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Relating the free particle with the harmonic oscillator
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We show that by means of a coordinate transformation in the extended configuration space the problem of a free particle can be related tc
that of a harmonic oscillator in classical mechanics and in quantum mechanics.
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1. Introduction wherew is a constant. This coordinate transformation has
) ] ) ) been employed in Ref. [1] relating the HJ equation for a one-
The quantum harmonic oscillator is one of the basic examplegimensional harmonic oscillator with that of the free particle.
studied in the textbooks on quantum mechanics and modelp, fact, a straightforward computation shows that the coordi-
physics. The Scladinger equation for the harmonic oscilla- nate transformatioril] relates the solutions of the equations

tor can be solved exactly by various methods. The aim of thigt motion of the two systems. Indeed, the position of a free
paper is to add another method to the ones already knowmyrticle as a function of the time is given by

We show that, essentially, by means of a coordinate trans-

formation mixing the space and time variables it is possible g = At + B, 2
to relate the solutions of the Sdtinger equation for a free

particle with the solutions of the Sdbdinger equation for a whereA and B are constants. Substituting Eo$) {nto Eq.
harmonic oscillator. (2) one obtaingy’ secwt’ = (A/w)tanwt’ + B, which is

In Sec. 2 we start by showing that in the framework of equivalent to
classical mechanics, certain coordinate transformation in the
extended configuration space relates the motion a free parti- ¢ = (Ajw)sinwt’ + Beoswt'. 3)

cle with that of a harmonic oscillator. In Sec. 2.1 we show

that this coordinate transformation leads from the standara_ he last quat|on can _be recognized a_s the .general' solution
Lagrangian for a free particle to orguivalentto that of a of the equations of motion for a harmonic oscillator with fre-

harmonic oscillator. In Sec. 2.2 we show in an elementar)ﬂqency“" As we shall see ‘U the following two subsection_s
manner that the solutions of the Hamilton—Jacobi (HJ) equat—h's risﬁlt Ean be c_)bta]:ned 'F more delt';]lbo'_rsted ways making
tion for a free particle are related to the solutions of the HJise of t ebagrahglznhormha |sn|1 an tbe qua/n_on.
equation for a harmonic oscillator. This result has been ob- It may .e rlllotr;ce tlattl ere ;Uon etw d ¢1s not |
tained previously in Ref. [1] as an example of the effect on thePne-to-one; all the real values olre mapped to an interva

; . .
HJ equation of a coordinate transformation in the extendeﬂ’;t of Lengthwl/w. :'?lwef\’?lr’ th's behQV|orFipesr1pot seem to
configuration space. affect the results of the following sections; in this sense, we

In Sec. 3 we show that the solutions of the (time-can say thatl) is just a transformation th&tcally relates the

dependent) Schdinger equation for a harmonic oscillator two problems.
are equal to the solutions of the Setimger equation for a
free particle multiplied by a fixed factor and, making use of

this relation, we express the propagator for the harmonic 0Stpe standard Lagrangian for a free particle is
cillator in terms of that of a free particle.

2.1. Relation via the Lagrangian formalism

m .o

L=—q". 4)
2. The relation in the framework of classical 2
mechanics In the case of a coordinate transformation in the extended
configuration spaceg{ = ¢'(¢,t), t' = t'(¢,t)) it is not
Throughout this paper we make use of the coordinate transnough to make the substitutions in a given Lagrangian. In-
formation in the extended configuration space given by stead, in order to maintain the form of the equations of mo-
tan wt’ tion, the Lagrangian must be replaced by = L (dt/dt’)

q=¢secwt’, t= — (1)  (seege.g, Ref. [2]). In this case we have
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dt
dr’

d(¢' secwt’) \* d(tanwt’ /w)
d(tanwt’ /w) de’

sec? wt/dt!

dql 2 dq’
) + 2wq' — tan wt’ + w?q"? sec® wt’ — w?q’?

(sec wt'dq’ + ¢’ secwt’ tan wt'w dt’ ) 2 5
sec” wt
[ dt’

OF df  OF
+ o ©)

2
dg’ W2 q/2
dq dt/ o’

whereF = %qu@ tanwt’. Owing to the form of the last two terms, they do not contribute in the Lagrange equations and

therefore,L dt/d¢t’ yields the same equations of motion as the Lagrangian

1 dg"\?
2’”[(55/) wzq@]’

which is the standard Lagrangian for a harmonic oscillator.
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2.2. Relation via the Hamilton—Jacobi formalism

The HJ equation corresponding to the standard Hamiltonian of a free particle is given by

1 /0S\? oS
o_m(aq) + 5 ©)

With the aid of the chain rule and Eq4) (ve have

(% cos wt’ a%/ @)
0

_ 2 / 0 /s / /
— = cos’wl — —wq sinwt coswt

ot ot

o7 8

and therefore Eqi6) amounts to

0 1 cos wt’ 05\ + cos® wt! 05 "sin wt’ cos wt’ 05
= — swt' — wt' — — wq' sinw swt' —
2m oq’' ot e aq’

= cosPwt 1L (o5 2—1—8—8— " tan t’ﬁ—s
N > om aq’ ar 1 “ aq’

1

oS
= cos?wt [ 24

oS 2 m m
— —mwq tanwt’ | + —w?¢? — —w?q¢?sec? wt’ + —
aq’ 2

2m 2 ot

1[0 2 B)
= cos?wt’ {2m L,)q, (S — %wq’2 tanwt')] + %qu’Q + 55 (S - %wq’2 tanwt’)} ;

which shows thab' satisfies the HJ equation corresponding to the Hamiltonian for a free particle if and only if

S =8 — Imwq? tanwt’ 9)
satisfies the HJ equation for the harmonic oscillatbrRRef. [1], Eq. (6.98)]. Note that the last term in E@) (s the function
F appearing in Eq/5).
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3. The relation in the framework of quantum mechanics

In this section we shall show that the solutions of the 8dimger equation for a free particle can be expressed in terms of the
solutions of the Sclidinger equation for a harmonic oscillator making use of the coordinate transfornigjtion (
We proceed essentially as in the preceding section starting from thédsuher equation for a free patrticle,

h? 5% ov
_ = ih—. 10
2m 0¢? ot (10)
Making use of(7) and B8) we find that Eq.10) is equivalent to
h? ov v
~5 cos® wt’ 0 ik cos? wt'w — ihwq’ sinwt’ cos wt’a—q,
and eliminating the common factoss? wt’, we have
h? 9%°v oV ov
~om g 1h@ —ihwq tanwt'a—q,. (11)
Guided by Eq.9), we look for a relation of the form
¥ = fexp (;ZquQ tanwt’) v, (12)
where¥’ is a solution of the Sclkdinger equation for a harmonic oscillator,
ROV m oy e, . OV
—%W‘FEW q \\ _th7 (13)

and f is a function to be determined. Substitutid®) into Eq. {L1), making use of13), one finds thayf is a function oft’
only, such that
df

i f%tanwt’f

and, therefore, we can talfe= cos'/2 wt'.
Thus, we conclude thak’ is a solution of the Sclidinger equation for a harmonic oscillator [E@3)] if and only if

U = cos'/2 wt’ exp (;T;wag tan Wt/) v, (14)

is a solution of the Sclidinger equation for a free particle [EQ.0j]. Then, according to Eq1j,

/ |U2dg = / coswt’ |¥'|?dg = / ¥ |2dq/,
— oo —00 —00

which means tha¥ (g, t) is normalized if and only ift’ (¢, t') is normalized.

Since the solutions of the Sdidinger equation for a free particle can be obtained in a simple way, one would think that the
interesting applications of E¢l4) correspond to expressingf in terms of U; however, a nice example of the application of
Eq. (14) as it stands is the following: the ground state solution of the @tihger equation for a harmonic oscillator is given

by
mw\ 1/4 mw i
\Ij/ / t/ — ( (.U) _ 12 _ t/ .
(@) =) ew|-5-d" — 5

Substituting this expression into the right-hand side of Ed), the result, written in terms af andt, is

mw\ 1/4 1 mwq?
(g t) = (M) o exp |- T 15
(9:%) (ﬂh) «/1+iwteXp[ 2h(1+iwt)}’ (15)

which must be a solution of the Sdtinger equation for a free particle. Evaluating the right-hand side oflBjatt = 0 we

see that
mw mw o

U(q,0) = (E)M exp (*TE(J ) : (16)

This means that Eq1E) is the wave function of the free particle with the initial conditid®), (The standard procedure to
find (15) involves the calculation of two Fourier transforms (seg, Ref. [3]).)
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3.1. Relation between propagators

As is well known, the solution to the time-dependent $dimger equation can be expressed in the form
oo
(g, tr) = / K(qe,te; qi, 1) Y (qi, ti) dai, (7)
whereK (¢, tt; i, t;) is the so-called propagator, and in the case of a free particle one readily finds that

m im(g —q)?
K(gs, tei g ti) = | == T |- 1
(ge: te; @i, 1) Smintt — 1) O [h 2t —t) ] (18)

Hence, with the aid of Eq14) we can obtain the propagator for a harmonic oscillator. In fact, making ud®, ¢14) and (L7)
we have (withgy, ¢; related tog, t; by means ofI) and, similarly,q, ¢/ related tog;, ¢;)

1 im
(g tr) = cos 2 o] exp ( 73 S wqt taHWtf> U (gr, tr)
1
= mexp h 2wqf tan wt} K (gs, te; Gi, ) ¥ (a1, 1) da

1 ;
cosl /2 ot ot exp ( 59 wqf tanwtf>

m 1
/ K(qs, ts; g5, t )cosl/2 wt! exp ( —wq! tanwt{) U (g, )
c

——dq.
h2 os wt] 4
Comparison with Eq!1(7) shows that the propagator for the harmonic oscillator must be given by

K(ge,te; g1, i) [

gt 4) =
K (ge tri s ) cos!/2 wtf, cos?/? wtf

m
ﬁ?w(qi& tanwt! — ¢ tan wtg)] :

Substituting[1.8), expressing the result in terms of the primed variables making udg ohé finds

K (gl thiql ) = ¢ (19)

mw i mw((g? + qf?) cosw(t; — t}) — 2q{q}]
exp{ — )
orihsinw(tt — ) T\ & 2sinw(t, —t))

As is well known, one can find the energy levels of the
guantum harmonic oscillator and the corresponding wave-
functions from the propagatol9) (see,e.g.Ref. [4]). It 4, Concluding remarks
might seem strange that the solutions of the Sdimger
equation for the free particle, whose Hamiltonian has a conkt is natural to ask if a coordinate transformation similar to the
tinuous spectrum, can be put in a one-to-one correspondenoge considered here can be useful in other cases or in connec-
with the solutions of the Schdinger equation for the har- tion with other equations.g., not only the HJ equation or the
monic oscillator, whose Hamiltonian has a discrete spectrunfschiddinger equation).

The reason is that, among the solutions of the &dimger Apart from the transformations that relate two different
equation for the harmonic oscillator that can be obtained byroblems, there exist transformations relating a problem with
means of14) are the non-normalizable wavefunctions. Oneitself (that is, symmetry transformations); if these transfor-
should obtain the stationary states of the harmonic oscillamations contain arbitrary parameters, such parameters will
tor looking for those solutions with a time-dependence of thebe incorporated in the new solution.
form exp(—iEt /h), but that seems as complicated as solv- It may be remarked that the coordinate transformatign (
ing the Schdvdinger equation directly. is not (part of) a canonical transformation since the time

is substituted by a new variabtg and that the relatiorild)

An entirely different approach and different results from does not involve integral transforms. Even though the free
those given above are presented in Ref. [5], where the sgparticle can be regarded as a limiting case of the harmonic
lutions of the time-independent Séldinger equation for oscillator, the relations established here are not based in this
a free particle are obtained dimiting casesof the time-  fact, the connection between the two problems works in both
independent Scbdinger equation for a harmonic oscillator. ways.
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