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Variational symmetries in the Hamiltonian formalism

G. F. Torres del Castillo

Instituto de Ciencias, Bendrita Universidad Autnoma de Puebla,
72570 Puebla, Pue., &kico

Received 13 June 2024; accepted 12 August 2024

We consider the effect on the Hamilton equations of an arbitrary coordinate transformation in the extended configuratign-spagg, t),
t'" = t'(qj,t) (which may not be canonical) and we show that when the Hamiltonian is invariant under a one-parameter family of these
transformations, there is an associated nontrivial constant of motion.
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1. Introduction finding these groups is as complicated as finding the con-
stants of motion directly.
A common point of interest in classical mechanics, quan- By contrast with the variational symmetries defined in the
tum mechanics, classical field theory and quantum field thel'_agrangian formalism, where the time can be replaced by
ory is the study of symmetry, which can be defined directlysome functiony’, of the original coordinates and the time
in terms of the equations of motioe.g, Newton's second  [see Egs./1)], in the canonical transformations, the phase
law, Schidinger's equation, etc.) or through LagrangiansSpace coordinates;, p;, can be substituted by new coordi-
or Hamiltonians. One advantage of finding symmetries of thatesQ; = Qi(q;,p;:t), Pi = Pi(gj,p;,t), but the time
Lagrangian or a Hamiltonian for a given system is that on§emains unaltered.
can associate conserved quantities with one-parameter fam- The aim of this paper is to show in an elementary way that
ilies of symmetries if the notion of symmetry is appropri- given a Hamiltonianf (¢;, p;, t), and a coordinate transfor-
ately defined. (By contrast, the symmetries of the equationg,ation ) in the extended configuration space, we can find
of motion alone do not lead to constants of motion, 888, 5 new Hamiltonian,H' (¢}, p}, '), and new canonical mo-
Ref. [1].) ) o menta,p;, such that the Hamilton equations with the primed
In the case of a system with a finite number of degrees ofjzriaples are equivalent to the Hamilton equations with the
freedom described by a Lagrangidrig;, ¢;, t), itis usefulto  ynprimed variables. In Sec. 2 we give the formulas relating

define a variational symmetry (also called a divergence syme new Hamiltonian and canonical momenta with the initial
metry) as a coordinate transformation in the extended configsnes. In Sec. 3 we show that if a Hamiltonian is invariant

uration space, under a one-parameter family of coordinate transformations
;o oYy ’ 1 in the extended configuration space then there is a nontrivial
G =@ o t), =00 ant), (D) constant of motion associated with the symmetry.
such that

/ / _ 2. Transformation of the Hamiltonian under
/ dqi / dt dql d . . .
Ll gt ) qp =L@ g00t) + @F(qut), (2) coordinate transformations in the extended
configuration space

whereF’ is some function defined on the extended configura-

tion space. The usefulness of this definition comes from thés is well known, the Hamilton equations can be derived
fact that the “infinitesimal” generators of the one-parametefrom Hamilton’s principle: the actual path followed by a sys-
groups of variational symmetries of a Lagrangian can ba&em with HamiltonianH (¢;, p;,t) is such that the line inte-
found by means of a systematic procedure (though somewhatal

Igngthy in most cases) and with each generator we get a non- / (piin _ Hdt), ©)
trivial constant of motion (sees.g, Refs [2, 3]). However, c

not all constants of motion can be obtained in this way (perhas an extreme (or a stationary value) compared with other

haps the best known example is the Laplace—Runge-Lengurves with the same endpoints in the extended configuration

vector found in the Kepler problem). space. The value of the integrd) (does not change if we
On the other hand, within the Hamiltonian formalism, perform the coordinate transformatick) @nd, at the same

any constant of motion is associated with a one-parametefime, H andp;, are replaced byi’ andyp), in such a way that
group of canonical transformations that leave invariant the

Hamiltonian of the system under consideration. However, pidgq; — Hdt = pidq, — H'dt'.



2 G. F. TORRES DEL CASTILLO

Furthermore, ifF'(q;, t) is an arbitrary function, the addition dff’ to the integrand oi3) only adds the difference of the
values ofF" at the endpoints of the cuné to the value of the integral, but this difference has the same value for all the curves
with the same endpoints 85 Hence, the addition afF' in the integrand o13) does not modify the Hamilton equations. Thus,
the Hamilton equations are unchangedifandp, are such that

pidg; — Hdt = pidq, — H'dt' + dF. 4)

Sincegq} andt’ (as well asF") are functions ofg;, t) only, the right-hand side o#] is equivalent to

Y or o OF _ oF
(Q%ag, + Yiar) - i (g + Poar) + 2ag, + Lo,
Pi (aqj Gt 0,9 T ) T g, Yt B

Comparing this last expression with the left-hand sidedpft(follows that

/ /
/ )a
Oy o4, 0 )

H_E ottt ot

and

It may be noticed that, by contrast with the canonical transformations, the transformation of the canonical momegjia [Eq. (
depends on the Hamiltonian. In the Lagrangian formalism, a transformation of thelipdefihes in a unique way the relation
between the primed and unprimed generalized velocities, regardless of the Lagrangian under consideration. The fanction
arbitrary and it can be chosen in a convenient way, usually to a#jugt some particular form (see below).

By interchanging the primed and the unprimed quantities in E5}s(6) we have the equivalent expressions

_ Ot dq  OF

_Oq; / ot o4 oF

H = _—H- iy + — 7
or "oVt o )
and
94 ._ﬁH_ai (8)
A simple application of these formulas is given by the Hamiltonian
/2
H="2 )

- om’
which is the standard one for a free particle. The solution of the corresponding equations of motion is given by
qd = A+ Bt
whereA, B are constants. On the other hand, the solution of the equations of motion of a damped harmonic oscillator is given

by
q = Ae " cos \/w? — 42t + Be 'sin \/w? — 2t,

wherew, v are constants (we shall assume that w) and A, B are constants determined by the initial conditions. The two
solutions can be connected by the transformation

tan /w2 — v2t

q =egsec/w? — 2, t = o (10)
(cf. Ref. [4]). Then, Eq.8) gives
p=e (p — %5) cos \/w? — 2t
and from Eqg.[§) we obtain
H:e;zt (p—g>2—<p—g)q(v+ w? — 42 tan w2—'y2t)—%—1§. (11)

As pointed out above, the functidfi(q, t) is arbitrary, but ifF" is appropriately chosen we can get some convenient or recog-
nizable expression faf .
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Since most Hamiltonians do not contain linear terms in the momenta, we can look for a fuRcsiach that the linear
terms inp are eliminated from1). This condition amounts to

oF
ETin —mge*"t ('y + Vw? — 42 tan y/w? — 7215) .

This equation determines the functidhup to an additive function of only. Taking

F = —%QQeQ'yt (7 +Vw? — 42 tan y/w? — 72t> (12)
one finds that11) reduces to )
H=e2t2 | o2t 22 (13)
2m 2

According to the previous discussion this last Hamiltonian must correspond to a damped harmonic oscillator, as one can verify
making use of the Hamilton equations. It may be noticed that when the damping is apsenb), this is the standard
Hamiltonian for a harmonic oscillator.

3. Invariance of the Hamiltonian under coordinate transformations in the extended configuration
space

The transformatioril)) preserves the form of the equations of motion defined by the Hamiltd#ian p;, t) if

H'(qi,pist) = H(g;,p;, 1) (14)
that is [see Eq9)], o g, or
H(qi,pi,t) = 5 H(qi, pin ) = 5.0 = 5 (15)

for some functionF'(¢;, t). Due to their connection with the symmetries defined2)y the transformations satisfyin@4) or
(15) will also be called variational symmetries.

As pointed out at the Introduction, the one-parameter families of transformations satisfgjray¢ especially important
because they lead to nontrivial constants of motion. Indeed, if

4 =d(g,t,s), t'=t(qt,s), (16)

is a family of transformations depending on the parametsuch that;(¢;,t,0) = ¢; andt’(g;, t,0) = ¢ (thatis, whers = 0
the transformation is the identity), with the definitions

aq,‘(Qj7taS) atl(qivtvs)
i '7 t = 17 ) i? t = ) 17
ni(q;,1) os |, (i) s | 17)
taking the partial derivative of both sides 6) (vith respect tes, ats = 0, we obtain
op'; on; ¢ 0G
0= 2 i — H> 4 —,
0s |,_o b 0q; O0q;  0Oqg;
with G(g;,t) = 0F/0s|s=o. Then, taking the partial derivative of both sides/tB)(with respect ta, ats = 0, we get
0¢ OH OH on; ¢ 0G OH on; oG
=—H i +—=— | —p; H— — —&— P — ——. 18
0=% +8qin+8pi< Pige "og "o ) Tt T ah T w (18)

For a given Hamiltonian this last equation determinesrihe 1 functionsn;, £ of then + 1 variablesg;, t, which generate a
local one-parameter group of symmetriesftbi{see the example below). If the Hamilton equations are satisfied thed8}q. (
reduces to

d
&@H — 1iPi — G) =0, (19)

which means thagH — n;p; — G is a (nhontrivial) constant of motion.
A simple but illustrative example is given by the Hamiltonidg)( In order to find the one-parameter groups of symmetries
of (13) we substitute this expression into E@8), which gives

I ([ _ou 1’ m Lo P an o P° m o6 0G
0 = = ~yt £ 2yt 772 2 2yt 2 2t &2 P 2yt £ 24t 77 2 2} Y5 P
ot (e 2m+e 2wq Herimwrgn e m p8q+ ¢ 2m+e 2wq dq dq
2
a2t 1P 27t 2,2 — @ — %
+ ( e o +e""mywq > ot oL

Rev. Mex. Fis71010701



4 G. F. TORRES DEL CASTILLO

Fortunately, the right-hand side of the last equation is a (third degree) polynorpiakrich must vanish for all values qf p
andt (which at this level are independent); hence, equating to zero the coefficigriteéfp! andp® we get

e—4'yt 1 %

= 2
5m? 9 0, (20)
_ 19§ 10n o
2yt (= Y5 270 T = 21
¢ <2m ot mdq mf 0 (1)
12,206 1 200G On _
g« 4 Jdq m* dg ot 0, (22)
2yt (T 2 2% 2 2 20\ % _
e <2wqat+mw qn—i—mquﬁ) 5 0. (23)
Equations[20) and 21) imply that
1dA
E=A®), n=|5—- —74)a+B(@), (24)
2 dt
whereA(t) and B(t) are functions of only. Then, Eqs/22)—(23) yield
oG o (1d°A  dA  dB
== S g+ — 25
g " Al "w ! & (25)
and oG dA
O 2yt 2 [ G4 o
5 = e w (dt q +Bq) . (26)
The equality of the mixed second partial derivatives-ofives the condition
dA dB 1d34 d’B dA
Mg =2y — S — — = 27— ’B
T et e T s

which must hold for all values af. Hence,

3 2
%Jrll(wzf'f)% =0, %JrQ'y%JruﬂB:O. (27)

The general solution of the first of EqQ&7j contains three arbitrary constants while the general solution of the second one
contains two additional arbitrary constants; therefore, the Hamiltod@grppssesses five one-parameter groups of variational
symmetries. Perhaps the simplest of these groups correspords-te,, B = 0, wherec; is a constant. Therg, = ¢; and
n = —cy1vq. From EQs.25)—(26) we see thatz can be taken equal to zero and the constant of motion associated with this
symmetry is [see Eq10)]

2 m
EH —nipi—G=c1H +c1ygp=c1 <62”t£n +e Wi+ vqp> :
It may be noticed that whefy = 0 the expression inside the parenthesis is the energy of an undamped harmonic oscillator.
(The one-parameter group of transformations generated-byc;, n = —c1vq is given byt’ = ¢ + ¢15, ¢ = ge™ 7% [see
Egs. @7)]).

4. Concluding remarks

The results of Sec. 2 show once again that the form of the Hamilton equations can be preserved by coordinate transformations
that are not canonical transformations (another example are the canonoid transformatieng, e, [3], Sec. 5.5).

Even though the one-parameter families of variational symmetries of a Lagrangian or a Hamiltonian may not lead to all the
conserved quantities of the corresponding system, the fact that they are determined by the fgacttbpswhich depend on
¢; andt only, simplifies their finding, as illustrated in the example given above.

As shown in Ref. [4], each solution of the SéHinger equation for a harmonic oscillator can be expressed as the product
of a solution of the Sclidinger equation for a free particle by certain fixed factor, making use of the coordinate transformation
(2) with v = 0. It turns out that a similar result is applicable in the example given in Sec. 2: each solution of ttieliSgér
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equation corresponding to the Hamiltonidg), ¥(q, t), can In the transformations considered here the time can be
be expressed as the product of a solution of the@tihger transformed in an arbitrary manner jointly with the coordi-
equation for a free particlal’(¢’,t'), by a fixed factor, mak- nates, and in this sense we obtain a treatment similar to that
ing use of the coordinate transformatidi). (Specifically, of the generally covariant systems studied in field theory (see,
. e.g, Ref. [5]).

(g, t) = (" sec /w2 — ~20)V/2 /W (¢ 1) g D
with F defined by12), provided that the coordinatés, ¢) Acknowledgement

are related tq¢’,t’) through @). Moreover, ¥ is normal-

ized if and only if ¥’ is normalized (thanks to the factor The author wishes to thank the referee for helpful sugges-
(et sec /w2 — 42t)1/?). tions.
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