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Relating the free particle with the harmonic oscillator
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1. Introduction

The quantum harmonic oscillator is one of the basic examples
studied in the textbooks on quantum mechanics and modern
physics. The Schrödinger equation for the harmonic oscilla-
tor can be solved exactly by various methods. The aim of this
paper is to add another method to the ones already known.
We show that, essentially, by means of a coordinate trans-
formation mixing the space and time variables it is possible
to relate the solutions of the Schrödinger equation for a free
particle with the solutions of the Schrödinger equation for a
harmonic oscillator.

In Sec. 2 we start by showing that in the framework of
classical mechanics, certain coordinate transformation in the
extended configuration space relates the motion a free parti-
cle with that of a harmonic oscillator. In Sec. 2.1 we show
that this coordinate transformation leads from the standard
Lagrangian for a free particle to oneequivalentto that of a
harmonic oscillator. In Sec. 2.2 we show in an elementary
manner that the solutions of the Hamilton–Jacobi (HJ) equa-
tion for a free particle are related to the solutions of the HJ
equation for a harmonic oscillator. This result has been ob-
tained previously in Ref. [1] as an example of the effect on the
HJ equation of a coordinate transformation in the extended
configuration space.

In Sec. 3 we show that the solutions of the (time-
dependent) Schrödinger equation for a harmonic oscillator
are equal to the solutions of the Schrödinger equation for a
free particle multiplied by a fixed factor and, making use of
this relation, we express the propagator for the harmonic os-
cillator in terms of that of a free particle.

2. The relation in the framework of classical
mechanics

Throughout this paper we make use of the coordinate trans-
formation in the extended configuration space given by

q = q′ sec ωt′, t =
tan ωt′

ω
, (1)

whereω is a constant. This coordinate transformation has
been employed in Ref. [1] relating the HJ equation for a one-
dimensional harmonic oscillator with that of the free particle.
In fact, a straightforward computation shows that the coordi-
nate transformation (1) relates the solutions of the equations
of motion of the two systems. Indeed, the position of a free
particle as a function of the time is given by

q = At + B, (2)

whereA andB are constants. Substituting Eqs. (1) into Eq.
(2) one obtainsq′ sec ωt′ = (A/ω) tan ωt′ + B, which is
equivalent to

q′ = (A/ω) sin ωt′ + B cosωt′. (3)

The last equation can be recognized as the general solution
of the equations of motion for a harmonic oscillator with fre-
quencyω. As we shall see in the following two subsections
this result can be obtained in more elaborated ways making
use of the Lagrangian formalism and the HJ equation.

It may be noticed that the relation betweent andt′ is not
one-to-one; all the real values oft are mapped to an interval
of t′ of lengthπ/ω. However, this behavior does not seem to
affect the results of the following sections; in this sense, we
can say that (1) is just a transformation thatlocally relates the
two problems.

2.1. Relation via the Lagrangian formalism

The standard Lagrangian for a free particle is

L =
m

2
q̇2. (4)

In the case of a coordinate transformation in the extended
configuration space (q′ = q′(q, t), t′ = t′(q, t)) it is not
enough to make the substitutions in a given Lagrangian. In-
stead, in order to maintain the form of the equations of mo-
tion, the Lagrangian must be replaced byL′ = L (dt/dt′)
(see,e.g., Ref. [2]). In this case we have
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L
dt

dt′
=

1
2
m

(
d(q′ sec ωt′)
d(tanωt′/ω)

)2 d(tanωt′/ω)
dt′

=
1
2
m

(
sec ωt′dq′ + q′ sec ωt′ tan ωt′ω dt′

sec2 ωt′dt′

)2

sec2 ωt′

=
1
2
m

(
dq′

dt′
+ ωq′ tan ωt′

)2

=
1
2
m

[(
dq′

dt′

)2

+ 2ωq′
dq′

dt′
tan ωt′ + ω2q′2 sec2 ωt′ − ω2q′2

]

=
1
2
m

[(
dq′

dt′

)2

− ω2q′2
]

+
∂F

∂q′
dq′

dt′
+

∂F

∂t′
, (5)

whereF = 1
2mωq′2 tan ωt′. Owing to the form of the last two terms, they do not contribute in the Lagrange equations and

therefore,L dt/dt′ yields the same equations of motion as the Lagrangian

1
2
m

[(
dq′

dt′

)2

− ω2q′2
]

,

which is the standard Lagrangian for a harmonic oscillator.

2.2. Relation via the Hamilton–Jacobi formalism

The HJ equation corresponding to the standard Hamiltonian of a free particle is given by

0 =
1

2m

(
∂S

∂q

)2

+
∂S

∂t
. (6)

With the aid of the chain rule and Eqs. (1) we have

∂

∂q
= cos ωt′

∂

∂q′
(7)

∂

∂t
= cos2 ωt′

∂

∂t′
− ωq′ sin ωt′ cos ωt′

∂

∂q′
(8)

and therefore Eq. (6) amounts to

0 =
1

2m

(
cosωt′

∂S

∂q′

)2

+ cos2 ωt′
∂S

∂t′
− ωq′ sinωt′ cos ωt′

∂S

∂q′

= cos2 ωt′
[

1
2m

(
∂S

∂q′

)2

+
∂S

∂t′
− ωq′ tan ωt′

∂S

∂q′

]

= cos2 ωt′
[

1
2m

(
∂S

∂q′
−mωq′ tan ωt′

)2

+
m

2
ω2q′2 − m

2
ω2q′2 sec2 ωt′ +

∂S

∂t′

]

= cos2 ωt′
{

1
2m

[
∂

∂q′

(
S − m

2
ωq′2 tan ωt′

)]2

+
m

2
ω2q′2 +

∂

∂t′

(
S − m

2
ωq′2 tanωt′

)}
,

which shows thatS satisfies the HJ equation corresponding to the Hamiltonian for a free particle if and only if

S′ ≡ S − 1
2mωq′2 tan ωt′ (9)

satisfies the HJ equation for the harmonic oscillator [cf. Ref. [1], Eq. (6.98)]. Note that the last term in Eq. (9) is the function
F appearing in Eq. (5).
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3. The relation in the framework of quantum mechanics

In this section we shall show that the solutions of the Schrödinger equation for a free particle can be expressed in terms of the
solutions of the Schrödinger equation for a harmonic oscillator making use of the coordinate transformation (1).

We proceed essentially as in the preceding section starting from the Schrödinger equation for a free particle,

− ~2

2m

∂2Ψ
∂q2

= i~
∂Ψ
∂t

. (10)

Making use of (7) and (8) we find that Eq. (10) is equivalent to

− ~
2

2m
cos2 ωt′

∂2Ψ
∂q′2

= i~ cos2 ωt′
∂Ψ
∂t′

− i~ωq′ sin ωt′ cos ωt′
∂Ψ
∂q′

and eliminating the common factorcos2 ωt′, we have

− ~2

2m

∂2Ψ
∂q′2

= i~
∂Ψ
∂t′

− i~ωq′ tan ωt′
∂Ψ
∂q′

. (11)

Guided by Eq. (9), we look for a relation of the form

Ψ = f exp
(

i
~

m

2
ωq′2 tan ωt′

)
Ψ′, (12)

whereΨ′ is a solution of the Schrödinger equation for a harmonic oscillator,

− ~2

2m

∂2Ψ′

∂q′2
+

m

2
ω2q′2Ψ′ = i~

∂Ψ′

∂t′
, (13)

andf is a function to be determined. Substituting (12) into Eq. (11), making use of (13), one finds thatf is a function oft′

only, such that
df

dt′
= −ω

2
tan ωt′ f

and, therefore, we can takef = cos1/2 ωt′.
Thus, we conclude thatΨ′ is a solution of the Schrödinger equation for a harmonic oscillator [Eq. (13)] if and only if

Ψ = cos1/2 ωt′ exp
(

i
~

m

2
ωq′2 tanωt′

)
Ψ′, (14)

is a solution of the Schrödinger equation for a free particle [Eq. (10)]. Then, according to Eq. (1),
∫ ∞

−∞
|Ψ|2dq =

∫ ∞

−∞
cos ωt′ |Ψ′|2dq =

∫ ∞

−∞
|Ψ′|2dq′,

which means thatΨ(q, t) is normalized if and only ifΨ′(q′, t′) is normalized.
Since the solutions of the Schrödinger equation for a free particle can be obtained in a simple way, one would think that the

interesting applications of Eq. (14) correspond to expressingΨ′ in terms ofΨ; however, a nice example of the application of
Eq. (14) as it stands is the following: the ground state solution of the Schrödinger equation for a harmonic oscillator is given
by

Ψ′(q′, t′) =
(mω

π~

)1/4

exp
(
−mω

2~
q′2 − i

2
ωt′

)
.

Substituting this expression into the right-hand side of Eq. (14), the result, written in terms ofq andt, is

Ψ(q, t) =
(mω

π~

)1/4 1√
1 + iωt

exp
[
− mωq2

2~(1 + iωt)

]
, (15)

which must be a solution of the Schrödinger equation for a free particle. Evaluating the right-hand side of Eq. (15) at t = 0 we
see that

Ψ(q, 0) =
(mω

π~

)1/4

exp
(
−mω

2~
q2

)
. (16)

This means that Eq. (15) is the wave function of the free particle with the initial condition (16). (The standard procedure to
find (15) involves the calculation of two Fourier transforms (see,e.g., Ref. [3]).)
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3.1. Relation between propagators

As is well known, the solution to the time-dependent Schrödinger equation can be expressed in the form

Ψ(qf , tf) =
∫ ∞

−∞
K(qf , tf ; qi, ti)Ψ(qi, ti) dqi, (17)

whereK(qf , tf ; qi, ti) is the so-called propagator, and in the case of a free particle one readily finds that

K(qf , tf ; qi, ti) =
√

m

2πi~(tf − ti)
exp

[
i
~

m(qf − qi)2

2(tf − ti)

]
. (18)

Hence, with the aid of Eq. (14) we can obtain the propagator for a harmonic oscillator. In fact, making use of (1), (14) and (17)
we have (withq′f , t

′
f related toqf , tf by means of (1) and, similarly,q′i , t

′
i related toqi, ti)

Ψ′(q′f , t
′
f) =

1
cos1/2 ωt′f

exp
(
− i
~

m

2
ωq′2f tanωt′f

)
Ψ(qf , tf)

=
1

cos1/2 ωt′f
exp

(
− i
~

m

2
ωq′2f tanωt′f

) ∫ ∞

−∞
K(qf , tf ; qi, ti)Ψ(qi, ti) dqi

=
1

cos1/2 ωt′f
exp

(
− i
~

m

2
ωq′2f tanωt′f

)

×
∫ ∞

−∞
K(qf , tf ; qi, ti) cos1/2 ωt′i exp

(
i
~

m

2
ωq′2i tanωt′i

)
Ψ′(q′i , t

′
i)

1
cos ωt′i

dq′i .

Comparison with Eq. (17) shows that the propagator for the harmonic oscillator must be given by

K ′(q′f , t
′
f ; q

′
i , t
′
i) =

K(qf , tf ; qi, ti)
cos1/2 ωt′f cos1/2 ωt′i

exp
[

i
~

m

2
ω(q′2i tanωt′i − q′2f tan ωt′f)

]
.

Substituting (18), expressing the result in terms of the primed variables making use of (1) one finds

K ′(q′f , t
′
f ; q

′
i , t
′
i) =

√
mω

2πi~ sin ω(t′f − t′i)
exp

{
i
~

mω
[
(q′2i + q′2f ) cos ω(t′f − t′i)− 2q′iq

′
f

]

2 sin ω(t′f − t′i)

}
. (19)

As is well known, one can find the energy levels of the
quantum harmonic oscillator and the corresponding wave-
functions from the propagator (19) (see,e.g. Ref. [4]). It
might seem strange that the solutions of the Schrödinger
equation for the free particle, whose Hamiltonian has a con-
tinuous spectrum, can be put in a one-to-one correspondence
with the solutions of the Schrödinger equation for the har-
monic oscillator, whose Hamiltonian has a discrete spectrum.
The reason is that, among the solutions of the Schrödinger
equation for the harmonic oscillator that can be obtained by
means of (14) are the non-normalizable wavefunctions. One
should obtain the stationary states of the harmonic oscilla-
tor looking for those solutions with a time-dependence of the
form exp(−iEt′/~), but that seems as complicated as solv-
ing the Schr̈odinger equation directly.

An entirely different approach and different results from
those given above are presented in Ref. [5], where the so-
lutions of the time-independent Schrödinger equation for
a free particle are obtained aslimiting casesof the time-
independent Schrödinger equation for a harmonic oscillator.

4. Concluding remarks

It is natural to ask if a coordinate transformation similar to the
one considered here can be useful in other cases or in connec-
tion with other equations (i.e., not only the HJ equation or the
Schr̈odinger equation).

Apart from the transformations that relate two different
problems, there exist transformations relating a problem with
itself (that is, symmetry transformations); if these transfor-
mations contain arbitrary parameters, such parameters will
be incorporated in the new solution.

It may be remarked that the coordinate transformation (1)
is not (part of) a canonical transformation since the timet
is substituted by a new variablet′, and that the relation (14)
does not involve integral transforms. Even though the free
particle can be regarded as a limiting case of the harmonic
oscillator, the relations established here are not based in this
fact, the connection between the two problems works in both
ways.
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