is extended to includé)M % in 3D(NR-NCPS) symmetries:

<X>((i'glm) [(X i %) N+ (C + %) Qm — (@ + %) (L + %)} For heavy mesons with spin-1

MY = _ (103)
(x)% [(x + %) Nm + (C + i) Qm} For heavy mesons with spin-0

(nlm)

Which is sensitive to the atomic quantum numbegig, s, m), potential parameterdX,, r., Vo, &), and non-commutativity
(phase-space) parametdr$© and S;© under the deformed properties of phase-space. Validity to our results examined by
realization of logical physical limits:

(spe Pli?)l © O)Mﬁ‘fif (n, De, e, Vo, @, S2¢, PP°) = M™ (n, De, e, Vo, @) . (104)

6. Composite systems under MDF-YP in 3D(NR-NCPS) symmetries

In the context of deformation algebra, while studying composite systems, as molecules composed of two atemsanith

mo, it is vital to evaluate characteristics of system descriptions in 3D(NR-NCPS) symmetries under the modified Deng-Fan
Yukawa potential. It was discovered that distinct deformed phase-space parameters that described the composite systems with
mi 7é mo [101—103]

[dtslv df;] . [dg (t) 7dg (t)] = [dza (t) 7dfﬂ (t)] . iegﬂv (105)

and
[ma,m5], = [ (8), 7 (O], = [7h (1), 7 (B)], = O (106)
In this case, the new NNCCCRs that we have seen in Egs. (29), (30), and (31) will be changed to become in SP, HP, and IP as
follows, respectively:
(s3] =i = [ddy] =05,
* 3 3 (207)
[w;,w;} =ibla3 = [wg,wg} = iezﬁ,

*

and

’ 3 3 (108)
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and

[ (1), d ()] =005 = [di (1), d5 ()] = i, a00)
[wg (), 7 (t)L = ifap = [wg (t) 7 (t)} — bl .

In 3BD(NR-NCPS) symmetries, one possible way of implementing the algebra defined by Eqgs. (32), (33), and (34) are to
construct the non-commutative set of variabl&s¢” (¢),d:, (t)) and ¢, 7" (¢), 7, (¢)) from the corresponding commutative

variables ¢, x]! (t), =/, (t)) and @3, pl: (t), p’, (t)) by employing linear transformations:

3 9
g, =5~ 3 B+ 0(0%),
‘3 . (110)

i ZPZ—FV;l g”x;i+0(9 )’
dh (t) = 2l (t) — U; L ph (1) + O (02) )
mh(6) =l (1) + X Bl () +0 (77)

M Iz = 2 v ’

GC

G, (1) =7, (1) = X2 %) (1) + 0 (%),

. Z 5.0, s (112)
mh () =p () + X %l (1) +0(67),

We have applied Einstein’s term regarding the addition process in the above-mentioned equations, where the repeated indice
v once up and once down correspond to the addition process from 1 to 3.This allows us to find the ogEratgds (72 and
Vay (d)), in the 3D(NR-NCPS) symmetries, equal to:

d*>=r*-L.O°+0 (7)),

o = 3 + 52 +0(099), (113)

2 =p2+LO+0 (562) ,

and

B __bexp(—ar) 2 o exp(—ar) abexp (—ar) (ab — ab?) exp (—2ar) .
Vay (d) = De (1 1—exp (ar)) Vo r D. (r (1 —exp (—ar)) - r(1—exp (—ar))z >L.®

B (aVO exp (—ar) n Voexp(—ar) D ab? exp (—3ar)

c c2
2 P er<1exp(ar)>3>L'® ro©n. D

The new couplingd..©¢ andL.6" are equal td., 05, + L,05; + L.05, and L8, + L,05; + L.0},, respectively. The two
non-commutativity parametets, ;. f5) anda, are equal > 260,50 a2fa) andm,, /Y, m.,, respectively,

the indice(n = 1,2) label the particle, anwgg, 0.3) are the parameters of non-commutativity, corresponding to the particle

of massm,,. As a result of the topological features of the deformation phase-space, the spontaneously new generated term
Ve‘?{f_nc (r,©¢) and the global working Hamiltonian operat&i¥ (p, =, ©¢, 6°) of that equal to the modified kinetic energy

7(p,0°)/2u plus the effective potentia)(edfyffm (r, ©¢) of the MDF-YP model:

Hy <p, z, ec,?c) — Hyy (p,2) + HY, (7", 90,56) :

(115)
Ve (r,0°) = VI () + 2557 (r,00),
with
e L.gc —c2
dy c __ r7pert c 2
Hythe (1,0°,8°) = 257 (0% + 5 -+ 0 (97, 0%)). (116)
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and

r(1—exp(—ar)) r(1—exp(—ar))?

_ 2 _
_(Yoexp(zar) ab™Deexp(=8ar) 11+1) )y o0 | ) (ge2) . (117)
2 r r(1—exp(—ar))® 2

- b — ab? -2
Zg;” (r. %) — _De< abexp (—ar) N (ab — ab?) exp ( ar))L.@c

The main difference between previously spontaneously Hamiltonian operator and effective po‘h@f@;@r(@ 0),Z pe”(r, 0))

in Eq. (41) and the new spontaneously generated teﬂﬁgg (r,©°,8°), Zfi’;” (r,©%)) in Egs. (115) and (116) appears in the

two couplings L.@andL ), since it is possible to move between the two binaries according to the transforifla®®nand

L.9) & (L.©°and L.8°). As for similarities, the expectations valugsy(, F 7, F 5, F 4, andr 3,) do not change, which

means there is a large amount of work that does not require re-completion. Therefore the physical relationships that express

the partial corrections of energy that we saw in the previous Egs. (71), (74), and (77) will become as follows:
nr—s c p¢ c y c2 pc2
AEdZ °(n,De,re, Vo,,0°, 6 1,5,m) = A (@ (X >Ei;ilm) + 2#) +0 (@ 2.0 ) ,
AE"Lg(n De,re, Vo, a, X6, X%, 1, 8,m) =R ( (X >((ié’lm) + g—“) m+0O (XCQ,XCQ) 7 (118)
- . —=cC Yo o —=C2
AEr’th(naDEaTEa‘/OaavgcaC 7l587m) = (C( < )(nlm) 57) Qm+O (C(‘27C ) .

In particular cases whem; = my such as the homogeneous,(H,) diatomic molecules the parameteﬂé’g,ﬁaﬁ) will be
identified with ordinary non-commutative paramet@ss, 6.). Thus, the parameter®( x, ¢) and(, x, ¢), which are seen
in Eq. (78) are changed to the new non-commutativity parameters:

2 2 2 2 2 2
A = (ZaiA%?) + (ZaiAé?) + (ZaiA%@?) : (119)
n=1 n=1 n=1

with A“? can be play the roles of the square of NC-(phase-space) pararr(e*fe;‘ﬁ(2 X% /X2 and(cz/ZCQ). As mentioned
above, in the case of a system of two particles with the samemgass m, such as the homogenedds diatomic molecules:

e _
( fJ,@W) = (@ Vo) - (120)

Here(w,(w),v,(w)) can be present botﬂﬁ?/w ,9(")) (X,(,’L)j,(fi)) and(gw , (n)) In the end of this section, we can generalize
the non-relativistic global energiZz?¥ under the MDF-YP taking account that composite systems with different masses are
described with different non-commutative parameters for the HEDMs (CO, HCI, LiH); the NMHs (ScH, TiH, VH, CrH); the

TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the TMF (ScF) as:
Qch
P>

EW=Q,+2A,Q.— ( + Qup ) (X}?glm (n, De,Te, Vo, @) (N;p)c-r- (Nz’f;h)c-r-o ((S;LC)@’ (P;Lc>02) @21

with (Nz7) and (NZ")© are equal tdO°A + (x°R + ¢°Q) m) and (8" (A/24) + [X°(R/24) + ¢ (2/24)]m), respectively.

7. Thermodynamic quantities of the MDF-YP in 3D(NR-NCPS) symmetries

The main goal of this section is to look at the thermodynamic properties (TPs) of the Deng-Fan Yukawa potential and the
modified Deng-Fan Yukawa potential models in 3D(NR-QM) and 3D(NR-NCPS) symmetries. Calculating the rotational
partition functionZ:;yC (n, De,re, Vo, a, 3,1, A%, Sy, P;”) is a crucial initial step in achieving this goal since it may be used

to determine various thermal parameters such as specific heat capacity, internal energy, entropy, and free energy. A constant
temperature T can determine the rotation-vibrational partition function by using direct summation over all potential energy

levels [104-109]:

Ay

Z exp ( E; ) Z exp Edy . (122)
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Here (Zi! (n, De, e, Vo, ., B, M\ 1) = Z3L, Z3¢ (1, De, e, Vo, o, 8,1, M, Sp¢, Ppe) = Z¢) are the rotation-vibrational par-
tition functions of the Deng-Fan Yukawa potentlal and the MDF-YP models, whlle(bmﬁz) are the upper bound vibration
guantum numbers (the maximum quantum numbers) in 3D(NR-QM) and 3D(NR-NCPS) symmetries, respgaiyes),to
1/KgT, with K is the Boltzmann constant. From the beginning of this section, we assumed that the new rotation-vibrational
partition functionZ;" is dependent on non-commutativity (phase-space) paramétgfs{; <), because the corresponding
non-relativistic energy in these symmetries we found is related to these parameters. We obtain the paf@aimne3&(NR-

NCPS) as a function of corresponding valueis 3D(NR-QM) as follows:
A= dgn Jn:) :0:>>\:7’Y+ V ‘Qca

J , (123)
T gy = 0= M =y + VIR + A
with
d _
e = 2 ([0 (OA+ (R + Q) m) + N2 (0.%.0)] )|, (124)

We saw in the third paragraph that the total energy of a non-relativistic physical sy&terEq. (78)) in 3D(NR-NCPS)
symmetries, under the influence of the MDF-YP models can be written for thé ¢a8es follows

Edy EdTI + AEdy (125)

nl*

To calculate The TPs of the Deng-Fan Yukawa potential and the MDF-YP models in 3D(NR-QM) and 3D(NR-NCPS) sym-
metries, the rotation-vibrational energy eigenvalﬂéf# and the corrected energ,)Ejff in 3D(NR-QM) and 3D(NR-NCPS)
symmetries are expressed in a compact form as

2
B = Q- 2QuQ. — (L8 + Qu?),

AB = (X){, ) (OA + (X + Q) m) + NE".

nl

(126)

In 3D(NR-NCPS) symmetries, at high temperatures in the classical limit, the modified rotation-vibrational partition function
Zg, of the MDF-YP models can be represented by an integral:

YA YA
Zgy = / exp( BE, (p )) dp = Zgy = / exp (—BE% (p)) dp. (127)
0 0

Herep is equal to(n + ) in the classical limit. After a straightforward calculations we find the rotation-vibrational partition

function Z(% of the MDF-YP models in 3D(NR-QM) symmetries as:
X ,
nl __ QbQ
Zgy= | exp| —BQa +28QQc + + Qup* ) ) dp. (128)
0

Through our observation of energy Egs. (20) in Ref. [11] and corresponding Eq. (22) in Ref. [109] that is has the form
(K1 — 2K2 K3 — ([K2K2/p%] + K2p?)), itis possible to move between them from the following deplacement:

Kl = Qa,
Ky <= Qy, (129)
K3 <— Q..

This mechanism allows us to find the partition functmjj (n,De,re, Vo,a, B, N, 1) = ZL% of the Deng-Fan Yukawa potential
model of Eg. (20) in 3D(NR-QM) symmetries as:

z5 = 7V 4 771, (130)
with
2V = SRR Q) [ exp (BQu Q) erf (V=QuBA + L5 )

(131)
Zg;(Q) _ cxp(ﬁf@_bg:ﬁ—Qa))ﬁeXp (—ﬁQch) erf (\/m/\ _ Qc\/;QbB) )
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Here erfi (u) is the imaginary error function. Considering that the additive part of the energy&dﬂj?(n, Deyre, Vo, a, S)¢,
Pye) = AEffly is small compared to the main terfif¥, we can make the following approximate:

exp (—BEY) = exp (—BE.Y) — BAE,] exp (—BE) , (132)
which gives:
ALy
Zp = / exp (—BEY) (1 - BAEM) dp (133)
0
Considering the previous physical considerations, we roughly accept the terms that are proportional with infinitesimal NC-

(phase-space) parameté&gC,P;C) in the first place only. Thus, the modified rotation-vibrational partition func@f of
the MDF-YP model of Eq. (78) in 3D(NR-NCPS) symmetries, can be written approximatively as:

235 = 23y = B [(X){) (OA + (X + ) m) + Np"] 2. (134)

Substituting Eq. (129) into Eg. (133), we have the modified rotation-vibrational partition funfipof the MDF-YP model
as

z5e =23 + 2@ — [<X Yy (OA + (R + (Q) m) + Ngh} (Zgyl“) + Z;Z(Q)) . (135)

Using the modified rotation-vibrational partition functiéfy;” in Eq. (133) of the MDF-YP model for energy equation (78),

we will see the effect of the deformation in phase space on thermodynamic values such as modified medr&rerdgy..,

re, Vo, o, B, A, 1, Sp¢, Pyr©), modified free energ¥ ¥ (n, De, e, Vo, @, B, A, 1, Sy¢, Py©) and modified entropyS% (n, D,

7o, Vo, o, B, \, 1, S"C P"C) Let’s start with a study of modified mean ene(ggtg (ny De, e, Vo, @, B, A, 1, S)¢, Pj¢) which

is the quantity of energy required to prepare or improve the system in its internal condition. First, the effect of the deformation
of phase-space on mean enef:gg (n, De, re, Vo, «, B, A, 1) for Deng-Fan Yukawa potential model is determined by applying

the following formula:

AU =Ul - Uy = 33 [1n Zye —InZy] . (136)

The above formula, give the effect of phase-space deformations with the MDF-YP models influence on mean energy in 3D(NR-
NCPS) symmetries, as follows:

<X> (mimy (OA + (R +¢Q) m) + NP*

AU = .
1= B [(X) % (OA + (X + Q) m) + NP

(137)

Thus, for the MDF-YP models, the new mean endit§/ (n, D., r., Vo, @, 8, A, 1, Sy¢, Py©) is equal to the corresponding
vaIuesUggj (n, De, e, Vo, o, B, A, D)= Ug; for the Deng-Fan Yukawa potential model in 3D(NR-QM) plus the effect of the
deformation of phase-space omNU/4¥ as follows:

) [OA + (xR +¢Q) m] + N2"
[OA + (XR + CQ) m] — NZ"

x4

AR (138)

(nlm)
A preform calculation gives the mean ene[g% for the Deng-Fan Yukawa potential model in 3D(NR-QM) symmetries as:

1 A+Ar+As

Uiy =3 VIBA (T +12)’ (139)
with

T = exp (26QQ.) erf(A),

T? = exp (—268QuQ.) erf(A), (140)

A — V=BQ (N’ -Q.)
- A

)
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and

A = 8/ (200Q0) exp (20QuQ0) erf (A7) — 2/IAQuexp (2002 et (Vs (2 +Q.)) . (141)
2 4 2
s = 2y (20000 et (1) + 2/~ Fuewp (500 (“EEEEN ey, a4
_ 2 4 2
N = Qeot 2y iy 0y (AT ) (2 - Q).

— Vihexp (20QuQ.) erf (V=5Qy (3 + Q) ) = VX exp (—20QuQ) erf (A7) (143)

Now let’s get to the effect of the deformation of phase-space on the free eﬁgj@, D¢, re, Vo, o, B, A, 1) of the MDF-YP
models which obtains by applying:

nl —

n 1 nc 1 nr
AFY =Fl — Fpl = —gInZi; - <—681n Zdy> : (144)

The effect of the deformation of phase-space on the free en®fgfyy (D.,7., Vo, @, 3,1, Sy¢, Pre) of the MDF-YP models
as:

AF% = 75 In [ iy (<X> W (OA+ (R +(Q)m) + N;;h)} . (145)

The new free energy (also known by the Helmholtz enefg§)) (n, De, e, Vo, a, 8, A, 1, Si©, Pr¢) of the MDF-YP models
in 3BD(NR-NCPS) regimes is equal to the corresponding valf%s(n D¢, re, Vo, @, 8, A, 1), in 3D(NR-QM) regimes, plus
the impact of phase-space deformation OIZNF (n, De, 1e, Vo, @, B, A, 1, S;¢, P€) as follows:

Fly = Fpl - %m 1= 8 [(X){) (OA + (R4 Q) m) + N (146)

On the other hand, the Helmholtz ene@y;(n, De,re, Vo, a, B, A, 1) in 3D(NR-QM) regimes can be derived by applying the
following expression:

nl__l exp (8 (2QvQp — Qu)) It 2:|
Fyl = ﬂln{ 20 2 v (147)

The effect of phase-space deformation on the specific heat capeCify (n, D.., e, Vo, a, 8, \, 1, Spe, Pro)= AC% of the

MDF-YP models is equal to the difference between their vaitigsin 3D(NR-NCPS) regimes and the corresponding values

C3l (n, De, 1e, Vo, i, B, A, 1), in 3D(NR-QM) regimes:

8AUC’
op

The impact of phase-space deformation on the free en®égfy of the MDF-YP models may be determined simply as follows:

ACY = Clt — Ot = —kp>——2" (148)

(00 (OA+ (R + ¢Q) m) + N2 :

(nim)
exp (26 [0y (OA -+ (X + ¢ m) + M)

Within the scope of our proposed approximations, this impact may be ignored since it is limited to the first order just for the
values 6, ;). In the last part, we examine how the phase-space deformation affects the estydpy D.., e, Vo, a, 3,
A, 1) under the MDF-YP models. This information can be obtained by applying:

OAF%y
B

The following straightforward calculation shows how the phase-space deformation influences the entropy of the MDF-YP
models:

ACH = — k32 (149)

ASY = 5% — Sil = kB —

nc —

(150)

<X>(nzm (OA + (XX +CQ)m) + Ngh

AS = kp h

(151)
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Therefore, in 3D(NR-NCPS) regimes, the modified entrSﬁg/ (n, D¢, re, Vo, o, B, A, 1, SP€, PI?C) of the MDF-YP models is
equal to the corresponding valuégé (n, D¢, e, Vo, , 3, A, 1) in 3D(NR-QM) plus the impact of the phase-space deformation
ASY (n, D, e, Vo, o, B, A, 1, ST, Pj©) on the Deng-Fan Yukawa potential model in the following ways:

% [(@A + (R +CQ)m) (X)), ) + N
L= B(X){0) (OA + (R +¢Q)m) — AN

de — qnl

dy (152)

Here the entropﬁ (n, De, e, Vo, o, B, A, )= ST , of the Deng-Fan Yukawa potential in 3D(NR-QM) symmetry derived by
applying the formula

S — kol 27T kng
dy =kInZg, —kp 5 (153)

After a preform calculations we obtain the entroﬁb% of the Deng-Fan Yukawa potential in 3D(NR-QM) as follows:

5
1 1 EZZ:IKC
de(n,De,Te,‘/o,Oé,ﬁ,A,l,Sp 7P )7 §ﬁﬁA(T1+T2)7 (154)
with
Ky = =210 (exp (— (~2QuQc + Qu)) orf (A1) + exp (-20Q4Q.) erf (A7), (155)
Ky = 2007 [45QuQc + Quexp (200Q.) et (A)] + exp (20QuQc) erf (A*), (156)
_ 2 4 2
Ko = 2A00Qu exp (-2001Q0 et (47) — 2/ ZGrexp 50y (AT ) Y (0 @) aas)
_ 2 | 4 2
= =t (9 () ) (0 <200 4@ o (158)
K5 = vmhexp (26Q,Q.) erf (A+) +vmhexp (—28Q,Q.) erf (A_) . (159)

HereA™ equal to\/—5Q ()\2 + QC)/)\. When the deformation of phase-space effect vanish when the simultaneous limits
(Spe, Pre) — (0,0) is satisfied, the additive thermodynamic pal&?¥ (n, D., re, Vo, o, 8, A, 1, Sp¢, Pr€), AU% (n, Dk,

Te, Vo, o, B, A, 1, Sp¢, BPrO), AFY (n, De, re, Vo, a, B, A\, 1, S7°, B, ASY (n, De, re, Vo, a, ﬁ A L, Sp¢, Pr€) and

ACH (n, D, re, Vo, a, B, A, 1, Spe, Pre) naturally also vanish,

lim AZY(n, De,re, Vo, , 3, M Sy, Pre
(Snc Pnc) 00)

lim AU
(Spe,Ppe)—(0,0)
(
(S5

)

(1, De,7e, Vo, a, B, A, 1, S7e, Pre)

lim  AF%(n, D.,re, Vo, o, B,\,1, S0¢, Pre)
)

)

7’p7p

Sne,Ppe)—(0,0) P e (160)

lim  AS%(n,D.,re, Vo, @, B, A1, S1¢, Pre

) P

Spe, Pre)—(0,0)

i hm Acd (n De,Te,Vo,O(,B,)\,l,Sg(‘,P;(.
(Spe,Pre)—(0,0)

Thus, all physical values in 3D(NR-NCPS) regimes, in the presence of deform(@itth x/x,¢/¢) # (0,0,0), will be
reverted to their initial values in 3D-(NR-QM) symmetries:

(Snc Plrlllcr)l © O)ZZ,C(DeaTe, ‘/0704,6> la S;wa P;:w) Z:f? (Dearea VOv a7ﬁa )‘7 l) )

(s2° pljn)l o O)Ugf(De,Te, Vo, o, 3,1, S0, Pre) = U;f;’(De,re, Vo, o, B, \, 1),

(o (0O)Fff’(De,re,%,a,ﬂ,l,Sg”,P;”) EyY(De,re, Vo, o, B, 0,1),

(Snc pliIcI)l (© O)SZ%J(Dea Te, ‘/Oa a, /87 l, S;}C’ P[?C) = SZ?(DB, Te, ‘/b, Q, ﬂ7 )\, l),

(S Phn)l (0 O)CZ?(DmeW)uaaﬁal7SgC7P;c) CZ?(D67T67W]aa7ﬁ7A7l)7

(161)
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In the end, we will examine the TPs of the MDF-YP models which we have seen in Eqs. (134), (136), (144), (148) and (150)
in 3D(NR-NCPS) symmetries. By suitable adjustment of the potential parameters of the Deng-Fan Yukawa potential models,
we are now in the process of treating into 3D(NR-NCPS) regime:

(1) Ifthe he dissociation energy. reduces to zero,Egs. (134), (136), (144), (148) and (150) gives the impact of phase-space
deformation on the induced partition functidZ7¥ (n, Vo, o, 3, A, I, Sp¢, P;¢), the induced mean energyU; ¥ (n,
Vo, a, B, A, 1, Sp¢, P€), the induced free energk FieY (n, Vo, o, B, A, I, Sp¢, P€), the induced entropA Sy (n,
Vo, o, B, A, 1, Sp¢, Pp€), and the induced specific heat capacky’ (n, Vo, o, 8, A, [, S,¢, P;r©) for the modified
Yukawa potential model as follows:

DhIEOAZZ%/(”’ DE’ Te, Vb’ Q, ﬁa )‘a l7 S;Lca P];w) == AZZlLy(VO7 (e ﬁ7 )\; Z, 5307 PZZLC)7
lim AU (0, De, e, Vo, B, AL Spe, Py = AU (V. a, B, 0,1, S5, Pye),
DllILlOAFgly(n, De7 Te, %a Q, 5; /\, l7 Sgc’ Ppnc) = AF‘:lly(‘/'O7 «, 67 )\7 l’ SSC’ Pl;nc)’ (162)
DhILlOASZ%(n’ De’ Tes %’ a, ﬁy A’ l7 S;Lca PI:LC) = ASZ;y(‘/Oa a, ﬁa A, l7 S;Lc, P;C)7
Jim ACH (n, Doy e, Vo, B, A L Sp, Ppe) = ACTY (Vi B, 0,1, S5, PRe).
with
AZ,Z;:U = —ﬁ |:<®A + (XN + CQ) m) <X>’E";1L’lljm) + NII)7}L:| (Dhlilozjilyr (n, De7 Te, ‘/O’ «, 6, )\7 l)) s (163)
AU™ — <X>?;fllm) [OA + (XX + ¢Q) m] + NE" -
nc 71— X\ OA N Q - Nphv ( )
m 1 .
ARy = 3 In {1 = B(X) () (OA + (XX +(Q)m) — 5N§h} , 169
2
ACTY = —kf [(OA+ [+ ¢ m) (X)) + V") (166)
nl — — ’
exp (25 |:<X>(n?l4m) (OA + (xR +(Q)m) + NghD
and
X\ (OA + (YN + CQ) m) + NPk

1= (X)) (OA + (R +¢Q)m) — BNE"

my
(nlm)

while the non-relativistic expectations valuéex’)
Eq. (87).

of the modified Yukawa potential model was determined in

(2) Ifthe potential parametér, reduces to zero, Eqgs. (134), (136), (144), (148) and (150) gives the impact of phase-space de-

formation on the induced partition functiédaZ % (n, D, ., a, 3,1, Spe, Pre), the induced mean energyU% (n, D, 7,
o, B, A, 1,57¢, Bre), the induced free energ i (n, De, re, v, 8, A, 1, Spe, Pr©), the induced entropA S, (n, D,

Y p ) p Y p )
re, a, 3, A, 1, Sp¢, Pre), and the induced specific heat capac¢’s!, (n, D, re, a, B, A, 1, Sp<, Py<) for the modified

Deng-Fan potential model as follows:

dim AZ (1, Deyre, Vo, 0 8,01, 83 Pye) = AZ3(n, De, e, o, 8, 0,1, 83, Py©),

nl »yMp 1y Mp vt p

r~p »y~p o

DI:I'LlOAUg;y(ny Dearea%ya;ﬁ,)\,l gne P]ZLC) = AUS{(TL, Deare,a,ﬁ,)\ . §ne P;w)7

i AFTY(n, Deye, Vo, o 8,0, S, B©) = AFL (0, De, e, 0, 6, 0,1, 837, ), (168)

1Y ~p Y ~p YT D

1YY ~¥p T p »y~p

DliIEOAsg?(n, De,re, Vo, a, B\ 1,82¢, Pi¢) = ASY (n, D, re, a, B, A\, 1, S1¢, P€),

Jim ACLY (n, De,re, Vo, . 8, 0,1, 53, Py) = AC (n, Deyre, 0, 8, 0,1, 53, Pe).

r~p Y¥p YT p
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with
AZY = =B [(OA+ (R +¢Q)m) (X){,,) + V2" (0.%.0) | (DlirgOZZZJ (n, Dey e, Vo, @, 8, A, Z>> . (169
ph
my _ <X><nlm [OA + (xR + () m] + N} - (170)
1= B(X)(Y [OA + (XX + () m] — BN
1
AFY =~ (1= 8000, (OA -+ (at+ Q) m+ N2, (171)
2 df h 2
my __
ACTY = AR (172)
exp (28 [ (X)) (OA + (R + Q) m) + Nzi )
and
ph
ASY = 13 <X>(nlm) [OA + (XX + ¢Q) m] + NJ 173)
=80T, [OA+ (R + () m] - BN
while the non-relativistic expectations vaIuéX)ZZ?l’m) of the modified Yukawa potential model was determined in
Eqg. (90).

8. Conclusion

In this research study, we conducted an in-depth study of the 3D(NR-DSE) under the influence of the MDF-YP model within
the framework of 3D(NR-NCPS) principles which we discussed in detail in the general introduction to our article. We have
used the GBSM and conventional perturbation theory in 3D(NR-NCPS) symmetries. We obtained the total enerdy¥alues

(See Eg. (78)). Where we discovered that it consists of the fundamentaﬂfg*rr(rEq. (20)) resulting from a contribution of

the Deng-Fan Yukawa potential model plus all corrections that produced from perturbed spin-orbital Hamlltonian, perturbed
modified Zeeman Hamiltonian and perturbed rotational Hamiltonian opeddtr (-, ©, ), H2Y, (r, x, %) andHeY, (r, x, X))

(see Egs. (58), (66), and (68)).The corrected non-relativistic energy eigenvalues seem to be influenced by the quantum numbers
(n, j, 1, s andm), the mixed potential depthdX, r., V), the screening parameter and the non-commutativity (phase-space)
parameters{;©, P;¢). We have calculated the spin-averaged mass spééfeaof the heavy mesons charmonium and
bottomonlumbb under the MDF-YP model in 3D(NR-QM) and 3D(NR-NCPS) symmetries (See Eqg. (100)). The energy
eigensolutionsz?¥ for the HEDMs (CO, HCI, LiH); the NMHSs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC);

the TMN (ScN) and the TMF (ScF) (See Eq. (120)). We have also calculated the thermodynamic quantities of the Deng-Fan
Yukawa potential model in 3D(NR-QM) symmetries (the partition funcﬁgj, the mean energygzj, the free energ;de,

and the entrop;é‘gé, (See Egs. (129), (138), (146) and (133), respectively) The impact of phase-space on thermodynamic
quantities (the induced partition functianz?¥, the induced mean energylU %, the induced free energ F%¥, the induced

specific heat capacithC?¥ and the induced entropS2¥,(See Egs. (134), (136), (144), (148), and (150), respectively) have

also been examined in relation to the phase-space deformation. It has been demonstrated that (the modified partition function
Z% the modified mean enerdy??, the modified free energ§?y, the modified entropy?¥, and the modified specific heat

nc’ nc’

capacityC'?y, for the MDF-YP model, are equivalent to their values in 3D(NR-QM) symmetry (the partition funﬁ'@n

nc?

the mean energ%‘zﬁ, the free energyj, 7l the entropySdl , and the specific heat capac'(f;gl (See Egs. (129), (138), (146)
and (153), respectively)) plus the effect of the phase-space deformaficff{( AU AFY ASW and ACY), (See

nl? nl? nl?
Egs. (134), (136), (144), (148) and (150), respectively)). We have re-treated the special cases related to energy in the extended
phase-space framework to include the overall thermodynamic properties as particular cases in the extended phase-space through
appropriate substitutions for each case for the modified Deng-Fan potential model and the modified Yukawa potential model.
We establish the energy equations for the non-relativistic SE in 3D(NR-QM) symmetries for the simultaneous fifratsd

Pj¢) — (0 and0), obtained in the main Ref. [11], under a Deng-Fan Yukawa potential model.
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