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An approximate new bound state solution of the three-dimensional deformed Schrödinger equation under the deformed phase-space sym-
metries for the modified Deng-Fan Yukawa potential model that is obtained from the combination of the corresponding expression in three-
dimensional non-relativistic quantum mechanics symmetries and some central terms [exp (−αr)/r (1− exp (−αr)),
exp (−2αr)/r (1− exp (−αr))2, exp (−3αr)/r (1− exp (−αr))3, exp (−αr)/r2, exp (−αr)/r3 and 1/r4] coupled with the in-
finitesimal non-commutativity vectorΘ and the angular momentum operatorL. With the help of the parametric generalized Bopp’s shifts
method, the independent time perturbation theory method, and an approximation scheme, the analytical energies of the studied were obtained
for both symmetries, for different quantum numbers. The new non-relativistic energy equation under the studied potential for the homoge-
nous diatomic molecules (HODMs) (H2, I2); the heterogeneous diatomic molecules (CO, HCl, LiH); the neutral transition metal hydrides
(ScH, TiH, VH, CrH); the transition-metal lithide (CuLi); the transition-metal carbides (TiC, NiC); the transition metal nitrite (ScN) and the
transition metal fluoride (ScF) and in the presence of deformation phase-space are dependent on the discrete atomic quantum numbers (j, l, s

andm), the dissociation energy, the equilibrium bond length, and the screening parameter (re, De, andα), the deformation phase parameters
(P nc

p andSnc
p ). The new resulting energy equation is utilized to calculate spin-averaged mass spectra of the heavy mesons under the studied

potential and Deng-Fan Yukawa potential model in three-dimensional non-relativistic quantum mechanics and 3it’s extended symmetries.
Furthermore, we have calculated the partition function, from which thermodynamic properties such as mean energy, specific heat capacity,
entropy, and free energy are derived in both three-dimensional non-relativistic quantum mechanics and the deformed phase-space symmetries
symmetries. Notably, the two special cases, representing the modified Yukawa potential and the modified Deng-Fan potential were treated
in extended phase-space symmetry for energies and thermodynamic properties. Our current study promises to apply to different areas of
physics in various domains, including atomic and molecular physics.
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1. Introduction

Generally, Deng-Fan potential (DFP) model introduced by
Deng and Fan in 1957 [1] is used to describe electromagnetic
transitions and interactions existing between homogeneous
and heterogeneous diatomic molecules [2]. Oyewumiet al.
[3] (2013) solved the Schrödinger equation (SE) with the
Deng-Fan molecular potential using the Nikiforov-Uvarov
(NU) method and obtained the approximate analytical bound
state energy eigenvalues and the corresponding wave func-
tions of the homogenous diatomic molecules (HODMs) (H2,
I2); the heterogeneous diatomic molecules (HEDMs) (CO,
HCl, LiH); the neutral transition metal hydrides (NMHs)
(ScH, TiH, VH, CrH); the transition-metal lithide (TML)
(CuLi); the transition-metal carbides (TMC) (TiC, NiC);
the transition metal nitrite (TMN) (ScN) and the transition
metal fluoride (TMF)(ScF). Ikotet al. (2021) [4] solved the
Klein-Gordon equation (KGE) with the DFP using the NU-
functional-analysis in higher dimensions and by employing
the improved Pekeris-type approximation scheme, obtained
the relativistic and nonrelativistic energy spectra of the DFP
of hydrogen chloride (HCl) and lithium hydride (LiH ) di-

atomic molecules. Njokuet al. (2022) [5] investigated the
analytical solution of the SE with the shifted DFP within the
parametric NU formalism and applied it to the ro-vibrational
energies of nine diatomic molecules, H2, CO, LiH, HCl, ScH,
ScN, TiH, ScF and I2 for both low and high-lying states for
both l = 0 andl 6= 0. On the other hand, in theoretical nu-
clear physics, the Yukawa potential (YP) (also known by a
screened Coulomb potential) that was birth in 1935 [6, 7] is
recognized as a phenomeno logical central potential between
two protons and neutrons [8,9]. The YP has been applied ex-
tensively, appearing as an significant model [5-7] for defining
the theoretical framework of the nuclear force medium and
explaining the intuitive physical picture, as well as for deriv-
ing other forms that are similar in appearance but distinct in
substance [10]. Cariet al. studied the interisland absorption
coefficients and the changes in refractive index in spherical
quantum dots using Deng-Fan Yukawa [11]. Other studies
in the literature were found to be related to the Cariet al.
investigation [12–16]. We introduce a newly suggested po-
tential, we called it the modified Deng-Fan Yukawa potential
model (MDF-YP) which created by combining the Deng-Fan
Yukawa potential model with a few central terms connected
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with the angular momentum operatorL and the infinitesi-
mal non-commutativity vectorΘ that product resulting to the
impact of phase-space deformation. Motivated by the work
of [11], we suggest the NC effect on the bound state ener-
gies and thermodynamic properties of the modified Deng-Fan
Yukawa potential model arising from the deformed phase-
space in the context of three-dimensional non-relativistic
non-commutative phase-space (3D(NR-NCPS)) symmetries.
To our knowledge, no literature review has been done on this
kind of investigation. This work will focus on the modi-
fied Deng-Fan Yukawa potential model in the 3D(NR-NCPS)
symmetries framework. The combined potentialsVdy (d) un-
der investigation are represented as

Vdy (d) = Vdy (r)− 1
2r

∂Vdy (r)
∂r

L.Θ + O
(
Θ2

)
. (1)

Here the Deng-Fan Yukawa potential (DF-YP), which of
the form in this work, in three-dimensional non-relativistic
quantum mechanics (3D(NR-QM)) regimes, is represented
as [11]:

Vdy (r)=De

(
1− b exp (−αr)

1− exp (−αr)

)2

−V0
exp (−αr)

r
, (2)

whereb = exp (αre) − 1, re is the molecular bond length,
De is the dissociation energy. The internuclear separations
in the 3D-NCPS and 3D-QM symmetries are represented by
d and r, respectively. The scalar product of the infinites-
imal non-commutativity vectorΘ and the angular momen-
tum operatorL yields the couplingL.Θ ≡−→L .

−→
Θ. As for

the symbolO
(
Θ2

)
, it means ignoring the terms that start

from Θ2 and above. It is worth noting previous studies that
are directly and indirectly related to the topic of our cur-
rent research. Let us first refer to our personal research in
the frameworks of relativistic and non-relativistic NC quan-
tum mechanics symmetries [17–25]. It is well known that
the 3D(NR-QM) is based on the non-commutativity of the
momentumsp(s,h,i)

µ (ps
µ, ph

µ (t), pi
µ (t)) and the correspond-

ing generalized coordinatesx(s,h,i)
µ (xs

µ, xh
µ (t), xi

µ (t)) only.
While its extension in 3D(NR-NCPS) symmetries based on
other postulates; the first new additive postulate correspond
to the non-commuting of position-position (See Eq. (4))
and the non-commuting of momentum-momentum operators
(See Eq. (5)) [26–31]. Formally, 3D(NR-NCPS) symme-
tries can be divided into three categories: the first class corre-
spond to non-commutative space-space (NCSS), the second
class correspond to non-commutative phase-phase (NCPP),
while the third class corresponds non-commutative phase-
space (NCPS). The work of Connes [32–34] and Seiberg-
Witten [35] was an important tool in developing the new con-
cepts of NCQM theory to find applications with a physical
context, particularly in quantum field theory. It should be
noted that Chaturvediet al. in 1993 [36, 37] first formulated
non-relativistic NCQM. Several centuries ago, the program
for unifying forces began to collect all electric forces and

magnetic forces within the framework of Maxwell’s equa-
tions, or what is known as electromagnetism, which describes
charges changing with time. This program developed in the
last century, especially around 1967, to include weak interac-
tions, and the old unification model became an expression of
electroweak interactions (the Glashow, Salem and Weinberg
model). Through the other success of including strong in-
teractions, the unification model includes three fundamental
interactions, especially after the Higgs was confirmed. The
biggest problem is that gravitational forces are not involved
in this program. Naturally, the new theory of 3D(NR-NCPS)
symmetries is the strongest candidate for solving this major
problem in the field of unifying all four cosmic forces. The
following outlines the remainder of the paper: An overview
of the 3D-SE within the Deng-Fan Yukawa potential model
framework is given in Sec. 2. Section 3 investigates the three-
dimensional deformed Schrödinger equation using the well-
recognized generalized Bopp’s shifts approach to determine
the MDF-YP model’s effective potential. Additionally, we
determine the corrected non-relativistic energy produced by
the influence of the perturbed effective potentialZpert

dy (r) of
the MDF-YP model using conventional perturbation theory.
Under the MDF-YP model, we get the global modified ener-
gies for non-relativistic particles, including the homogenous
diatomic molecules (HODMs) (H2, I2); the heterogeneous
diatomic molecules (HEDMs) (CO, HCl, LiH); the neutral
transition metal hydrides (NMHs) (ScH, TiH, VH, CrH);
the transition-metal lithide (TML) (CuLi); the transition-
metal carbides (TMC) (TiC, NiC); the transition metal nitrite
(TMN) (ScN) and the transition metal fluoride (TMF)(ScF).
Section 4 studies MDF-YP model homogeneous and hetero-
geneous composite systems in 3D(NR-NCPS) symmetries.
The impact of phase-space deformation on the thermal char-
acteristics of the modified Deng-Fan Yukawa potential, in-
cluding partition function, mean energy, free energy, specific
heat, and entropy, is the subject of Sec. 5, the special cases
related to energy in the extended phase-space framework also
include the overall thermodynamic properties as a particular
case in the extended phase-space through appropriate substi-
tutions for each case. Finally, succinct closing remarks are
provided in the last part.

2. A summary of SE in the 3D(NR-QM) sym-
metry using the Deng-Fan Yukawa poten-
tial model

In the frameworks of 3D(NR-QM) symmetry, it is helpful
to remember the eigenvalues and corresponding eigenfunc-
tions under the influence of the Deng-Fan Yukawa poten-
tial to build a physical model describing a physical system
that interacted with the MDF-YP model in 3D(NR-NCPS)
regimes. The radial SE for the Deng-Fan Yukawa potential
model can be written as follows:
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(
d2

dr2
+ 2µ

(
Edy

nl −De

(
1− b exp (−αr)

1− exp (−αr)

)2

+ V0
exp (−αr)

r
− l(l + 1

2µr2

))
Rnl (r) = 0. (3)

The HODMs (H2, I2); the HEDMs (CO, HCl, LiH); the NMHs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC,
NiC); the TMN (ScN) and the TMF (ScF) are composed of two particles (m1 andm2) that have a reduced massµ equal to∑(2/π)

n=1 mn/
∑2

n=1mn. The valueEdy
nl are the non-relativistic eigenvalues,(n, l) are represent the principal quantum number

and spin-orbit quantum number, respectively. Cariet al., in Ref. [11], apply the NU method to obtain the expression of the
radial partRnl (r) as a function of the hypergeometric polynomials (hypergeometric polynomials) as follows:

Rnl (r) = Nnls
−√Λnl (1− s)

1
2+ 1

2

√
1+4εnl

2F1 (−n, bnl; 1− 2Λnl; s) . (4)

Here, the variables is equal toexp (−αr) while Λnl, εnl andNnl are given by:




Λnl = 2µ
α2

[
De − Edy

nl + l(l+1)α2

2µ

]
,

εnl = l(l + 1) + 2µ
α2 Deb

2,

bnl = −n− 2
√

2µ
α2

[
De − Edy

nl + De

(
2b + V0α

De

)
+ Deb2

]
,

Nnl =
Γ(n+2+2

√
Λnl)

n!Γ(2+2
√

Λnl)

[
2αn!Γ(n+2+2

√
Λnl)Γ(2n+2+2

√
Λnl)

2
2(√Λnl+1+ 1

2
√

1+4εnl)Γ(n+1+2
√

Λnl)Γ(n+2
√

Λnl)

]1/2

.

(5)

Since the Deng-Fan Yukawa potential model has an isotropic property (depended only tor), it allows the known forms’ com-
plete complex non-relativistic wave function solutionΨ(r,Ω3, t) of the known forms(Rnl (r)/r)Y l

m(Ω3) exp(−iEdy
nl t) with

− |l| ≤ m ≤ + |l|. Hence, we can conclude the complete complex wave functionΨ(r,Ω3, t) in usual 3D-RQM symmetries
as,

Ψ(r,Ω3, t) = Nnl exp
(
−iEdy

nl t
) s−

√
Λnl

r
(1− s)

1
2+ 1

2

√
1+4εnl

2F1 (−n, bnl; 1− 2Λnl; s)Y m
l (Ω3) . (6)

While the corresponding valuesEdy
nl of the Deng-Fan Yukawa potential model in 3D(NR-QM) regimes can be represented in

a closed and compact form as

Edy
nl = Qa −Qb

(
n + γ +

Qc

n + γ

)2

= Qa − 2QbQc −
(

QbQ
2
c

ρ2
+ Qbρ

2

)
, (7)

with Qa, Qb andQc are respectively:




Qa = De + α2l(l+1)
2µ , Qb = α2

8µ ,

Qc = α2l(l+1)
2µ −De

(
2b + V0α

De

)
−Deb

2,

γ = 1
2 + 1

2

√
1 + 4

(
l (l + 1) + 2µ

α2 Deb2
)

and ρ = n + γ.

(8)

It is helpful in briefly studying the total energy of each of the fundamental statesEdy
0l corresponding to the quantum numbers

(n = 0, l, m), as well as the first excited stateEdy
1l corresponding to the quantum numbers (n = 1, l,m), where Eq.(24) in these

two cases becomes as follows: 



Edy
0l = Qa −Qb

(
γ + Qc

γ

)2

,

Edy
1l = Qa −Qb

(
1 + γ + Qc

1+γ

)2

.
(9)

When an electron transitions from an excited state, described as a quantum state (n = 1, l,m), to the fundamental state,
described as a quantum state (n = 0, l, m), it will emit or absorb electromagnetic radiation, the frequencyωdy

nl of which is
determined by the following relation:

ωdy
nl =

∣∣∣Edy
1l − Edy

0l

∣∣∣ . (10)
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A simple calculation gives the emitted or absorbed electromagnetic radiationωdy
nc in the context of 3D(NR-QM) symmetry as

follows:

ωdy
nl = Qb

[(
1 + γ +

Qc

1 + γ

)2

−
(

γ +
Qc

γ

)2
]

. (11)

The following section will investigate the MDF-YP model in 3D(NR-NCPS) symmetries.

3. Investigate DSE solutions in the 3D(NR-NCPS) regime under the MDF-YP model

3.1. Review 3D(NR-NCPS) regime

3D(NR-NCPS) symmetries formalism, based on new algebra of self-adjoint differential operators (ds
α, dh

α (t) anddi
α (t)) and

(πs
α, πh

α (t) andπi
α (t)) that come in three different kinds of Schrödinger, Heisenberg, and interaction pictures (SP, HP and IP)

in three varieties. These varieties that satisfy a deformed algebra are the canonical structure variety, the Lie structure variety,
and the quantum plane variety as follows (QSV, LSV and QSV, in short) [38–47]:

[
ds

α, πs
β

]
∗ =

[
dh

α (t) , πh
β (t)

]
∗ =

[
di

α (t) , πi
β (t)

]
∗ = i~effδαβ , (12)

[
ds

α, ds
β

]
∗ =

[
dh

α (t) , dh
β (t)

]
∗ =

[
di

α (t) , di
β (t)

]
∗ = iΩαβ , (13)

[
πs

α, πs
β

]
∗ =

[
πh

α (t) , πh
β (t)

]
∗ =

[
πi

α (t) , πi
β (t)

]
∗ = iΩαβ , (14)

with

(
Ωαβ ,Ωαβ

)
=

(
εαβθ ≡ θαβ , εαβθ ≡ θµν

)
: εαβ ∈ CSV , (15)

(
Ωαβ ,Ωαβ

)
=

∑

δ=1

hδ
µν

(
d
(s,h,i)
δ , π

(s,h,i)
δ

)
: hδ

µν ∈ LSV , (16)

and

(
Ωαβ ,Ωαβ

)
=

3∑

δ,γ=1

Gδγ
αβ

(
d(s,h,i)

γ d
(s,h,i)
δ , π(s,h,i)

γ π
(s,h,i)
δ

)
: Gαβ

αβ ∈ QPV . (17)

The symbol[Q,S]∗ is a new commutator which means(Q∗S − S∗Q), θµν andθµν are antisymmetric real constant (3×3)
matrices, which satisfied the physical conditions[θµν ] = εµν [θ] and[θµν ] = εµν [θ] are equal to (length)2 and (momentums)2

,here(θ, θ) are the real non-commutative phase-space parameters andαµν is the Kronecker symbol. The indices(α, β) equal
to the values(1, 2, 3), andεµν is just an antisymmetric tensor operator that is satisfiedεµν = −ενµ = 1 for µ 6= ν and
εεε = 0. The effective Planck constant~eff equal to the corresponding values~ plus (θη/4)~ that is present the impact
of phase-space deformation on commutator[xs

α, ps
β ] 3D(NR-QM) symmetries. For the purpose of simplifying the writing of

mathematical equations, we have adopted the most commonly used natural units, corresponding to adopting both the reduced
Planck constant~ and the speed of lightc in a vacuum as equal to one. In 3D(NR-NCPS) and 3D(NR-QM) symmetries, the
deformed generalized coordinatesd

(s,h,i)
α (ds

α, dh
α(t) anddi

α(t)) and deformed generalizing momentumsπ
(s,h,i)
α (πs

α, πh
α(t) and

πi
α(t)) and the corresponding operators in 3D(NR-QM) symmetries (x

(s,h,i)
µ (xs

µ, xh
µ(t) andxi

µ(t)) andp
(s,h,i)
µ (ps

µ, ph
µ(t) and

pi
µ(t))) satisfied the uncertainty relation that corresponds to the Eq. (12) becomes:





∣∣∣∆xs
α∆ps

β

∣∣∣ =
∣∣∣∆xh

α∆ph
β

∣∣∣ =
∣∣∣∆xi

α∆pi
β

∣∣∣ > ~δαβ/2 ⇒∣∣∣∆ds
α∆πs

β

∣∣∣ =
∣∣∣∆dh

α∆πh
β

∣∣∣ =
∣∣∣∆di

α∆qi
β

∣∣∣ > ~effδαβ/2
. (18)

Nonetheless, a new uncertainty relation is shown through Eqs. (1.4) and (1.5):

{ ∣∣∣∆ds
α∆ds

β

∣∣∣ =
∣∣∣∆dh

α∆dh
β

∣∣∣ =
∣∣∣∆di

α∆di
β

∣∣∣ > Ξ(1)
αβ

|∆πs
α∆πs

ν | =
∣∣∆πh

α∆πh
ν

∣∣ =
∣∣∆πi

α∆πi
ν

∣∣ > Ξ(2)
αβ

. (19)
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For QSV, LSV and QSV
(
Ξ(1)

µν ,Ξ(2)
µν

)
are equal to, respectively:





2
(
Ξ(1)

µν , Ξ(2)
µν

)
=

(
θ, θ

) |εµν | ,
2

(
Ξ(1)

µν ,Ξ(2)
µν

)
= (βµν , γµν) ,(

Ξ(1)
µν , Ξ(2)

µν

)
= (Lµν , αµν) .

(20)

with βµν/γµν andLµν/αµν are equal to the average values:




βµν =
∣∣∣∣
〈

3∑
α

(
fα

µνd
(s,h,i)
α

)〉∣∣∣∣ ,

γµν =
∣∣∣∣
〈

3∑
α

(
fα

µνπ
(s,h,i)
α

)〉∣∣∣∣ ,

(21)

and




Lµν =

〈
3∑

α,β

(
Gαβ

µν d
(s,h,i)
α d

(s,h,i)
β

)〉
,

αµν =

〈
3∑

α,β

(
Gαβ

µν π
(s,h,i)
α π

(s,h,i)
β

)〉
.

(22)

There is no equivalent in the current literature (3D(NR-QM) symmetries) for the novel subdivided three-uncertainty relations in
Eq. (19). We have extended the modified equal-time non-commutative canonical commutation relations in 3D-NCPS symme-
tries to include the standard Schrödinger, Heisenberg and interaction pictures. The new deformed scalar product(f ∗ h) (x, p)
is defined by the Weyl-Moyal∗-product for a canonical structure variety expressed as [48–55]:

(f ∗ h) (x, p) = (fh) (x, p)− i

2

(
θαβ∂xαf∂xβ h + θ

αβ
∂pαf∂pβ h

)
(x, p) + O

(
θ
2
, θ2

)
, (23)

here∂xα and∂pα are equal to∂/∂xα and∂/∂pα, respectively. We must preserve new expectation relation in the 3D(NR-
NCPS) regimes, respectively:

S〈Ψ |A|Ψ〉S =H 〈Ψ
∣∣Ah

qm (t)
∣∣ Ψ〉H =i 〈Ψ

∣∣Ai
qm (t)

∣∣ Ψ〉i =⇒
nc
S 〈Ψ |As

nc|Ψ〉S =nc
H 〈Ψ

∣∣Ah
nc (t)

∣∣ Ψ〉nc
H =nc

i 〈Ψ
∣∣Ai

nc (t)
∣∣ Ψ〉nc

i . (24)

This enables the creation of two scales of space and phase cells with volumes(θ3/2, θ
3/2

). The second component (−(i/2)
(θαβ∂xαf∂xβ h)(x, p)) of Eq. (23) represents the physical consequences of phase-space non-commutativity, while the third
component (−(i/2)(θ

αβ
∂pαf∂pβ h) (x, p)) represents the physical consequences of phase-phase non-commutativity.

3.2. Investigating GBSM

The principal approaches to resolving the impact of the (NR-NC) phase-space on the SE utilizing the MDF-YP model will
be discussed in this subsection. The novel notions mentioned in the introduction have been identified explicitly in Eqs. (12),
(13), (14), and (23) are considered in new relationships described by new non-commutative canonical commutation relations
(NNCCCRs) and the concept of the Weyl-Moyal star product. We may rewrite the usual radial SE in Eq. (3) in 3D(NR-NCPS)
using these data as follows:

(
d2

dr2
+ 2µ(Edy

nl −De

(
1− b exp (−αr)

1− exp (−αr)

)2

+ V0
exp (−αr)

r
− l(l + 1)

2µr2
)

)
∗Rnl (r) = 0. (25)

Researchers in solving the four fundamental (SE, KGE, DE and the Duffin-Kemmer-Petiau equation), including non-commutative
quantum principles, rely on two equivalent methods. The first method is represented by reformulating the different new physical
fields in the NC-quantum group, such asΨnl (Dirac spinor), Φnl (Klein-Gordon field operator), ea

µ (virbien in quantum grav-
ity), Fαβ (electromagnetic antisymmetric tensor inU(1) symmetry) and others in terms of their corresponding physical fields
in the usual quantum group (Ψnl, Φnl, ea

µ, Fαβ and other among), in proportion to the NC parametersΘ(θ12, θ23, θ13) /2,
which is similar to the Taylor development [55–60], whereas the second method is represented by reformulating the non-
commutative operator (q andπ) with its view of the quantum operators (x andp) known When employing either of them, the
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physical outcomes are expected to be identical. F. Bopp introduced a new quantization rule (x andp) →(q = x − (i/2)∂p

andπ = p + (i/2)∂x) instead of the standard correspondence (x andp)→(q = x andq = p + (i/2)∂x), which is known
as the generalized Bopp’s shift method (GBSM) [61–65]. This quantization method is known to researchers as Bopp quan-
tization [64]. The Weyl-Moyal star productf(x, p) ∗ g(x, p) promotes GBSM by being replaced byf (q = x − (i/2)∂p,
π = p+(i/2)∂x)∗g(x, p) [65]. As a result, we may obtain transformations from the Weyl-Moyal star product (∗) to the typical
product using the MDF-YP model, as shown below.





De

(
1− b exp(−αr)

1−exp(−αr)

)2

∗Rnl (r) = De

(
1− b exp(−αr)

1−exp(−αr)

)2

Rnl (r) ,

−V0
exp(−αr)

r ∗Rnl (r) = −V0
exp(−αd)

d Rnl (r) ,

l(l+1
2µr2 ∗Rnl (r) = l(l+1

2µd2 Rnl (r) ,

(26)

and

p2

2µ
∗Rnl (r) =

π2

2µ
Rnl (r) . (27)

We should inform the reader that the generalized Bopp’s shift method succeeded by applying it to the four fundamental equa-
tions classified according to spin (integer, half-integer, or zero) and energy value (low or high). For SE [66–73] and the other
three relativistic equations represented by the KGE [74–80], the DE [81–86], and the Duffin-Kemmer-Petiau equation [87–90],
GBSM has achieved great success. It is worth noticing that GBSM allows us to reduce Eq. (25) to its new simple form:

(
d2

dr2
+ 2µ

(
Edy

nl −De

(
1− b exp (−αr)

1− exp (−αr)

)2

+ V0
exp (−dr)

d
− l(l + 1)

2µd2

))
Rnl (r) = 0. (28)

The deformed algebraic structure (new non-commutative algebra) of covariant canonical non-commutation relations with the
notion of the Weyl-Moyal star product presented in Eqs. (3), (4) and (5) reduce to simple new NNCCCRs as follows:

First, the reduced new NNCCCRs in the Schrödinger picture:




[
ds

α, πs
β

]
∗

= i~effααβ ⇒
[
ds

α, πs
β

]
= iδαβ ,

[
ds

α, ds
β

]
∗

= iθαβ ⇒
[
ds

α, ds
β

]
= iθαβ ,

[
πs

α, πs
β

]
∗

= iθαβ ⇒
[
πs

α, πs
β

]
= iθαβ .

(29)

Second, the reduced new NNCCCRs in the Heisenberg picture:




[
dh

α (t) , πh
β (t)

]
∗

= iδαβ ⇒
[
qh
α (t) , πh

β (t)
]

= iδαβ ,
[
dh

α (t) , dh
β (t)

]
∗

= iθαβ ⇒
[
dh

α (t) , qh
β (t)

]
= iθαβ ,

[
πh

α (t) , πh
β (t)

]
∗

= iθαβ ⇒
[
πh

α (t) , πh
β (t)

]
= iθαβ .

(30)

Third, the reduced new NNCCCRs in the interaction picture:




[
di

α (t) , πi
β (t)

]
∗

= i~effδαβ ⇒
[
qi
α (t) , πi

β (t)
]

= iδαβ ,
[
di

α (t) , di
β (t)

]
∗

= iθαβ ⇒
[
di

α (t) , qi
β (t)

]
= iθαβ ,

[
πi

α (t) , πi
β (t)

]
∗

= iθαβ ⇒
[
πi

α (t) , πi
β (t)

]
= iθαβ .

(31)

In 3D(NR-NCPS) symmetries, one possible way of implementing the algebra defined by Eqs. (29), (30) and (31) are to
construct the non-commutative set of variables (ds

α, qh
α (t) and qi

α (t)) and (πs
α, πh

α (t) andπi
α (t)) from the corresponding

commutative variables (xs
µ, xh

µ (t) andxi
µ (t)) and (ps

µ, ph
µ (t) andpi

µ (t)) by employing linear transformations. This can be
generally done by using the Seiberg-Witten map, given by:





ds
µ = xs

µ −
3∑

ν=1

θµν

2 ps
ν + O

(
Θ2

)
,

πs
µ = ps

µ +
3∑

ν=1

θµν

2 xs
ν + O

(
θ
2
) (32)
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and




dh
µ (t) = xh

µ (t)−
3∑

ν=1

θµν

2 ph
ν (t) + O

(
Θ2

)
,

πh
µ (t) = ph

µ (t) +
3∑

ν=1

θµν

2 xh
ν (t) + O

(
θ
2
)

,

(33)

and




di
µ (t) = xi

µ (t)−
3∑

ν=1

θµν

2 pi
ν (t) + O

(
Θ2

)
,

πi
µ (t) = pi

µ (t) +
3∑

ν=1

θµν

2 xi
ν (t) + O

(
θ
2
)

.

(34)

We have applied Einstein’s term regarding the addition process in the above-mentioned equations, where the repeated indices
ν once up and once down correspond to the addition process from 1 to 3.This allows us to find the operators (d2, 1/d2, π2

andVdy (d)), in the 3D(NR-NCPS) symmetries, equal to:

{
d2 = r2 − L.Θ + O

(
Θ2

)
,

1
2µd2 = 1

2µr2 + L.Θ
2µr4 + O

(
Θ2

)
,

(35)

and




π2 = p2 + L.θ+O
(
θ
2
)

,

Vdy (q) = De

(
1− b

exp(αr)−1

)2

− V0
exp(−αr)

r − 1
2r

∂Vdy

∂r L.Θ + O
(
Θ2

)
.

(36)

It is worth noting that the couplingsL.Θ andL.θ are expressed to the angular momentum operatorL obtained from rotation of
two vectors (r andp) that are equal to

∑
i,j,k εijkθkpjxi and

∑
i,j,k εijkθ

k
pjxi, respectively. On the other hand, this double

coupling, which expresses the interaction of physical properties and topological deformations, are expressed by the scalar
product(Lxθ12 + Lyθ23 + Lzθ12) /2 andLxθ12 + Lyθ23 + Lzθ13. When we substitute Eqs. (35) and (36) into Eq. (28), we
get the following like-SE:

[
d2

dr2
+ 2µ

(
Edy

nl −De

(
1− b exp (−αr)

1− exp (−αr)

)2

+ V0
exp (−αr)

r
− l (l + 1)

2µr2
+ 2µZpert

dy (r,Θ)

)]
Rnl (r) = 0, (37)

with

Zpert
dy (r,Θ) =

(
1
2r

∂Vdy (r)
∂r

− l (l + 1)
2µr4

)
L.Θ + O

(
Θ2

)
. (38)

The above equation combines the physical characteristics(1/2r)(∂Vdy (r)/∂r) andπ2/2µ of the MDF-YP model with the
angular momentum operatorL, as well as the topological features generated by phase-space deformations. After performing
the mathematical calculations, one obtains(1/2r)(∂Vdy (r)/∂r) andπ2/2µ.





1
2r

∂Vdy(r)
∂r = De

αb exp(−αr)
r(1−exp(−αr)) + De

(αb−αb2) exp(−2αr)

r(1−exp(−αr))2
−De

αb2 exp(−3αr)

r(1−exp(−αr))3
+ αV0

2
exp(−αr)

r2 + V0
2

exp(−αr)
r3 ,

π2

2µ = p2

2µ + L.θ
2µ +O

(
θ
2
)

,

(39)

As a result of the topological features of the deformation phase-space, the spontaneously generated termV dy
eff−nc (r,Θ) and the

global working Hamiltonian operatorHdy
nc

(
p, r,Θ, θ

)
that equal to the modified kinetic energyπ

(
p, θ

)
/2µ plus the effective

potentialV dy
eff−nc (r,Θ) of the MDF-YP model:





Hdy
nc

(
p, r,Θ, θ

)
= Hdy (p, r) + Hdy

pert

(
r,Θ, θ

)
,

V dy
eff−nc (r,Θ) = V dy

eff (r) + Zpert
dy (r,Θ) .

(40)
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with




Hdy
pert

(
r,Θ, θ

)
= Zpert

dy (r,Θ)+L.θ
2µ + O

(
θ
2
,Θ2

)
,

Zpert
dy (r,Θ) = Deαb exp(−αr)

r(1−exp(−αr))

(
1 + (1−b) exp(−αr)

1−exp(−αr) − b exp(−2αr)

(1−exp(−αr))2

)
L.Θ

+
(

αV0

2
exp(−αr)

r2 + V0

2
exp(−αr)

r3 − l(l+1)
2µr4

)
L.Θ+O

(
Θ2

)
,

Hdy (p, x) = p2

2µ + De

(
1− b exp(−αr)

1−exp(−αr)

)2

− V0
exp(−αr)

r .

(41)

We can express the global effective potential in 3D(NR-NCPS) symmetriesV nc−eff
dy (r,Θ) as a function of corresponding

follows of the effective potentialV eff
dy (r) in 3D(NR-QM) symmetries as:

V nc−eff
dy (r,Θ) = V eff

dy (r) + Zpert
dy (r,Θ) + O

(
Θ2

)
, (42)

with

V eff
dy (r) = De

(
1− b exp(−αr)

1−exp(−αr)

)2

− V0
exp(−αr)

r + l(l+1)
2µr2 . (43)

Furthermore, Eq. (37) cannot be solved analytically for any statel 6= 0 because of the centrifugal terms (exp (−αr)/r(1− exp
(−αr)), exp (−2αr)/r (1− exp (−αr))2, exp (−3αr)/r (1− exp (−αr))3, exp (−αr)/r2, exp (−αr)/r3 and1/r4) and
the studied potential itself. In fact, the global HamiltonianHdy

nc

(
p, r,Θ, θ

)
and effective potentialV nc−eff

dy (r,Θ) given in
Eq. (45) has a strong singularityr → 0; we need to use the suitable improved approximation of the centrifugal term proposed
by Greene and Aldrich [91] and applied by Cariet al. [11]. The radial part of the three-dimensional deformed Schrödinger
equation with the MDF-YP model contains the previous centrifugal terms since we assumel 6= 0. However, the MDF-YP
model is a kind of potential that cannot be solved exactly when the centrifugal term is taken into account unlessl = 0 it is
assumed. The conventional approximation used in this paper:

1
r2
≈ α2

(1− exp (−αr))2
=

α2

(1− s)2
⇔ 1

r
≈ α

1− exp (−αr)
=

α

1− s
. (44)

Thus, performing the calculations, one gets the following results:




De
αb exp(−αr)

r(1−exp(−αr)) = Deb
s

(1−s)2
,

De
(αb−αb2) exp(−2αr)

r(1−exp(−αr))2
= Deb (1− b) α2 s2

(1−s)3
,

−De
αb2 exp(−3αr)

r(1−exp(−αr))3
= −Deα

2b2 s3

(1−s)4
,

αV0
2

exp(−αr)
r2 = α3V0

2
s

(1−s)2
,

V0
2

exp(−αr)
r3 = V0α3

2
s

(1−s)3
,

− l(l+1)
2µr4 = − l(l+1)

2µ
α4

(1−s)4
.

(45)

This gives the perturbative effective HamiltonianHdy
pert

(
r,Θ, θ

)
and effective perturbed potentialV pert

dy (r,Θ) given in Eq. (46)
as follows:





Hdy
pert

(
r,Θ, θ

)
= Υ(s)L.Θ + L.θ

2µ +O
(
θ
2
, Θ2

)
,

Zpert
dy (r,Θ) = Υ(s)L.Θ + O

(
Θ2

)
.

(46)

with
{

Υ(s) = a1s
(1−s)2

+ a2s2

(1−s)3
+ a3s3

(1−s)4
+ a4s

(1−s)3
+ a5

(1−s)4
,

Deb + α3V0
2 = a1, Deb (1− b) α2 = a2 −Deα

2b2 = a3,
V0α3

2 = a4 and − l(l+1)α4

2µ = a5.
(47)
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The potential under study, to become a MDF-YP model in 3D(NR-NCPS) symmetries, the Deng-Fan Yukawa potential model
is expanded by including new radial termss/(1− s)2, s2/(1− s)3, s3/(1− s)4, s/(1− s)3and1/(1− s)4. Furthermore,
the new additive part of the Hamiltonian operatorHdy

pert

(
r,Θ, θ

)
is also includes two infinitesimal couplingsL.

(
Θ, θ

)
that

interacted with previous radial terms. This is logical from a physical point of view because it explains the interaction between
the physical properties of the studied potentialL and the topological properties resulting from the deformation of phase-space
that is described with

(
Θ, θ

)
. This enables us to treat the new additive part of the Hamiltonian operatorHdy

pert

(
r,Θ, θ

)
as

a perturbation operator in the symmetries of 3D(NR-NCPS) symmetries, compared to the main potentialHdy (p, x) (parent
Hamiltonian operator); the inequalityHdy

pert

(
r,Θ, θ

) ¿ Hdy (p, x) has been achieved. All of the physical arguments for using
time-independent perturbation theory are met. As a result, we can provide a thorough prescription for estimating the energy
level of generalized(n, l,m)th excited states.

3.3. Non-relativistic expectation values under the MDF-YP model in 3D(NR-NCPS) regimes

Now, we want to apply the independent time standard perturbative theory and we find the non-relativistic expectation val-
ues (〈s/(1− s)2〉dy

(nlm) ≡ z1
dy, 〈s2/(1− s)3〉dy

(nlm) ≡ z2
dy, 〈s3/(1− s)4〉dy

(nlm) ≡ z3
dy, 〈s/(1− s)3〉dy

(nlm) ≡ z4
dy and

〈1/(1− s)4t〉dy
(nlm) ≡ z5

dy ) for the HODMs (H2, I2); the HEDMs (CO, HCl, LiH); the NMHs (ScH, TiH, VH, CrH); the
TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the TMF (ScF) , taking into account the unperturbed wave functions
Ψ(r,Ω3, t) which we have seen previously in Eq. (19) in the case of 3D(NR-NCPS) symmetries. Following simple calcula-
tions, we obtain the expectation values (z1

dy, z2
dy, z3

dy, z4
dy andz5

dy ) in the first order using standard perturbation theory as
follows:

z1
dy = N2

nl

+∞∫

0

s−2
√

Λnl+1 (1− s)
√

1+4εnl−1 [2F1 (−n, bnl; 1− 2Λnl; s)]
2
dr, (48)

z2
dy = N2

nl

+∞∫

0

s−2
√

Λnl+2 (1− s)
√

1+4εnl−2 [2F1 (−n, bnl; 1− 2Λnl; s)]
2
dr, (49)

z3
dy = N2

nl

+∞∫

0

s−2
√

Λnl+3 (1− s)
√

1+4εnl−3 [2F1 (−n, bnl; 1− 2Λnl; s)]
2
dr, (50)

z4
dy = N2

nl

+∞∫

0

s−2
√

Λnl+1 (1− s)
√

1+4εnl−2 [2F1 (−n, bnl; 1− 2Λnl; s)]
2
dr, (51)

and

z5
dy = N2

nl

+∞∫

0

s−2
√

Λnl (1− s)
√

1+4εnl−3 [2F1 (−n, bnl; 1− 2Λnl; s)]
2
dr. (52)

We are introducing the change of variables = exp (−αr). This maps the region (0 6 r l∞→ 0 6 s ≤ 1) and allows us to
obtaindr = −dx/αx, and transform Eqs. (48), (49), (50), (51) and (52) into the following form:

z1
dy =

N2
nl

α

+1∫

0

s−2
√

Λnl+1−1 (1− s)
√

1+4εnl−1 [2F1 (−n, bnl; 1− 2Λnl; s)]
2
ds, (53)

z2
dy =

N2
nl

α

+1∫

0

s−2
√

Λnl+2−1 (1− s)
√

1+4εnl−2 [2F1 (−n, bnl; 1− 2Λnl; s)]
2
ds, (54)

z3
dy =

N2
nl

α

+1∫

0

s−2
√

Λnl+3−1 (1− s)
√

1+4εnl−3 [2F1 (−n, bnl; 1− 2Λnl; s)]
2
ds, (55)

z4
dy =

N2
nl

α

+1∫

0

s−2
√

Λnl+1−1 (1− s)
√

1+4εnl−2 [2F1 (−n, bnl; 1− 2Λnl; s)]
2
ds, (56)
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and

z5
dy =

N2
nl

α

+1∫

0

s−2
√

Λnl−1 (1− s)
√

1+4εnl−3 [2F1 (−n, bnl; 1− 2Λnl; s)]
2
ds. (57)

The above integrals can be evaluated in two ways: either by using the formulas used by Ahmadovet al. [92] and Taset al. [93]
to obtain the general excited state directly, or by using the physical values of the principal quantum number (n = 0, 1, ...) to
evaluate the above integrals and then generalize the result to the general(n, l, m)th excited state. The first method will be less
expensive and faster in signing the required solutions:

+1∫

0

x2γ−1 (1− x)2(α+1) [2F1 (−q, q + 2 (α + γ + 1) ; 2γ + 1; x)]2 dx

=
q! (q + 2 (α + 1) /2) Γ (2γ) Γ (q+2 (α + 1)) Γ (2γ + 1)

(q + 2 (α + 1) /2+2γ/2) Γ (q + 2γ + 1) Γ (q + 2γ + 2 (α + 1))
. (58)

The following solutions are obtained by comparing the integrals in Eqs. (58) with Eqs. (53) - (57):

z1
dy = θ

1

nl

Γ
(
1− 2

√
Λnl

)
Γ

(
n+
√

1 + 4εnl − 1
)
Γ

(
2− 2

√
Λnl

)

Γ
(
n− 2

√
Λnl + 2

)
Γ

(
n +

√
1 + 4εnl − 2

√
Λnl

) , (59)

z2
dy = θ

2

nl

Γ
(
2− 2

√
Λnl

)
Γ

(
n+
√

1 + 4εnl − 2
)
Γ

(
3− 2

√
Λnl

)

Γ
(
n + 3− 2

√
Λnl

)
Γ

(
n +

√
1 + 4εnl − 2

√
Λnl

) , (60)

z3
dy = θ

3

nl

Γ
(
3− 2

√
Λnl

)
Γ

(
n+
√

1 + 4εnl − 3
)
Γ

(
4− 2

√
Λnl

)

Γ
(
n + 4− 2

√
Λnl

)
Γ

(
n +

√
1 + 4εnl − 2

√
Λnl

) , (61)

z4
dy = θ

4

nl

Γ
(
1− 2

√
Λnl

)
Γ

(
n+
√

1 + 4εnl − 2
)
Γ

(
2− 2

√
Λnl

)

Γ
(
n + 2− 2

√
Λnl

)
Γ

(
n +

√
1 + 4εnl − 2

√
Λnl − 1

) , (62)

and

z5
dy = θ

5

nl

Γ
(−2

√
Λnl

)
Γ (n+2 (α + 1)) Γ

(
1− 2

√
Λnl

)

Γ
(
n + 1− 2

√
Λnl

)
Γ

(
n +

√
1 + 4εnl − 2

√
Λnl +−3

) , (63)

with θ
1

nl, θ
2

nl, θ
3

nl, θ
4

nl andθ
5

nl are equal to

n!
(
n +

√
1/4 + εnl − 1/2

)
N2

nl

α
(
n +

√
1/4 + εnl −

√
Λnl

) ,
n!

(
n +

√
1/4 + εnl − 1

)
N2

nl

α
(
n +

√
1/4 + εnl −

√
Λnl

) ,
n!

(
n +

√
1/4 + εnl − 3/2

)
N2

nl

α
(
n +

√
1/4 + εnl −

√
Λnl

) ,

n!
(
n +

√
1/4 + εnl − 1

)
N2

nl

α
(
n +

√
1/4 + εnl − 1/2−√Λnl

) and
n!

(
n +

√
1/4 + εnl − 3/2

)
N2

nl

α
(
n +

√
1/4 + εnl −

√
Λnl − 3/2

) ,

respectively.

3.4. The MDF-YP model’s effect on non-relativistic energies as a result of phase-space deformations

What stands out here is the use of our physical methods based on the principle of superposition to calculate the total values
of non-relativistic energy under the MDF-YP model in 3D(NR-NCPS) symmetry. As mentioned before, the total effective
potentialV nc−eff

dy (r,Θ) is the sum of three potentialsV dy
nl (r,Θ), l (l + 1)/r2andV pert

dy (r,Θ) is responsible for the creation

of total non-relativistic energies within the context of 3D(NR-NCPS) regimes. Naturally, the effective potentialsV dy
nl (r) plus

l (l + 1)/r2 are responsible for the non-relativistic energiesEdy
nl of SE in the Deng-Fan Yukawa potential model in 3D(NR-QM)

symmetry, as shown in Eq. (23), which are dominant in the absence of phase-phase-space deformations. In 3D(NR-NCPS)
symmetries, the naturally generated potentialsV pert

dy (r,Θ) due to phase-phase-space deformations will be self-sources of
corrected no-relativistic energy. Given that the NC two parametersΘ (θ12, θ23, θ13) /2 andθ

(
θ12, θ23, θ13

)
/2 are arbitrary,

we deal with them on the relevant physical need. To begin, the perturbed spin-orbit influence can be derived from the perturbed
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potentialV pert
dy (r,Θ) corresponding to the HODMs (H2, I2); the HEDMs (CO, HCl, LiH); the NMHs (ScH, TiH, VH, CrH);

the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the TMF (ScF). The perturbed spin-orbit effective potentials
are obtained by substituting the angular momentum L operator’s coupling with the non-commutative phase-space vectors
Θ(θ12, θ23, θ13) /2 andθ

(
θ12, θ23, θ13

)
/2 with the new equivalent couplings as follows:

(
L.Θ,L.θ

)→ (
Θ, θ

)
L.S or

(−→
L .
−→
Θ,
−→
L .
−→
θ

)
→ (

Θ, θ
)−→

L .
−→
S , (64)

with (Θ, θ̄) are equal to (
√

θ2
12 + θ2

23 + θ2
13,

√
θ̄2
12 + θ̄2

23 + θ̄2
13). We have oriented the spin-s of the HODMs (H2, I2); the

HEDMs (CO, HCl, LiH); the NMHs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the
TMF (ScF) to become parallels to the vectorΘ(θ12, θ23, θ13) /2 and θ̄

(
θ̄12, θ̄23, θ̄13

)
/2 which interacted with the MDF-YP

model. This connection between topological and physical properties came according to our conception on the basis of the
available degree of freedom. As we know, using the degree of freedom in the equations of motion is equivalent to adding
the gauge fixing term to the Lagrangian. Since the degree of freedom does not apply if this term is added to the Lagrangian
expression, it can be applied explicitly if we adopt the Lagrangian without this term, and this is what we did. This physical

philosophy came to consider the two topological vectors(
−→
Θ,
−→̄
θ ) as an arbitrary. The mathematical aspect of the problem is

simple because when we consider two parallel vectors, we can express the proportion between them in terms of the value of
the other. if we consider the vector

−→
A parallel to the vector

−→
B (

−→
A//

−→
B ), thus we have|B| −→A equal to|A| −→B . The expression

for the perturbed Hamiltonian that we saw in Eq. (46) will then be as follows:

Hdy
so

(
r,Θ, θ

)
= Υ (s)L.S +

θ

2µ
L.S. (65)

The corresponding partially corrected energies∆Enr−so
dy , obtained by applying the independent time standard perturbative

theory in the first order of phase-space non-commutativity parameters using unperturbed complex wave function in Eq. (19),
as follows

∆Enr−so
dy =

∫
Ψ∗ (r,Ω3, t) Hdy

so

(
r,Θ, θ

)
Ψ(r,Ω3, t) r2dΩdr. (66)

HeredΩ equal tosin(θ)dθdϕ. Direct simplifications give

∆Enr−so
dy =

+∞∫

0

Rnl (r)Hdy
so

(
r,Θ, θ

)
Rnl (r) dr. (67)

After performing the mathematical calculations, one obtains:

∆Enr−so
dy =

(
Θ 〈X〉dy

(nlm) (n,De, re, V0, α) +
θ

2µ

)
〈L.S〉(nlm) . (68)

Here〈X〉dy
(nlm) (n,De, re, V0, α) is global expectation values that can be determined from:

〈X〉dy
(nlm) (n,De, re, V0, α) =

5∑
µ=1

aµzµ
dy (n,De, re, V0, α) . (69)

The valueszµ
dy (n, De, re, V0, α) (µ = 1, 5) are determine from Eqs. (59), (60), (61), (62) and (63) while the means value

〈L.S〉(nlm) obtained by applying the following well-known transformation:

(
Θ
θ

)
L.S → (

J2 − L2 − S2
)
/2

(
Θ
θ

)
. (70)

Because, in 3D(NR-NCPS) symmetry, the operators (Ĥdy
nc, J2, L2, S2 andJz) can construct a complete set of conserved

physics quantities. Thus, the eigenvalues of the operator
(
J2 − L2 − S2

)
are equal to the valuesΛ for the HODMs (H2, I2);

the HEDMs (CO, HCl, LiH); the NMHs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the
TMF (ScF) are(1/2)(j(j+1)-l (l + 1)−s(s+1)). The valuesj ∈ [|l − s| , |l + s|] and the spin-s can be equal to{1/2, 0, 1, ...}.
Thus, a direct result, in 3D(NR-NCPS) symmetries, the partially corrected energies∆Enr−so

dy

(
n,De, re, V0, α, Θ, θ, j, l, s

) ≡
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∆Enr−so
dy produced by the perturbed effective HamiltonianHdy

pert

(
r,Θ, θ

)
for the (n, l,m)th under MDF-YP model are de-

termined from the following equation:

∆Eso
dy = Λ

(
Θ 〈X〉dy

(nlm) +
θ

2µ

)
+ O

(
Θ2, θ

2
)

. (71)

The influence of the magnetic perturbative potential, which causes the effect of the perturbed HamiltonianHdy
pert

(
r,Θ, θ

)
under the MDF-YP model in the 3D(NR-NCPS) symmetries, is the second significant physical contribution. This physical
action can be achieved by performing the following transitions:

(
L.Θ
L.θ

)
→

(
χ
χ

)−→
L .
−→ℵ . (72)

Here,ℵ is the strength of the magnetic field caused by the influence of phase-space geometry deformation,χ andχ are playing
the role of new infinitesimal non-commutativity parameters. The physical units of[Θ] ≡ (length)2 and

[
θ
] ≡ (momentum)2

are equal to[χ] [ℵ] and
[
θ
]

= [χ] [ℵ], respectively and
−→ℵ = ℵez. The second choice emerges from the fact that the vectors

Θ(θ12, θ23, θ13) /2 andθ
(
θ12, θ23, θ13

)
/2 are arbitrary or that the magnetic field is oriented along the (Oz) axis, which helps

simplify quantitative calculations without changing the physical point of view. The expression for the perturbed Hamiltonian
that we saw in Eq. (46) will then be as follows:

Hdy
mg (r, χ, χ) = ℵΥ(s)χLz +

ℵ
2µ

χLz+O
(
χ2, χ2

)
. (73)

All of these data allow for the discovery of the new square energy shift∆Emg
dy (n, V0, V1, α, χ, χ, m) for the HODMs (H2,

I2); the HEDMs (CO, HCl, LiH); the NMHs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and
the TMF (ScF) due to the perturbed Zeeman effect produced by the influence of the MDF-YP model for the(n, l, m)th excited
state in 3D(NR-NCPS) regimes:

∆Emg
dy = ℵ

(
χ 〈X〉dy

(nlm) +
χ

2µ

)
m+O

(
χ2, χ2

)
. (74)

After we have completed the first and second steps of self-production of energy, we will discover another very vital case
under the MDF-YP model in 3D(NR-NCPS) symmetries. This new physical phenomenon is produced automatically under
the influence of the perturbed HamiltonianHdy

pert

(
r,Θ, θ

)
. We consider the HODMs (H2, I2); the HEDMs (CO, HCl, LiH);

the NMHs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the TMF (ScF) undergoing
rotation with angular velocityΩ. The features of this subjective phenomenon are determined by replacing the arbitrary vectors
Θ(θ12, θ23, θ13) /2 andθ

(
θ12, θ23, θ13

)
/2 with ζΩ and ζΩ. Allowing us to replace the couplings (L.Θ andL.θ) with (ζL.Ω

andζL.Ω).The expression for the perturbed Hamiltonian that we saw in Eq. (46) will then be as follows:

Hdy
rot

(
r, ζ, ζ

)
= ζΥ (s)L.Ω +

ζ

2µ
L.Ω+O

(
ζ2, ζ

2
)

. (75)

In the above equation,ζ andζ are two real proportional constants. To make the calculations more straightforward, we choose
a rotating velocityΩ parallel to the (Oz) axisΩ=Ωez. This, of course, doesn’t significantly change the physical properties of
the problem under study. Thus, the perturbed previously generated spin-orbit coupling operatorL.S will be transformed into a
new physical form as follows:

Hdy
rot

(
r, ζ, ζ

)
= Ω

(
ζΥ(s) +

ζ

2µ

)
Lz+O

(
ζ2, ζ

2
)

. (76)

All of this data allows for the discovery of the new corrected square energy∆Enr−rot
dy

(
n,De, re, V0, α, ζ, ζ, m

)
of the HODMs

(H2, I2); the HEDMs (CO, HCl, LiH); the NMHs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN)
and the TMF (ScF) due to the perturbed HamiltonianHdy

rot

(
r, ζ, ζ

)
, which is generated automatically by the influence of the

MDF-YP model for the(n, l, m)th excited state in 3D(NR-NCPS) symmetries as follows:

∆Erot
dy =

(
ζ 〈V (r)〉dy

(nlm) +
ζ

2µ

)
Ωm+O

(
ζ2, ζ

2
)

. (77)

It is essential to acknowledge that the authors of Ref. [94] investigated rotating isotropic and anisotropic harmonically con-
fined ultra-cold Fermi gases in two and three dimensions at zero temperature; however, in this case, the rotational term
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was manually added to the Hamiltonian operator, while in our study, the deformation of phase-space under the MDF-YP
model causes the rotation operatorHdy

rot

(
r, ζ, ζ

)
to appear automatically. In the symmetries of the 3D(NR-NCPS) regimes,

we apply the principle of physical superposition to find the physical expression of the total non-relativistic new energies
Edy

nc(n, De, re, V0, α, Snc
p , Pnc

p , j, l, s, m) ≡ Edy
nc for the HODMs (H2, I2); the HEDMs (CO, HCl, LiH); the NMHs (ScH,

TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the TMF (ScF) under the MDF-YP model, corre-
sponding to the generalized excited states obtained as follows

Edy
nc = Qa −Qb

(
n + γ +

Qc

n + γ

)2

+ 〈X〉dy
(nlm) Nsp

p

(
Snc

p

)
+ Nph

p

(
Pnc

p

)
. (78)

The connection between non-commutative space parametersSnc
p ≡(Θ, χ, ζ) non-commutative phase parametersPnc

p ≡
(θ, χ, ζ) and the physical properties of studied system (Λ,ℵ,m)/(Λ/2µ,ℵ/2µ, Ω/2µ) can be summarized into new repre-
sentationsNsp

p (Θ, χ, ζ) andNph
p

(
θ, χ, ζ

)
that given by:





Nsp
p (Θ, χ, ζ) = ΘΛ + (χℵ+ ζΩ)m,

Nph
p

(
θ, χ, ζ

)
= θ Λ

2µ +
(
χ ℵ

2µ + ζ Ω
2µ

)
m.

(79)

Since we collected the partial corrective expressions∆Eso
dy, ∆Emg

dy and∆Erot
dy that we saw in Eqs. (71), (74), and (77).

The first three parts (Qa and−Qb (n + γ + [Qc/n + γ)2]) are non-relativistic energies under the Deng-Fan Yukawa potential
model obtained from equations of energy in Eq. (23) while the remaining terms in Eq. (78) represent the resulting correction
produced from deformation phase-space. It is essential to point out that because we have only used corrections of the first order
of infinitesimal NC-(phase-space) parameters(Θ, χ, ζ) and

(
θ̄, χ̄, ζ̄

)
, perturbation theory cannot be used to find corrections of

the second order
(
Θ2, χ2, ζ2

)
and

(
θ̄2, χ̄2, ζ̄2

)
. It is helpful to briefly study the total energy of each of the fundamental state

Edy
nc(n = 0, De, re, V0, α, Snc

p , Pnc
p , j, l, s, m) ≡ E0cy

nc corresponding to the quantum numbers (n = 0, l, m), as well as the
first excited stateEdy

nc(n = 1, De, re, V0, α, Snc
p , j, Pnc

p , l, s,m) ≡ E1cy
nc corresponding to the quantum numbers (n = 1, l,m),

where Eq.(78) in these two cases becomes as follows:

E0cy
nc = Edy

0l + 〈V 〉dy
(0lm) Nsp

p

(
Snc

p

)
+ Nph

p

(
Pnc

p

)
, (80)

and

E1cy
nc = Edy

1l + 〈V 〉dy
(1lm) Nsp

p

(
Snc

p

)
+ Nph

p

(
Pnc

p

)
. (81)

When an electron transitions from an excited state described as a quantum state (n = 1, l,m) to the fundamental states,
described as a quantum state (n = 0, l,m), it will emit or absorb electromagnetic radiation, the frequencyωdy

nc (n,De, re, V0, α,
Snc

p , j, l, s, m)≡ ωdy
nc of which is determined by the relationship:

ωdy
nc =

∣∣E1dy
nc − E0dy

nc

∣∣ . (82)

A simple calculation, gives the emit or absorbed electromagnetic radiationωdy
nc, in the context of 3D(NR-NCPS) symmetry, as

follows:

ωdy
nc = ωdy

nl + Nsp
p

(
Snc

p

) 〈∆V 〉dy
nc . (83)

Hereωdy
nl (n, De, re, V0, α) is the emitted or absorbed electromagnetic radiation in 3D(NR-QM) symmetry (Eq. (24)),while

〈∆Z〉dy
nc is equal to:

〈∆V 〉dy
nc = 〈V 〉dy

(1lm) (n,De, re, V0, α)− 〈V 〉dy
(0lm) (n,De, re, V0, α) , (84)

with



〈V 〉dy

(1lm) (n,De, re, V0, α) = lim
n→1

〈X〉dy
(nlm) (n,De, re, V0, α)

〈V 〉dy
(0lm) (n,De, re, V0, α) = lim

n→0
〈X〉dy

(nlm) (n,De, re, V0, α)
. (85)

The termNsp
p (Θ, χ, ζ) 〈∆V 〉dy

nc is traduce the impact of phase-space deformation on theωdy
nl (V0, V1, α). This effect can vanish

when NC-(phase-space) parameters
(
Snc

p

)
are reduced tozerosimultaneously.
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4. Study of important particular cases of MDF-YP model in 3D(NR-NCPS) symmetries

In this section, we will examine the obtained new bound state eigenvalues of the deformed Schrödinger equation with the MDF-
YP model in 3D(NR-NCPS) symmetries which we have seen in Eq. (78). By suitable adjustment of the potential parameters
of the Deng-Fan Yukawa potential model, we are now in the process of treating into 3D(NR-NCPS) regime:

(a) If the dissociation energyDe reduces to zero, Eq. (1) gives the modified Yukawa potentialVmy (d) in 3D(NR-NCPS)
symmetries as

Vmy (d) = −V0
exp (−αr)

r
−V0

2

(
α +

1
r

)
exp (−αr)

r2
L.Θ + O

(
Θ2

)
. (86)

From Eq. (78), we obtain the non-relativistic eigenvaluesEmy
nc (n, V0, α, Snc

p , Pnc
p , j, l, s, m) for non-relativistic particles,

corresponding to the generalized(n, l, m)th excited states in 3D-NRNCPS symmetries as:

Emy
nc (n, V0, α, Snc

p , Pnc
p , j, l, s,m)

=
α2l (l + 1)

2µ
− α2

8µ

(
n +

1
2

+
1
2

√
1 + 4 (l (l + 1)) +

α2l (l + 1) /2µ

n + 1
2 + 1

2

√
1 + 4 (l (l + 1))

)2

+ 〈V 〉np
(nlm) (n, V0, α)Nsp

p + Nph
p + O

((
Snc

p

)2
,
(
Pnc

p

)2
)

. (87)

The first two terms are consistent with the result obtained in of Ref. [95]. The other terms are received from the impact of
phase-space deformation on the potential of the modified Yukawa (See Refs. [17–24]).

The corresponding new non-relativistic expectations values〈V 〉nc
(nlm) (n, V0, α) of the modified negative Coulombic poten-

tial model from the following limits:

〈V 〉np
(nlm) (n, V0, α) = lim

De→0
〈X〉dy

(nlm) (n,De, re, V0, α) . (88)

(b) If the potential parameterV0 reduces to zero, Eq. (1) gives the modified Deng-Fan potential in 3D(NR-NCPS) symme-
tries as

Vnc (q) = De

(
1− b exp (−αr)

1− exp (−αr)

)2

− Deαb exp (−αr)
r (1− exp (−αr))

×
(

1 +
(1− b) exp (−αr)

1− exp (−αr)
− b exp (−2αr)

(1− exp (−αr))2

)
L.Θ + O

(
Θ2

)
. (89)

From Eq. (78), we obtain the non-relativistic eigenvaluesEdf
nc(n,De, α, Snc

p , Pnc
p , j, l, s, m) ≡ Edf

nc for non-relativistic parti-
cles, corresponding to the generalized(n, l, m)th excited states in 3D-NRNCPS symmetries as:

Edf
nc = Qa −Qb


n + γ +

α2l(l+1)
2µ − 2Deb−Deb

2

n + γ




2

〈V 〉df(nlm) (n,De, re, α) Nsp
p

(
Snc

p

)
+ Nph

p

(
Pnc

p

)

+ O
(
Θ2, θ

2
χ2, χ2, ζ2, ζ

2
)

. (90)

The first two terms are consistent with the result obtained in Eq. (89) of refs. [96,97]. The other terms are obtained from the im-
pact of phase-space deformation on he modified Deng-Fan potential [25]. The corresponding new non-relativistic expectations
values〈V 〉df(nlm) (n,De, re, α) of the modified positive Coulombic potential model from the following limits:

〈V 〉pc
(nlm) (n, De, re, α) = lim

V0→0
〈X〉dy

(nlm) (n,De, re, V0, α) . (91)

5. Spin-averaged mass spectra of the heavy mesons under the MDF-YP model in 3D(NR-QM) and
3D(NR-NCPS) symmetries

In this section, we calculate the mass spectra of the heavy mesons system such as (charmoniumcc and bottomoniumbb), that
have the quark and antiquark flavor, which is the main focus of this work. In this work the Deng-Fan Yukawa potential model
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model is used to investigate quark confinement, because these potentials have two distinctive features, strong interaction-
asymptotic freedom and confinement. Equation (2) allow us to divide the Deng-Fan Yukawa potential model under study
into two main partsV df

1 (r) andV yp
2 (r) that play different roles in 3D(NR-QM) symmetries. The first part is the Deng-Fan

potential model:

V pc
1 (r) = De

(
1− b exp (−αr)

1− exp (−αr)

)2

. (92)

Thus, this part is more singular and provides better confinement as compared to the generalized Cornell potential [98], which
has a similar term (d/r2). The second partV yp

2 (r), similar to the Coulomb potential, has the form:

V yp
2 (r) = −V0

exp (−αr)
r

. (93)

This part plays the role of Coulomb force, like the Coulombic potential (−c/r) in the generalized Cornell potential [98].This
means that the second partV nc

2 (r) has the same behavior as the Coulombic potential. We calculate the new mass of quarkonium
Mdy

nc in 3D(NR-NCPS) symmetries, by applying our following relation as in:

Mdy
nc = 2mq +





1
3

(
Edy−u

nc + Edy−m
nc + Edy−l

nc

)
for heavy mesons with spin-1,

Edy
nc for heavy mesons with spin-0.

(94)

heremq is the quark mass whileEdy−u
nc , Edy−m

nc , Edy−l
nc andEdy

nc are the new energy eigenvalues that correspond (j = l + 1,
s = 1), (j = l, s = 1), (j = l − 1, s = 1) and (j = l, s = 0) under the MDF-YP model in 3D(NR-NCPS) symmetries. It
results from the generalization of the original relationship known in the literature [99,100]:

Mdy
nl = 2mq + Edy

nl , (95)

whereEdy
nl is the non-relativistic energy under the Deng-Fan Yukawa potential model which is determined by Eq. (20). We

have replaced the energy eigenvaluesEnr
nl with average values(1/3)(Edy−u

nc +Edy−m
nc +Edy−l

nc ) that have spin-1 with three
different values of the valuesj while for a spin-0, the valuesEnr

nl , replaced withEdy
nc because it represents a single value. We

need to replace the factorΛ (j, l, s) with new generalized values as follows:

Λ (j, l, s) =





l/2 For (j = l + 1, s = 1) ,
−1 For (j = l, s = 1) ,
(−2l − 2) /2 For (j = l − 1, s = 1) ,
0 For (j = l, s = 0) .

(96)

Allows us to obtain (Edy−u
nc , Edy−m

nc andEdy−l
nc ) andEdy

nc of the heavy mesons system such as (charmoniumcc and bottomo-
nium bb) as:

1 The energy valuesEdy−u
nc produced by the MDF-YP model and correspond to discrete quantum numbersj = l + 1,

s = 1, can be expressed by the following formula:

Edy−u
nc = Qa − 2QbQc −

(
QbQ

2
c

ρ2
+ Qbρ

2

)
+ 〈X〉dy

(nlm)

[(
χ +

χ

2µ

)
ℵm +

(
ζ +

ζ

2µ

)
Ωm +

(
Θ +

θ

2µ

)
l

2

]
. (97)

2 The energy valuesEdy−m
nc produced by the MDF-YP model and correspond to discrete quantum numbers (j = l, s = 1),

can be expressed by the following formula:

Edy−m
nc = Qa − 2QbQc −

(
QbQ

2
c

ρ2
+ Qbρ

2

)
+ 〈X〉dy

(nlm)

[(
χ +

χ

2µ

)
ℵm +

(
ζ +

ζ

2µ

)
Ωm−

(
Θ +

θ

2µ

)]
. (98)

3 The energy valuesEdy−l
nc produced by the MDF-YP model and correspond to discrete quantum numbers (j = l − 1,

s = 1), can be expressed by the following formula:

Edy−l
nc =Qa − 2QbQc−

(
QbQ

2
c

ρ2
+ Qbρ

2

)
+ 〈X〉dy

(nlm)

[(
χ+

χ

2µ

)
ℵm+

(
ζ +

ζ

2µ

)
Ωm− (l + 1)

(
Θ+

θ

2µ

)]
, (99)
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while the energy valuesEdy
nc produced by the MDF-YP model and correspond to discrete quantum numbers(j = l, s = 0),

can be expressed as follows:

Edy
nc = Qa − 2QbQc −

(
QbQ

2
c

ρ2
+ Qbρ

2

)
+ 〈X〉dy

(nlm)

[(
χ +

χ

2µ

)
ℵm +

(
ζ +

ζ

2µ

)
Ωm

]
. (100)

The new mass spectrumMdy
nc

(
n,De, re, V0, α, Snc

p , Pnc
p

)
of the heavy-light mesons systems, such as charmoniumcc and

bottomoniumbb, in 3D(NR-NCPS) symmetries under the MDF-YP model, as a function of corresponding mass spectra
Mdy

nl (n, De, re, V0, α) ≡ Mdy
nl in 3D(NR-QM) regime and non-commutativity (phase-space) parametersPnc

p andSnc
p , can

be obtained by substituting Eqs. (96), (97), (98), and (99) into Eq. (93).

Mdy
nc = Mdy

nl +





〈X〉dy
(nlm)

[(
χ + χ

2µ

)
ℵm +

(
ζ + ζ

2µ

)
Ωm−

(
Θ + θ

2µ

) (
l
2 + 2

3

)]
For heavy mesons with spin-1,

〈X〉dy
(nlm)

[(
χ + χ

2µ

)
ℵm +

(
ζ + ζ

2µ

)
Ωm

]
For heavy mesons with spin-0.

(101)

We can express the spin-averaged mass spectraMdy
nl of the heavy mesons system such as (charmoniumcc and bottomonium

bb) for SE under Deng-Fan Yukawa potential model in 3D(NR-QM) symmetries by applying the law known in the literature:

Mdy
nl = 2mq + Qa − 2QbQc −

(
QbQ

2
c

ρ2
+ Qbρ

2

)
, (102)

is extended to includeδMdy
nc in 3D(NR-NCPS) symmetries:

δMdy
nc =





〈X〉dy
(nlm)

[(
χ + χ

2µ

)
ℵm +

(
ζ + ζ

2µ

)
Ωm−

(
Θ + θ

2µ

) (
l
2 + 2

3

)]
For heavy mesons with spin-1,

〈X〉dy
(nlm)

[(
χ + χ

2µ

)
ℵm +

(
ζ + ζ

2µ

)
Ωm

]
For heavy mesons with spin-0.

(103)

Which is sensitive to the atomic quantum numbers(j, l, s, m), potential parameters (De, re, V0, α), and non-commutativity
(phase-space) parametersPnc

p andSnc
p under the deformed properties of phase-space. Validity to our results examined by

realization of logical physical limits:

lim
(Snc

p ,P nc
p )→(0,0)

Mdy
nc

(
n,De, re, V0, α, Snc

p , Pnc
p

)
= Mdy

nl (n,De, re, V0, α) . (104)

6. Composite systems under MDF-YP in 3D(NR-NCPS) symmetries

In the context of deformation algebra, while studying composite systems, as molecules composed of two atoms withm1 and
m2, it is vital to evaluate characteristics of system descriptions in 3D(NR-NCPS) symmetries under the modified Deng-Fan
Yukawa potential. It was discovered that distinct deformed phase-space parameters that described the composite systems with
m1 6= m2 [101–103]:

[
ds

α, ds
β

]
∗ =

[
dh

α (t) , dh
β (t)

]
∗ =

[
di

α (t) , di
β (t)

]
∗ = iθc

αβ , (105)

and
[
πs

α, πs
β

]
∗ =

[
πh

α (t) , πh
β (t)

]
∗ =

[
πi

α (t) , πi
β (t)

]
∗ = iθ

c

αβ . (106)

In this case, the new NNCCCRs that we have seen in Eqs. (29), (30), and (31) will be changed to become in SP, HP, and IP as
follows, respectively:





[
ds

α, ds
β

]
∗

= iθαβ ⇒
[
ds

α, ds
β

]
= iθc

αβ ,

[
πs

α, πs
β

]
∗

= iθαβ ⇒
[
πs

α, πs
β

]
= iθ

c

αβ ,
(107)

and




[
dh

α (t) , dh
β (t)

]
∗

= iθαβ ⇒
[
dh

α (t) , dh
β (t)

]
= iθc

αβ ,

[
πh

α (t) , πh
β (t)

]
∗

= iθαβ ⇒
[
πh

α (t) , πh
β (t)

]
= iθ

c

αβ ,
(108)
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and




[
di

α (t) , di
β (t)

]
∗

= iθαβ ⇒
[
di

α (t) , di
β (t)

]
= iθc

αβ ,[
πi

α (t) , πi
β (t)

]
∗

= iθαβ ⇒
[
πi

α (t) , πi
β (t)

]
= iθ

c

αβ .
(109)

In 3D(NR-NCPS) symmetries, one possible way of implementing the algebra defined by Eqs. (32), (33), and (34) are to
construct the non-commutative set of variables (ds

α,dh
α (t),di

α (t)) and (πs
α, πh

α (t), πi
α (t)) from the corresponding commutative

variables (xs
µ, xh

µ (t), xi
µ (t)) and (ps

µ, ph
µ (t), pi

µ (t)) by employing linear transformations:





qs
µ = xs

µ −
3∑

ν=1

θc
µν

2 ps
ν + O

(
Θc2

)
,

πs
µ = ps

µ +
3∑

ν=1

θ
c
µν

2 xs
ν + O

(
θ

c2
)

,

(110)





dh
µ (t) = xh

µ (t)−
3∑

ν=1

θc
µν

2 ph
ν (t) + O

(
Θc2

)
,

πh
µ (t) = ph

µ (t) +
3∑

ν=1

θ
c
µν

2 xh
ν (t) + O

(
θ

c2
)

,

(111)





qi
µ (t) = xi

µ (t)−
3∑

ν=1

θc
µν

2 pi
ν (t) + O

(
Θc2

)
,

πi
µ (t) = pi

µ (t) +
3∑

ν=1

θ
c
µν

2 xi
ν (t) + O

(
θ

c2
)

,

(112)

We have applied Einstein’s term regarding the addition process in the above-mentioned equations, where the repeated indices
ν once up and once down correspond to the addition process from 1 to 3.This allows us to find the operators (d2, 1/d2, π2 and
Vdy (d)), in the 3D(NR-NCPS) symmetries, equal to:





d2 = r2 − L.Θc + O
(
Θc2

)
,

1
2µd2 = 1

2µr2 + L.Θc

2µr4 + O
(
Θc2

)
,

π2 = p2 + L.θ
c
+O

(
θ

c2
)

,

(113)

and

Vdy (d) = De

(
1− b exp (−αr)

1− exp (−αr)

)2

− V0
exp (−αr)

r
−De

(
αb exp (−αr)

r (1− exp (−αr))
+

(
αb− αb2

)
exp (−2αr)

r (1− exp (−αr))2

)
L.Θc

−
(

αV0

2
exp (−αr)

r2
+

V0

2
exp (−αr)

r3
−De

αb2 exp (−3αr)
r (1− exp (−αr))3

)
L.Θc + O

(
Θc2

)
. (114)

The new couplingsL.Θc andL.θ
c

are equal toLxθc
12 + Lyθc

23 + Lzθ
c
12 andLxθ

c

12 + Lyθ
c

23 + Lzθ
c

13, respectively. The two
non-commutativity parameters(θc

αβ , θαβ) andαn are equal to(
∑2

n=1 α2
nθ

(n)
αβ ,

∑2
n=1 α2

nθαβ) andmn/
∑

n mn, respectively,

the indice(n = 1,2) label the particle, and(θ(n)
αβ , θαβ) are the parameters of non-commutativity, corresponding to the particle

of massmn. As a result of the topological features of the deformation phase-space, the spontaneously new generated term
V dy

eff−nc (r,Θc) and the global working Hamiltonian operatorHdy
nc (p, x, Θc, θ

c
) of that equal to the modified kinetic energy

π(p, θ
c
)/2µ plus the effective potentialV dy

eff−nc (r,Θc) of the MDF-YP model:





Hdy
nc

(
p, x, Θc, θ

c
)

= Hdy (p, x) + Hdy
pert

(
r,Θc, θ

c
)

,

V dy
eff−nc (r,Θc) = V dy

eff (r) + Zpert
dy (r,Θc) ,

(115)

with

Hdy
pert

(
r,Θc, θ

c
)

= Zpert
dy (r,Θc) +

L.θ
c

2µ
+ O

(
θ

c2
, Θc2

)
, (116)
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and

Zpert
dy (r,Θc) = −De

(
αb exp (−αr)

r (1− exp (−αr))
+

(
αb− αb2

)
exp (−2αr)

r (1− exp (−αr))2

)
L.Θc

−
(

V0

2
exp (−αr)

r3
− αb2De exp (−3αr)

r (1− exp (−αr))3
− l (l + 1)

2µr4

)
L.Θc + O

(
Θc2

)
. (117)

The main difference between previously spontaneously Hamiltonian operator and effective potential (Hdy
pert(r,Θ, θ), Zpert

dy (r,Θ))
in Eq. (41) and the new spontaneously generated terms (Hdy

pert(r,Θc, θ
c
), Zpert

dy (r,Θc)) in Eqs. (115) and (116) appears in the
two couplings (L.ΘandL.θ), since it is possible to move between the two binaries according to the transformation(L.Θ and
L.θ) ⇔ (L.Θc and L.θ

c
). As for similarities, the expectations values (z1

dy, z2
dy, z3

dy, z4
dy andz5

dy) do not change, which
means there is a large amount of work that does not require re-completion. Therefore, the physical relationships that express
the partial corrections of energy that we saw in the previous Eqs. (71), (74), and (77) will become as follows:





∆Enr−so
dy (n,De, re, V0, α, Θc, θ

c
, l, s, m) = Λ

(
Θc 〈X〉dy

(nlm) + θ
2µ

)
+O

(
Θc2, θ

c2
)

,

∆Emg
dy (n,De, re, V0, α, χc, χc, l, s,m) = ℵ

(
χc 〈X〉dy

(nlm) + χc

2µ

)
m+O

(
χc2, χc2

)
,

∆Erot
dy (n, De, re, V0, α, ζc, ζ

c
, l, s,m) =

(
ζc 〈X〉dy

(nlm) + ζ
c

2µ

)
Ωm+O

(
ζc2, ζ

c2
)

.

(118)

In particular cases whenm1 = m2 such as the homogeneous (H2, I2) diatomic molecules the parameters(θ(n)
αβ , θαβ) will be

identified with ordinary non-commutative parameters(θαβ , θαβ). Thus, the parameters (Θ, χ, ζ) and
(
θ, χ, ζ

)
, which are seen

in Eq. (78) are changed to the new non-commutativity parameters:

Λc2 =

(
2∑

n=1

α2
nΛ(n)

12

)2

+

(
2∑

n=1

α2
nΛ(n)

23

)2

+

(
2∑

n=1

α2
nΛ(n)

13

)2

, (119)

with Λc2 can be play the roles of the square of NC-(phase-space) parameters (Θc2/θ
c2

, χc2/χc2 andζc2/ζ
c2

). As mentioned
above, in the case of a system of two particles with the same massm1 = m2 such as the homogeneousH2 diatomic molecules:

(
$(n)

µν , θ
(n)

µν

)
= ($µν , υµν) . (120)

Here($(n)
µν , υ

(n)
µν ) can be present both(θ(n)

µν , θ
(n)

µν ), (χ(n)
µν , χ

(n)
µν ) and(ζ(n)

µν , ζ
(n)

µν ). In the end of this section, we can generalize
the non-relativistic global energyEdy

nc under the MDF-YP taking account that composite systems with different masses are
described with different non-commutative parameters for the HEDMs (CO, HCl, LiH); the NMHs (ScH, TiH, VH, CrH); the
TML(CuLi); the TMC (TiC, NiC); the TMN (ScN) and the TMF (ScF) as:

Edy
nc=Qa+2ΛbQc−

(
QbQc

ρ2
+ Qbρ

2

)
+ 〈X〉dy

(nlm) (n,De, re, V0, α)
(
Nsp

p

)c +
(
Nph

p

)c
+O

((
Snc

p

)c2
,
(
Pnc

p

)c2
)

, (121)

with
(
Nsp

p

)c
and

(
Nph

p

)c
are equal to(ΘcΛ + (χcℵ+ ζcΩ) m) and(θ

c
(Λ/2µ) + [χc(ℵ/2µ) + ζ

c
(Ω/2µ)]m), respectively.

7. Thermodynamic quantities of the MDF-YP in 3D(NR-NCPS) symmetries

The main goal of this section is to look at the thermodynamic properties (TPs) of the Deng-Fan Yukawa potential and the
modified Deng-Fan Yukawa potential models in 3D(NR-QM) and 3D(NR-NCPS) symmetries. Calculating the rotational
partition functionZnc

dy

(
n,De, re, V0, α, β, l, λdy

nc, S
nc
p , Pnc

p

)
is a crucial initial step in achieving this goal since it may be used

to determine various thermal parameters such as specific heat capacity, internal energy, entropy, and free energy. A constant
temperature T can determine the rotation-vibrational partition function by using direct summation over all potential energy
levels [104–109]:

Znl
dy =

λ∑
n=0

exp
(
−βEdy

nl

)
⇒ Znc

dy =
λdy

nc∑
n=0

exp
(−βEdy

nc

)
. (122)
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Here (Znl
dy (n,De, re, V0, α, β, λ, l) ≡ Znl

dy, Znc
dy

(
n,De, re, V0, α, β, l, λdy

nc, S
nc
p , Pnc

p

) ≡ Znc
dy ) are the rotation-vibrational par-

tition functions of the Deng-Fan Yukawa potential and the MDF-YP models, while and
(
λ, λdy

nc

)
are the upper bound vibration

quantum numbers (the maximum quantum numbers) in 3D(NR-QM) and 3D(NR-NCPS) symmetries, respectively,β equal to
1/KβT , with Kβ is the Boltzmann constant. From the beginning of this section, we assumed that the new rotation-vibrational
partition functionZnc

dy is dependent on non-commutativity (phase-space) parameters (Pnc
p , Snc

p ), because the corresponding
non-relativistic energy in these symmetries we found is related to these parameters. We obtain the parameterλdy

nc in 3D(NR-
NCPS) as a function of corresponding valuesλ in 3D(NR-QM) as follows:





λ = dEnr
nl

dn cn=λ = 0 ⇒ λ = −γ +
√
|Qc|,

dEdy
nc

dn cn=λdy
nc

= 0 ⇒ λdy
nc = −γ +

√
|Qc|+ λdy

per,

, (123)

with

λdy
per =

d

dn

([
〈X〉dy

(nlm) (ΘΛ + (χℵ+ ζΩ) m) + Nph
p

(
θ, χ, ζ

)])cn=λdy
per

. (124)

We saw in the third paragraph that the total energy of a non-relativistic physical systemEdy
nc (Eq. (78)) in 3D(NR-NCPS)

symmetries, under the influence of the MDF-YP models can be written for the casel 6= 0 as follows

Edy
nc = Edy

nl + ∆Edy
nl . (125)

To calculate The TPs of the Deng-Fan Yukawa potential and the MDF-YP models in 3D(NR-QM) and 3D(NR-NCPS) sym-
metries, the rotation-vibrational energy eigenvaluesEdy

nl and the corrected energy∆Edy
nl in 3D(NR-QM) and 3D(NR-NCPS)

symmetries are expressed in a compact form as




Edy
nl = Qa − 2QbQc −

(
QbQ2

c

ρ2 + Qbρ
2
)

,

∆Edy
nl = 〈X〉dy

(nlm) (ΘΛ + (χℵ+ ζΩ) m) + Nph
p .

(126)

In 3D(NR-NCPS) symmetries, at high temperatures in the classical limit, the modified rotation-vibrational partition function
Znc

dy of the MDF-YP models can be represented by an integral:

Znl
dy =

γ+λ∫

0

exp
(
−βEdy

nl (ρ)
)

dρ =⇒ Znc
dy =

γ+λdy
nc∫

0

exp
(−βEdy

nc (ρ)
)
dρ. (127)

Hereρ is equal to(n + γ) in the classical limit. After a straightforward calculations we find the rotation-vibrational partition
functionZnl

dy of the MDF-YP models in 3D(NR-QM) symmetries as:

Znl
dy =

γ+λ∫

0

exp
(
−βQa + 2βQbQc + β

(
QbQ

2
c

ρ2
+ Qbρ

2

))
dρ. (128)

Through our observation of energy Eqs. (20) in Ref. [11] and corresponding Eq. (22) in Ref. [109] that is has the form
(K1 − 2K2K3 − ([K2K

2
3/ρ2] + K2ρ

2)), it is possible to move between them from the following deplacement:




K1 ⇐⇒ Qa,
K2 ⇐⇒ Qb,
K3 ⇐⇒ Qc.

(129)

This mechanism allows us to find the partition functionZnl
dy (n,De, re, V0, α, β, λ, l) ≡ Znl

dy of the Deng-Fan Yukawa potential
model of Eq. (20) in 3D(NR-QM) symmetries as:

Znl
dy = Z

nl(1)
dy + Z

nl(2)
dy , (130)

with




Z
nl(1)
dy = exp(β[2QbQb−Qa])

4
√−Qbβ

√
π exp (βQbQc) erf

(√−Qbβλ + Qc

√−Qbβ
λ

)
,

Z
nl(2)
dy = exp(β(2QbQb−Qa))

4
√−Qbβ

√
π exp (−βQbQc) erf

(√−Qbβλ− Qc

√−Qbβ
λ

)
.

(131)
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Here erfi (u) is the imaginary error function. Considering that the additive part of the energy value∆Edy
nl (n,De, re, V0, α, Snc

p ,

Pnc
p ) ≡ ∆Edy

nl is small compared to the main termEdy
nr , we can make the following approximate:

exp
(−βEdy

nc

)
= exp

(−βEdy
nr

)− β∆Edy
nl exp

(−βEdy
nr

)
, (132)

which gives:

Znc
dy =

λdy
nc∫

0

exp
(−βEdy

nr

) (
1− β∆Edy

nc

)
dρ. (133)

Considering the previous physical considerations, we roughly accept the terms that are proportional with infinitesimal NC-
(phase-space) parameters

(
Snc

p , Pnc
p

)
in the first place only. Thus, the modified rotation-vibrational partition functionZnc

dy of
the MDF-YP model of Eq. (78) in 3D(NR-NCPS) symmetries, can be written approximatively as:

Znc
dy = Znl

dy − β
[
〈X〉dy

(nlm) (ΘΛ + (χℵ+ ζΩ) m) + Nph
p

]
Znr

dy . (134)

Substituting Eq. (129) into Eq. (133), we have the modified rotation-vibrational partition functionZnc
dy of the MDF-YP model

as

Znc
dy = Z

nl(1)
dy + Z

nl(2)
dy − β

[
〈X〉dy

(nlm) (ΘΛ + (χℵ+ ζΩ) m) + Nph
p

] (
Z

nl(1)
dy + Z

nl(2)
dy

)
. (135)

Using the modified rotation-vibrational partition functionZnc
dy in Eq. (133) of the MDF-YP model for energy equation (78),

we will see the effect of the deformation in phase-space on thermodynamic values such as modified mean energyUdy
nc (n, De,

re, V0, α, β, λ, l, Snc
p , Pnc

p ), modified free energyF dy
nc (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) and modified entropySdy

nc (n, De,
re, V0, α, β, λ, l, Snc

p , Pnc
p ). Let’s start with a study of modified mean energyUdy

nc (n, De, re, V0, α, β, λ, l, Snc
p , Pnc

p ) which
is the quantity of energy required to prepare or improve the system in its internal condition. First, the effect of the deformation
of phase-space on mean energyUnl

dy (n, De, re, V0, α, β, λ, l) for Deng-Fan Yukawa potential model is determined by applying
the following formula:

∆Udy
nc ≡ Udy

nc − Unl
dy = − ∂

∂β

[
ln Znc

dy − ln Znl
dy

]
. (136)

The above formula, give the effect of phase-space deformations with the MDF-YP models influence on mean energy in 3D(NR-
NCPS) symmetries, as follows:

∆Udy
nc =

〈X〉dy
(nlm) (ΘΛ + (χℵ+ ζΩ)m) + Nph

p

1− β
[
〈X〉dy

(nlm) (ΘΛ + (χℵ+ ζΩ) m) + Nph
p

] . (137)

Thus, for the MDF-YP models, the new mean energyUdy
nc (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) is equal to the corresponding

valuesUnl
dy (n, De, re, V0, α, β, λ, l)≡ Unl

dy for the Deng-Fan Yukawa potential model in 3D(NR-QM) plus the effect of the
deformation of phase-space on it∆Udy

nc as follows:

Udy
nc = Unl

dy +
〈X〉dy

(nlm) [ΘΛ + (χℵ+ ζΩ)m] + Nph
p

1− 〈X〉dy
(nlm) [ΘΛ + (χℵ+ ζΩ) m]−Nph

p

. (138)

A preform calculation gives the mean energyUnl
dy for the Deng-Fan Yukawa potential model in 3D(NR-QM) symmetries as:

Unl
dy = −1

2
Λ1 + Λ2 + Λ3√
πβλ (Υ1 + Υ2)

, (139)

with




Υ1 = exp (2βQbQc) erf(Λ) ,

Υ2 = exp (−2βQbQc) erf(Λ) ,

Λ− =
√−βQb(λ2−Qc)

λ ,

(140)
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and

Λ1 = 8
√

πβ (2QbQc) exp (2βQbQc) erf
(
Λ−

)− 2
√

πβλQa exp (2βQbQc) erf
(√

−βχ1

(
λ2 + Qc

))
, (141)

Λ2 = −2
√

πβλ exp (−2βQbQc) erf
(
Λ−

)
+ 2

√
−βQb exp

(
βQb

(
4Qcλ

2 + λ4 + Q2
c

λ2

))(
λ2 + 1

)
, (142)

Λ3 = Qc + 2
√
−βQb exp

(
βQb

(−4Qcλ
2 + λ4 + Q2

c

λ2

))(
λ2 −Qc

)
,

−√πλ exp (2βQbQc) erf
(√

−βQb

(
λ2 + Q3

))−√πλ exp (−2βQbQc) erf
(
Λ−

)
. (143)

Now let’s get to the effect of the deformation of phase-space on the free energyFnl
dy (n, De, re, V0, α, β, λ, l) of the MDF-YP

models which obtains by applying:

∆F dy
nl ≡ F dy

nc − Fnl
dy = − 1

β
ln Znc

dy −
(
− 1

β
∂ ln Znr

dy

)
. (144)

The effect of the deformation of phase-space on the free energy∆F dy
nc (De, re, V0, α, β, l, Snc

p , Pnc
p ) of the MDF-YP models

as:

∆F dy
nl ≡ − 1

β
ln

[
1− β

(
〈X〉dy

(nlm) (ΘΛ + (χℵ+ ζΩ)m) + Nph
p

)]
. (145)

The new free energy (also known by the Helmholtz energy)F dy
nc (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) of the MDF-YP models

in 3D(NR-NCPS) regimes is equal to the corresponding valuesFnl
dy (n, De, re, V0, α, β, λ, l), in 3D(NR-QM) regimes, plus

the impact of phase-space deformation on it,∆F dy
nl (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) as follows:

F dy
nc = Fnl

dy −
1
β

ln
[
1− β

[
〈X〉dy

(nlm) (ΘΛ + (χℵ+ ζΩ) m) + Nph
p

]]
. (146)

On the other hand, the Helmholtz energyFnl
dy (n,De, re, V0, α, β, λ, l) in 3D(NR-QM) regimes can be derived by applying the

following expression:

Fnl
dy = − 1

β
ln

[
exp (β (2QbQb −Qa))

4
√−Qbβ

√
π

[
Υ1 + Υ2

]]
. (147)

The effect of phase-space deformation on the specific heat capacity∆Cdy
nc (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p )≡ ∆Cdy

nc of the
MDF-YP models is equal to the difference between their valuesCdy

nc in 3D(NR-NCPS) regimes and the corresponding values
Cnl

dy (n, De, re, V0, α, β, λ, l), in 3D(NR-QM) regimes:

∆Cdy
nc ≡ Cdy

nc − Cnl
dy = −kβ2 ∂∆Udy

nc

∂β
. (148)

The impact of phase-space deformation on the free energy∆Cdy
nc of the MDF-YP models may be determined simply as follows:

∆Cdy
nc = −kβ2

[
〈X〉dy

(nlm) (ΘΛ + (χℵ+ ζΩ) m) + Nph
p

]2

exp
(
2β

[
〈X〉dy

(nlm) (ΘΛ + (χℵ+ ζΩ)m) + Nph
p

]) . (149)

Within the scope of our proposed approximations, this impact may be ignored since it is limited to the first order just for the
values (Snc

p , Pnc
p ). In the last part, we examine how the phase-space deformation affects the entropySdy

nc (n, De, re, V0, α, β,
λ, l) under the MDF-YP models. This information can be obtained by applying:

∆Sdy
nc ≡ Sdy

nc − Snl
dy = kβ2 ∂∆F dy

nc

∂β
. (150)

The following straightforward calculation shows how the phase-space deformation influences the entropy of the MDF-YP
models:

∆Sdy
nc ≡ kβ

〈X〉dy
(nlm) (ΘΛ + (χℵ+ ζΩ)m) + Nph

p

1− β 〈X〉dy
(nlm) (ΘΛ + (χℵ+ ζΩ) m)− βNph

p

. (151)
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Therefore, in 3D(NR-NCPS) regimes, the modified entropySdy
nc (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) of the MDF-YP models is

equal to the corresponding valuesSnl
dy (n, De, re, V0, α, β, λ, l) in 3D(NR-QM) plus the impact of the phase-space deformation

∆Sdy
nc (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) on the Deng-Fan Yukawa potential model in the following ways:

Sdy
nc = Snl

dy +
kβ

[
(ΘΛ + (χℵ+ ζΩ)m) 〈X〉dy

(nlm) + Nph
p

]

1− β 〈X〉dy
(nlm) (ΘΛ + (χℵ+ ζΩ)m)− βNph

p

. (152)

Here the entropySnl
dy (n, De, re, V0, α, β, λ, l)≡ Snl

dy of the Deng-Fan Yukawa potential in 3D(NR-QM) symmetry derived by
applying the formula:

Snl
dy = k ln Znr

dy − kβ
∂ ln Znr

dy

∂β
. (153)

After a preform calculations we obtain the entropySnl
dy of the Deng-Fan Yukawa potential in 3D(NR-QM) as follows:

Snl
dy(n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = −1

2

5∑
ε=1

Kε

√
πβλ (Υ1 + Υ2)

, (154)

with

K1 = −2 ln
(
exp (−β (−2QbQc + Qa)) erf

(
Λ+

))
+ exp (−2βQbQc) erf

(
Λ−

)
, (155)

K2 = 2βλ
√

π
[
4βQbQc + Qa exp (2βQbQc) erf

(
Λ+

)]
+ exp (2βQbQc) erf

(
Λ+

)
, (156)

K3 = 2
√

πβλQa exp (−2βQbQc) erf
(
Λ−

)− 2
√
−βQb exp

(
βQb

(−4Qcλ
2 + λ4 + Q2

c

λ2

))(
λ2 + Qc

)
, (157)

K4 = −
√
−βQberf

(
βQb

(−4Qcλ
2 + λ4 + Q2

c

λ2

))(
λ2 − 2Qc

)
+ 4 ln(2)− ln π, (158)

K5 =
√

πλ exp (2βQbQc) erf
(
Λ+

)
+
√

πλ exp (−2βQbQc) erf
(
Λ−

)
. (159)

HereΛ+ equal to
√−βQb

(
λ2 + QC

)
/λ. When the deformation of phase-space effect vanish when the simultaneous limits(

Snc
p , Pnc

p

) → (0, 0) is satisfied, the additive thermodynamic parts∆Zdy
nc (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p ), ∆Udy

nc (n, De,
re, V0, α, β, λ, l, Snc

p , Pnc
p ), ∆F dy

nc (n, De, re, V0, α, β, λ, l, Snc
p , Pnc

p ), ∆Sdy
nc (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) and

∆Cdy
nc (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) naturally also vanish,





lim
(Snc

p ,P nc
p )→(0,0)

∆Zdy
nc(n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = 0,

lim
(Snc

p ,P nc
p )→(0,0)

∆Udy
nc (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = 0,

lim
(Snc

p ,P nc
p )→(0,0)

∆F dy
nc (n, De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = 0,

lim
(Snc

p ,P nc
p )→(0,0)

∆Sdy
nc(n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = 0,

lim
(Snc

p ,P nc
p )→(0,0)

∆Cdy
nc(n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = 0.

(160)

Thus, all physical values in 3D(NR-NCPS) regimes, in the presence of deformation
(
Θ/θ, χ/χ, ζ/ζ

) 6= (0, 0, 0), will be
reverted to their initial values in 3D-(NR-QM) symmetries:





lim
(Snc

p ,P nc
p )→(0,0)

Znc
dy (De, re, V0, α, β, l, Snc

p , Pnc
p ) = Zdy

nl (De, re, V0, α, β, λ, l) ,

lim
(Snc

p ,P nc
p )→(0,0)

Udy
nl (De, re, V0, α, β, l, Snc

p , Pnc
p ) = Udy

nl (De, re, V0, α, β, λ, l),

lim
(Snc

p ,P nc
p )→(0,0)

F dy
nl (De, re, V0, α, β, l, Snc

p , Pnc
p ) = F dy

nl (De, re, V0, α, β, λ, l),

lim
(Snc

p ,P nc
p )→(0,0)

Sdy
nl (De, re, V0, α, β, l, Snc

p , Pnc
p ) = Sdy

nl (De, re, V0, α, β, λ, l),

lim
(Snc

p ,P nc
p )→(0,0)

Cdy
nl (De, re, V0, α, β, l, Snc

p , Pnc
p ) = Cdy

nl (De, re, V0, α, β, λ, l),

(161)
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In the end, we will examine the TPs of the MDF-YP models which we have seen in Eqs. (134), (136), (144), (148) and (150)
in 3D(NR-NCPS) symmetries. By suitable adjustment of the potential parameters of the Deng-Fan Yukawa potential models,
we are now in the process of treating into 3D(NR-NCPS) regime:

(1) If the he dissociation energyDe reduces to zero,Eqs. (134), (136), (144), (148) and (150) gives the impact of phase-space
deformation on the induced partition function∆Zmy

nc (n, V0, α, β, λ, l, Snc
p , Pnc

p ), the induced mean energy∆Umy
nc (n,

V0, α, β, λ, l, Snc
p , Pnc

p ), the induced free energy∆Fmy
nc (n, V0, α, β, λ, l, Snc

p , Pnc
p ), the induced entropy∆Smy

nc (n,
V0, α, β, λ, l, Snc

p , Pnc
p ), and the induced specific heat capacity∆Cmy

nc (n, V0, α, β, λ, l, Snc
p , Pnc

p ) for the modified
Yukawa potential model as follows:





lim
De→0

∆Zdy
nl (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = ∆Zmy

nl (V0, α, β, λ, l, Snc
p , Pnc

p ),

lim
De→0

∆Udy
nl (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = ∆Umy

nl (V0, α, β, λ, l, Snc
p , Pnc

p ),

lim
De→0

∆F dy
nl (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = ∆Fmy

nl (V0, α, β, λ, l, Snc
p , Pnc

p ),

lim
De→0

∆Sdy
nl (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = ∆Smy

nl (V0, α, β, λ, l, Snc
p , Pnc

p ),

lim
De→0

∆Cdy
nl (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = ∆Cmy

nl (V0, α, β, λ, l, Snc
p , Pnc

p ).

(162)

with

∆Zmy
nl = −β

[
(ΘΛ + (χℵ+ ζΩ)m) 〈X〉my

(nlm) + Nph
p

] (
lim

De→0
Znr

dy (n,De, re, V0, α, β, λ, l)
)

, (163)

∆Umy
nc =

〈X〉my
(nlm) [ΘΛ + (χℵ+ ζΩ)m] + Nph

p

1− β 〈X〉my
(nlm) [ΘΛ + (χℵ+ ζΩ) m]− βNph

p

, (164)

∆Fmy
nl ≡ − 1

β
ln

[
1− β 〈X〉my

(nlm) (ΘΛ + (χℵ+ ζΩ) m)− βNph
p

]
, (165)

∆Cmy
nl = −kβ2

[
(ΘΛ + (χℵ+ ζΩ) m) 〈X〉my

(nlm) + Nph
p

]2

exp
(
2β

[
〈X〉my

(nlm) (ΘΛ + (χℵ+ ζΩ)m) + Nph
p

]) , (166)

and

∆Smy
nc ≡ kβ

〈X〉my
(nlm) (ΘΛ + (χℵ+ ζΩ)m) + Nph

p

1− β 〈X〉my
(nlm) (ΘΛ + (χℵ+ ζΩ) m)− βNph

p

. (167)

while the non-relativistic expectations values〈X〉my
(nlm) of the modified Yukawa potential model was determined in

Eq. (87).

(2) If the potential parameterV0 reduces to zero, Eqs. (134), (136), (144), (148) and (150) gives the impact of phase-space de-
formation on the induced partition function∆Zdf

nc(n,De, re, α, β, l, Snc
p , Pnc

p ), the induced mean energy∆Udf
nc(n,De, re,

α, β, λ, l, Snc
p , Pnc

p ), the induced free energy∆F df
nc(n,De, re, α, β, λ, l, Snc

p , Pnc
p ), the induced entropy∆Sdf

nc (n, De,
re, α, β, λ, l, Snc

p , Pnc
p ), and the induced specific heat capacity∆Cdf

nc (n, De, re, α, β, λ, l, Snc
p , Pnc

p ) for the modified
Deng-Fan potential model as follows:





lim
De→0

∆Zdy
nl (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = ∆Zdf

nl (n,De, re, α, β, λ, l, Snc
p , Pnc

p ),

lim
De→0

∆Udy
nl (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = ∆Udf

nl (n,De, re, α, β, λ, l, Snc
p , Pnc

p ),

lim
De→0

∆F dy
nl (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = ∆F df

nl (n, De, re, α, β, λ, l, Snc
p , Pnc

p ),

lim
De→0

∆Sdy
nl (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = ∆Sdf

nl(n,De, re, α, β, λ, l, Snc
p , Pnc

p ),

lim
De→0

∆Cdy
nl (n,De, re, V0, α, β, λ, l, Snc

p , Pnc
p ) = ∆Cdf

nl (n,De, re, α, β, λ, l, Snc
p , Pnc

p ).

(168)
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with

∆Zdf
nl = −β

[
(ΘΛ + (χℵ+ ζΩ)m) 〈X〉df(nlm) + Nph

p

(
θ, χ, ζ

)] (
lim

De→0
Znr

dy (n,De, re, V0, α, β, λ, l)
)

, (169)

∆Umy
nc =

〈X〉my
(nlm) [ΘΛ + (χℵ+ ζΩ)m] + Nph

p

1− β 〈X〉my
(nlm) [ΘΛ + (χℵ+ ζΩ) m]− βNph

p

, (170)

∆Fmy
nl ≡ − 1

β
ln

[
1− β 〈X〉df(nlm)

(
ΘΛ + (χℵ+ ζΩ) m + Nph

p

)]
, (171)

∆Cmy
nl = −

kβ2
[
(ΘΛ + (χℵ+ ζΩ) m) 〈X〉df(nlm) + Nph

p

]2

exp
(
2β

[
〈X〉df(nlm) (ΘΛ + (χℵ+ ζΩ) m) + Nph

p

]) , (172)

and

∆Sdf
nc ≡ kβ

〈X〉df(nlm) [ΘΛ + (χℵ+ ζΩ) m] + Nph
p

1− β 〈X〉df(nlm) [ΘΛ + (χℵ+ ζΩ)m]− βNph
p

, (173)

while the non-relativistic expectations values〈X〉my
(nlm) of the modified Yukawa potential model was determined in

Eq. (90).

8. Conclusion

In this research study, we conducted an in-depth study of the 3D(NR-DSE) under the influence of the MDF-YP model within
the framework of 3D(NR-NCPS) principles which we discussed in detail in the general introduction to our article. We have
used the GBSM and conventional perturbation theory in 3D(NR-NCPS) symmetries. We obtained the total energy valuesEdy

nc

(See Eq. (78)). Where we discovered that it consists of the fundamental termEdy
nl (Eq. (20)) resulting from a contribution of

the Deng-Fan Yukawa potential model plus all corrections that produced from perturbed spin-orbital Hamiltonian, perturbed
modified Zeeman Hamiltonian and perturbed rotational Hamiltonian operator (Hdy

so

(
r,Θ, θ

)
, Hdy

mg (r, χ, χ) andHdy
rot (r, χ, χ))

(see Eqs. (58), (66), and (68)).The corrected non-relativistic energy eigenvalues seem to be influenced by the quantum numbers
(n, j, l, s andm), the mixed potential depths (De, re, V0), the screening parameterα, and the non-commutativity (phase-space)
parameters (Snc

p , Pnc
p ). We have calculated the spin-averaged mass spectraMdy

nc of the heavy mesons charmoniumcc and
bottomoniumbb under the MDF-YP model in 3D(NR-QM) and 3D(NR-NCPS) symmetries (See Eq. (100)). The energy
eigensolutionsEdy

nc for the HEDMs (CO, HCl, LiH); the NMHs (ScH, TiH, VH, CrH); the TML(CuLi); the TMC (TiC, NiC);
the TMN (ScN) and the TMF (ScF) (See Eq. (120)). We have also calculated the thermodynamic quantities of the Deng-Fan
Yukawa potential model in 3D(NR-QM) symmetries (the partition functionZnl

dy, the mean energyUnl
dy , the free energyFnl

dy ,
and the entropySnl

dy, (See Eqs. (129), (138), (146) and (133), respectively). The impact of phase-space on thermodynamic
quantities (the induced partition function∆Zdy

nc , the induced mean energy∆Udy
nc , the induced free energy∆F dy

nc , the induced
specific heat capacity∆Cdy

nc and the induced entropy∆Sdy
nc ,(See Eqs. (134), (136), (144), (148), and (150), respectively) have

also been examined in relation to the phase-space deformation. It has been demonstrated that (the modified partition function
Zdy

nc , the modified mean energyUdy
nc , the modified free energyF dy

nc , the modified entropySdy
nc , and the modified specific heat

capacityCdy
nc , for the MDF-YP model, are equivalent to their values in 3D(NR-QM) symmetry (the partition functionZnl

dy,
the mean energyUnl

dy , the free energyFnl
dy , the entropySnl

dy, and the specific heat capacityCnl
dy (See Eqs. (129), (138), (146)

and (153), respectively)) plus the effect of the phase-space deformation ((∆Zdy
nl , ∆Udy

nl , ∆F dy
nl , ∆Sdy

nl , and∆Cdy
nl ), (See

Eqs. (134), (136), (144), (148) and (150), respectively)). We have re-treated the special cases related to energy in the extended
phase-space framework to include the overall thermodynamic properties as particular cases in the extended phase-space through
appropriate substitutions for each case for the modified Deng-Fan potential model and the modified Yukawa potential model.
We establish the energy equations for the non-relativistic SE in 3D(NR-QM) symmetries for the simultaneous limits (Snc

p and
Pnc

p ) → (0 and0), obtained in the main Ref. [11], under a Deng-Fan Yukawa potential model.
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26. V. Gáliková and P. Prěsnajder, Coulomb problem in non-
commutative quantum mechanics,J. Math. Phys. 54 (2013)
052102,https://doi.org/10.1063/1.4803457 .

27. A. Boumali and H. Aounallah, Exact solutions of vector bosons
in the presence of the Aharonov-Bohm and Coulomb poten-
tials in the gravitational field of topological defects in non-
commutative space-time,Rev. Mex. F́ıs 66(2) (2020) 192,
https://doi.org/10.31349/revmexfis.66.192 .

28. H. Sobhani,et al., Effects of non-commutative phase-space on
prolate nuclei in the presence of Coulomb interaction,Mod.
Phys. Lett. A34(34) (2019) 1950279,https://doi.org/
10.1142/S0217732319502791 .

29. H. Hassanabadi,et al., The Linear Interaction in Noncom-
mutative Space; Both Relativistic and Nonrelativistic Cases,
Int J Theor Phys.54 (2015) 251,https://doi.org/10.
1007/s10773-014-2219-1 .

30. X. X. Zeng, The optical appearance of charged four-
dimensional Gauss-Bonnet black hole with strings cloud and
non-commutative geometry surrounded by various accretions
profiles,Eur. Phys. J. C83(2023) 129,https://doi.org/
10.1140/epjc/s10052-023-11274-8 .

31. N. Kan, et al., Classical and quantum bicosmology with non-
commutativity, Class. Quantum Grav.40(1) (2022) 015010,
https://doi.org/10.1088/1361-6382/aca868 .

32. A. Connes, Particle models and noncommutative geometry,
Nucl. Phys. Proc. Suppl. 18B (1991) 29, https://doi.
org/10.1016/0920-5632(91)90120-4 .

33. A. Connes, Noncommutative Geometry (ISBN-
9780121858605) 1994.

34. A. Connes, Noncommutative geometry and reality,J. Math.
Phys. 36(11) (1995) 6194,https://doi.org/10.1063/
1.531241 .

35. N. Seiberg and E. Witten, String theory and noncommutative
geometry,J. High Energ. Phys.1999(09) (1999) 32,https:
//doi.org/10.1088/1126-6708/1999/09/032 .

36. S. Chaturvedi,et al., Non-relativistic quantum mechanics in
a non-commutative space,J. Phys. A Math. Gen. 26 (1993)
L105, https://doi.org/10.1088/0305-4470/26/
3/008 .

37. S. Hassanabadiet al., Exact solution to two dimensional Dunkl
harmonic oscillator in the Non-Commutative phase-space.Eur.
Phys. J. Plus138 (2023) 331, https://doi.org/10.
1140/epjp/s13360-023-03933-2 .

38. H. Hassanabadi,et al., DKP oscillator in the presence of
magnetic field in (1+2)-dimensions for spin-zero and spin-
one particles in noncommutative phase space,Eur. Phys. J.
C 72 (2012) 2217,https://doi.org/10.1140/epjc/
s10052-012-2217-5 .

39. A. Maireche, The Influence of Deformation Space-Space on
High and Low Energy Spectra of Fermionic Particles and
Spectra of Heavy Quarkonia with Improved Hulthén Plus Hy-
perbolic Exponential Inversely Quadratic Potential,Ukr. J.
Phys.68(5) (2023) 328,https://doi.org/10.15407/
ujpe68.5.328 .

40. A. Maireche, Deformed Dirac and Shrödinger Equations with
Improved Mie-Type Potential for Diatomic Molecules and

Fermionic Particles in the Framework of Extended Quan-
tum Mechanics Symmetries,Ukr. J. Phys.67(7) (2022) 485,
https://doi.org/10.15407/ujpe67.7.485 .

41. M. Kurkov and P. Vitale, Four-dimensional noncommutative
deformations ofU(1) gauge theory and L∞ bootstrap,J.
High Energ. Phys. 2022 (2022) 32, https://doi.org/
10.1007/JHEP01(2022)032 .

42. K. P. Gnatenko and V. M. Tkachuk, Effect of coordi-
nate noncommutativity on the mass of a particle in a uni-
form field and the equivalence principle,Mod. Phys. Lett.
A 31(5) (2016) 1650026,https://doi.org/10.1142/
S0217732316500267 .

43. A. E. F. Djemai and H. Smail, On quantum mechanics
on noncommutative quantum phase space,Commun. Theor.
Phys. 41(6) (2004) 837,https://doi.org/10.1088/
0253-6102/41/6/837 .

44. S. Terashima, A note on superfields and noncommutative ge-
ometry,Phys. Lett. B482(1-3) (2000) 276,https://doi.
org/10.1016/s0370-2693(00)00486-x .

45. C. Bastos,et al., Phase-space noncommutative quantum cos-
mology,Phys. Rev. D78(2) (2008) 023516,https://doi.
org/10.1103/PhysRevD.78.023516 .

46. M. Darroodi, H. Mehraban and H., Hassanabadi, The Klein-
Gordon equation with the Kratzer potential in the noncom-
mutative space.Mod. Phys. Lett. A33 (35) (2018) 1850203,
https://doi.org/10.1142/s0217732318502036 .

47. A. Maireche, Diatomic molecules and fermionic particles
with improved Hellmann-generalized Morse potential through
the solutions of the deformed Klein-Gordon, Dirac and
Schr̈odinger equations in extended relativistic quantum me-
chanics and extended nonrelativistic quantum mechanics sym-
metries, Rev. Mex. F́ıs. 68, no. 2 (2022) 020801,https:
//doi.org/10.31349/RevMexFis.68.020801 .

48. E. E. N’Dolo, et al., Noncommutative Dirac and Klein-
Gordon oscillators in the background of cosmic string:
Spectrum and dynamics,Int. J. Geom. Met. Mod. Phys.
17(05) (2020) 2050078,https://doi.org/10.1142/
s0219887820500784 .

49. A. Maireche, Approximate k-state solutions of the deformed
Dirac equation in spatially dependent mass for the improved
Eckart potential including the improved Yukawa tensor interac-
tion in ERQM symmetries,Int. J. Geo. Met. Mod. Phys. 19,
No. 06 (2022) 2250085,https://doi.org/10.1142/
S0219887822500852 .

50. K. P. Gnatenko and V. M. Tkachuk, Composite system in rota-
tionally invariant noncommutative phase space,Inter. J. Mod.
Phys. A33 (7) (2018) 1850037,https://doi.org/10.
1142/S0217751X18500379 .

51. L. I. Kang and D. Sayipjamal, Non-commutative phase space
and its space-time symmetry,Chin. Phys. C34(7) (2010)
944, https://doi.org/10.1088/1674-1137/34/
7/003 .

52. S. Aghababaei and G. Rezaei, Energy level splitting of a 2D hy-
drogen atom with Rashba coupling in non-commutative space,
Commun. Theor. Phys.72 (2020) 125101,https://doi.
org/10.1088/1572-9494/abb7cc .

Rev. Mex. Fis.71020401

https://doi.org/10.1063/1.4803457�
https://doi.org/10.31349/revmexfis.66.192�
https://doi.org/10.1142/S0217732319502791�
https://doi.org/10.1142/S0217732319502791�
https://doi.org/10.1007/s10773-014-2219-1�
https://doi.org/10.1007/s10773-014-2219-1�
https://doi.org/10.1140/epjc/s10052-023-11274-8�
https://doi.org/10.1140/epjc/s10052-023-11274-8�
https://doi.org/10.1088/1361-6382/aca868�
https://doi.org/10.1016/0920-5632(91)90120-4�
https://doi.org/10.1016/0920-5632(91)90120-4�
https://doi.org/10.1063/1.531241�
https://doi.org/10.1063/1.531241�
https://doi.org/10.1088/1126-6708/1999/09/032�
https://doi.org/10.1088/1126-6708/1999/09/032�
https://doi.org/10.1088/0305-4470/26/3/008�
https://doi.org/10.1088/0305-4470/26/3/008�
https://doi.org/10.1140/epjp/s13360-023-03933-2�
https://doi.org/10.1140/epjp/s13360-023-03933-2�
https://doi.org/10.1140/epjc/s10052-012-2217-5�
https://doi.org/10.1140/epjc/s10052-012-2217-5�
https://doi.org/10.15407/ujpe68.5.328�
https://doi.org/10.15407/ujpe68.5.328�
https://doi.org/10.15407/ujpe67.7.485�
https://doi.org/10.1007/JHEP01(2022)032�
https://doi.org/10.1007/JHEP01(2022)032�
https://doi.org/10.1142/S0217732316500267�
https://doi.org/10.1142/S0217732316500267�
https://doi.org/10.1088/0253-6102/41/6/837�
https://doi.org/10.1088/0253-6102/41/6/837�
https://doi.org/10.1016/s0370-2693(00)00486-x�
https://doi.org/10.1016/s0370-2693(00)00486-x�
https://doi.org/10.1103/PhysRevD.78.023516�
https://doi.org/10.1103/PhysRevD.78.023516�
https://doi.org/10.1142/s0217732318502036�
https://doi.org/10.31349/RevMexFis.68.020801�
https://doi.org/10.31349/RevMexFis.68.020801�
https://doi.org/10.1142/s0219887820500784�
https://doi.org/10.1142/s0219887820500784�
https://doi.org/10.1142/S0219887822500852�
https://doi.org/10.1142/S0219887822500852�
https://doi.org/10.1142/S0217751X18500379�
https://doi.org/10.1142/S0217751X18500379�
https://doi.org/10.1088/1674-1137/34/7/003�
https://doi.org/10.1088/1674-1137/34/7/003�
https://doi.org/10.1088/1572-9494/abb7cc�
https://doi.org/10.1088/1572-9494/abb7cc�


INVESTIGATING THE EFFECTS OF PHASE-SPACE NON-COMMUTATIVITY COORDINATES ON THE MODIFIED DENG-FAN YUKAWA. . .27

53. A. Maireche, The influence of noncommutativity on the energy
spectra of bosonic particles in the framework of the DKGE with
improved spatially-dependent mass including mixed scalar-
vector Coulomb potentials in the ERQM symmetries,Rev.
Mex. F́ıs. 69 (3) (2023) 030801,https://doi.org/10.
31349/RevMexFis.69.030801 .

54. R. V. Mendes, Noncommutative spacetime and the PeV pho-
tons from Crab,Mod. Phys. Lett. A38, No. 01 (2023) 2350007,
https://doi.org/10.1142/S0217732323500074 .

55. P. Aschieri and L. Castellani, Noncommutative gauge and grav-
ity theories and geometric Seiberg-Witten map,Eur. Phys.
J. Spec. Top.232, (2023) 3733,https://doi.org/10.
1140/epjs/s11734-023-00831-7 .

56. A. Connes, et al.,, Noncommutative Geometry,Oberwol-
fach Reports10(3) (2013) 2553,https://doi.org/10.
4171/OWR/2013/45 .

57. P. M. Ho and H. C. Kao, Noncommutative Quantum Me-
chanics from Noncommutative Quantum Field Theory,Phys.
Rev. Lett.88(15) (2002) 151602,https://doi.org/10.
1103/physrevlett.88.151602 .

58. M. A. Dalabeeh, The noncommutative quadratic Stark ef-
fect for the H-atom, J. Phys. A: Math. Gen. 38(7) (2005)
1553, https://doi.org/10.1088/0305-4470/38/
7/010 .

59. H. Motavalli and A.R. Akbarieh, Klein-Gordon equation for the
Coulomb potential in noncommutative space,Mod. Phys. Lett.
A 25(29) (2010) 2523,https://doi.org/10.1142/
s0217732310033529 .

60. B. Mirza and M. Mohadesi, The Klein-Gordon and the Dirac
oscillators in a noncommutative space,Commun. Theor. Phys.
(Beijing, China)42 (2004) 664,https://doi.org/10.
1088/0253-6102/42/5/664 .
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