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Variational symmetries in the Hamiltonian formalism
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We consider the effect on the Hamilton equations of an arbitrary coordinate transformation in the extended configuration space,q′i = q′i(qj , t),
t′ = t′(qj , t) (which may not be canonical) and we show that when the Hamiltonian is invariant under a one-parameter family of these
transformations, there is an associated nontrivial constant of motion.
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1. Introduction

A common point of interest in classical mechanics, quan-
tum mechanics, classical field theory and quantum field the-
ory is the study of symmetry, which can be defined directly
in terms of the equations of motion (e.g., Newton’s second
law, Schr̈odinger’s equation, etc.) or through Lagrangians
or Hamiltonians. One advantage of finding symmetries of a
Lagrangian or a Hamiltonian for a given system is that one
can associate conserved quantities with one-parameter fam-
ilies of symmetries if the notion of symmetry is appropri-
ately defined. (By contrast, the symmetries of the equations
of motion alone do not lead to constants of motion, see,e.g.,
Ref. [1].)

In the case of a system with a finite number of degrees of
freedom described by a Lagrangian,L(qi, q̇i, t), it is useful to
define a variational symmetry (also called a divergence sym-
metry) as a coordinate transformation in the extended config-
uration space,

q′i = q′i(q1, . . . , qn, t), t′ = t′(q1, . . . , qn, t), (1)

such that

L

(
q′i,

dq′i
dt′

, t′
)

dt′

dt
= L

(
qi,

dqi

dt
, t

)
+

d
dt

F (qi, t), (2)

whereF is some function defined on the extended configura-
tion space. The usefulness of this definition comes from the
fact that the “infinitesimal” generators of the one-parameter
groups of variational symmetries of a Lagrangian can be
found by means of a systematic procedure (though somewhat
lengthy in most cases) and with each generator we get a non-
trivial constant of motion (see,e.g., Refs [2, 3]). However,
not all constants of motion can be obtained in this way (per-
haps the best known example is the Laplace–Runge–Lenz
vector found in the Kepler problem).

On the other hand, within the Hamiltonian formalism,
any constant of motion is associated with a one-parameter
group of canonical transformations that leave invariant the
Hamiltonian of the system under consideration. However,

finding these groups is as complicated as finding the con-
stants of motion directly.

By contrast with the variational symmetries defined in the
Lagrangian formalism, where the time can be replaced by
some function,t′, of the original coordinates and the time
[see Eqs. (1)], in the canonical transformations, the phase
space coordinates,qi, pi, can be substituted by new coordi-
natesQi = Qi(qj , pj , t), Pi = Pi(qj , pj , t), but the time
remains unaltered.

The aim of this paper is to show in an elementary way that
given a Hamiltonian,H(qi, pi, t), and a coordinate transfor-
mation (1) in the extended configuration space, we can find
a new Hamiltonian,H ′(q′i, p

′
i, t

′), and new canonical mo-
menta,p′i, such that the Hamilton equations with the primed
variables are equivalent to the Hamilton equations with the
unprimed variables. In Sec. 2 we give the formulas relating
the new Hamiltonian and canonical momenta with the initial
ones. In Sec. 3 we show that if a Hamiltonian is invariant
under a one-parameter family of coordinate transformations
in the extended configuration space then there is a nontrivial
constant of motion associated with the symmetry.

2. Transformation of the Hamiltonian under
coordinate transformations in the extended
configuration space

As is well known, the Hamilton equations can be derived
from Hamilton’s principle: the actual path followed by a sys-
tem with HamiltonianH(qi, pi, t) is such that the line inte-
gral ∫

C

(
pidqi −Hdt

)
, (3)

has an extreme (or a stationary value) compared with other
curves with the same endpoints in the extended configuration
space. The value of the integral (3) does not change if we
perform the coordinate transformation (1) and, at the same
time,H andpi are replaced byH ′ andp′i in such a way that

pidqi −Hdt = p′idq′i −H ′dt′.
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Furthermore, ifF (qi, t) is an arbitrary function, the addition ofdF to the integrand of (3) only adds the difference of the
values ofF at the endpoints of the curveC to the value of the integral, but this difference has the same value for all the curves
with the same endpoints asC. Hence, the addition ofdF in the integrand of (3) does not modify the Hamilton equations. Thus,
the Hamilton equations are unchanged ifH ′ andp′i are such that

pidqi −Hdt = p′idq′i −H ′dt′ + dF. (4)

Sinceq′i andt′ (as well asF ) are functions of(qj , t) only, the right-hand side of (4) is equivalent to

p′i

(
∂q′i
∂qj

dqj +
∂q′i
∂t

dt

)
−H ′

(
∂t′

∂qj
dqj +

∂t′

∂t
dt

)
+

∂F

∂qj
dqj +

∂F

∂t
dt.

Comparing this last expression with the left-hand side of (4) it follows that

H =
∂t′

∂t
H ′ − ∂q′i

∂t
p′i −

∂F

∂t
(5)

and

pj =
∂q′i
∂qj

p′i −
∂t′

∂qj
H ′ +

∂F

∂qj
. (6)

It may be noticed that, by contrast with the canonical transformations, the transformation of the canonical momenta [Eq. (6)]
depends on the Hamiltonian. In the Lagrangian formalism, a transformation of the form (1) defines in a unique way the relation
between the primed and unprimed generalized velocities, regardless of the Lagrangian under consideration. The functionF is
arbitrary and it can be chosen in a convenient way, usually to adjustH ′ to some particular form (see below).

By interchanging the primed and the unprimed quantities in Eqs. (5)–(6) we have the equivalent expressions

H ′ =
∂t

∂t′
H − ∂qi

∂t′
pi +

∂F

∂t′
(7)

and
p′j =

∂qi

∂q′j
pi − ∂t

∂q′j
H − ∂F

∂q′j
. (8)

A simple application of these formulas is given by the Hamiltonian

H ′ =
p′2

2m
, (9)

which is the standard one for a free particle. The solution of the corresponding equations of motion is given by

q′ = A + Bt′,

whereA, B are constants. On the other hand, the solution of the equations of motion of a damped harmonic oscillator is given
by

q = Ae−γt cos
√

ω2 − γ2t + Be−γt sin
√

ω2 − γ2t,

whereω, γ are constants (we shall assume thatγ < ω) andA,B are constants determined by the initial conditions. The two
solutions can be connected by the transformation

q′ = eγtq sec
√

ω2 − γ2t, t′ =
tan

√
ω2 − γ2t√

ω2 − γ2
(10)

(cf. Ref. [4]). Then, Eq. (6) gives

p′ = e−γt

(
p− ∂F

∂q

)
cos

√
ω2 − γ2t

and from Eq. (5) we obtain

H =
e−2γt

2m

(
p− ∂F

∂q

)2

−
(

p− ∂F

∂q

)
q
(
γ +

√
ω2 − γ2 tan

√
ω2 − γ2t

)
− ∂F

∂t
. (11)

As pointed out above, the functionF (q, t) is arbitrary, but ifF is appropriately chosen we can get some convenient or recog-
nizable expression forH.
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Since most Hamiltonians do not contain linear terms in the momenta, we can look for a functionF such that the linear
terms inp are eliminated from (11). This condition amounts to

∂F

∂q
= −mqe2γt

(
γ +

√
ω2 − γ2 tan

√
ω2 − γ2t

)
.

This equation determines the functionF up to an additive function oft only. Taking

F = −m

2
q2e2γt

(
γ +

√
ω2 − γ2 tan

√
ω2 − γ2t

)
(12)

one finds that (11) reduces to

H = e−2γt p2

2m
+ e2γt m

2
ω2q2. (13)

According to the previous discussion this last Hamiltonian must correspond to a damped harmonic oscillator, as one can verify
making use of the Hamilton equations. It may be noticed that when the damping is absent (γ = 0), this is the standard
Hamiltonian for a harmonic oscillator.

3. Invariance of the Hamiltonian under coordinate transformations in the extended configuration
space

The transformation (1) preserves the form of the equations of motion defined by the HamiltonianH(qi, pi, t) if

H ′(qi, pi, t) = H(q′i, p
′
i, t

′) (14)

that is [see Eq. (5)] ,

H(qi, pi, t) =
∂t′

∂t
H(q′i, p

′
i, t

′)− ∂q′i
∂t

p′i −
∂F

∂t
, (15)

for some functionF (qi, t). Due to their connection with the symmetries defined by (2), the transformations satisfying (14) or
(15) will also be called variational symmetries.

As pointed out at the Introduction, the one-parameter families of transformations satisfying (15) are especially important
because they lead to nontrivial constants of motion. Indeed, if

q′i = q′i(qj , t, s), t′ = t′(qi, t, s), (16)

is a family of transformations depending on the parameters, such thatq′i(qj , t, 0) = qi andt′(qi, t, 0) = t (that is, whens = 0
the transformation is the identity), with the definitions

ηi(qj , t) ≡ ∂q′i(qj , t, s)
∂s

∣∣∣∣
s=0

, ξ(qi, t) ≡ ∂t′(qi, t, s)
∂s

∣∣∣∣
s=0

, (17)

taking the partial derivative of both sides of (6) with respect tos, ats = 0, we obtain

0 =
∂p′j
∂s

∣∣∣∣
s=0

+ pi
∂ηi

∂qj
−H

∂ξ

∂qj
+

∂G

∂qj
,

with G(qi, t) ≡ ∂F/∂s|s=0. Then, taking the partial derivative of both sides of (15) with respect tos, ats = 0, we get

0 =
∂ξ

∂t
H +

∂H

∂qi
ηi +

∂H

∂pi

(
−pj

∂ηj

∂qi
+ H

∂ξ

∂qi
− ∂G

∂qi

)
+

∂H

∂t
ξ − ∂ηi

∂t
pi − ∂G

∂t
. (18)

For a given Hamiltonian this last equation determines then + 1 functionsηi, ξ of then + 1 variablesqi, t, which generate a
local one-parameter group of symmetries ofH (see the example below). If the Hamilton equations are satisfied then Eq. (18)
reduces to

d
dt

(
ξH − ηipi −G

)
= 0, (19)

which means thatξH − ηipi −G is a (nontrivial) constant of motion.
A simple but illustrative example is given by the Hamiltonian (13). In order to find the one-parameter groups of symmetries

of (13) we substitute this expression into Eq. (18), which gives

0 =
∂ξ

∂t

(
e−2γt p2

2m
+ e2γt m

2
ω2q2

)
+ e2γtmω2qη + e−2γt p

m

[
−p

∂η

∂q
+

(
e−2γt p2

2m
+ e2γt m

2
ω2q2

)
∂ξ

∂q
− ∂G

∂q

]

+
(
−e−2γt γp2

m
+ e2γtmγω2q2

)
ξ − ∂η

∂t
p− ∂G

∂t
.
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Fortunately, the right-hand side of the last equation is a (third degree) polynomial inp, which must vanish for all values ofq, p
andt (which at this level are independent); hence, equating to zero the coefficients ofp3, p2, p1 andp0 we get

e−4γt 1
2m2

∂ξ

∂q
= 0, (20)

e−2γt

(
1

2m

∂ξ

∂t
− 1

m

∂η

∂q
− γ

m
ξ

)
= 0, (21)

1
2
ω2q2 ∂ξ

∂q
− 1

m
e−2γt ∂G

∂q
− ∂η

∂t
= 0, (22)

e2γt

(
m

2
ω2q2 ∂ξ

∂t
+ mω2qη + mγω2q2ξ

)
− ∂G

∂t
= 0. (23)

Equations (20) and (21) imply that

ξ = A(t), η =
(

1
2

dA

dt
− γA

)
q + B(t), (24)

whereA(t) andB(t) are functions oft only. Then, Eqs. (22)–(23) yield

∂G

∂q
= −me2γt

(
1
2

d2A

dt2
q − γ

dA

dt
q +

dB

dt

)
(25)

and
∂G

∂t
= me2γtω2

(
dA

dt
q2 + Bq

)
. (26)

The equality of the mixed second partial derivatives ofG gives the condition

2γ2 dA

dt
q − 2γ

dB

dt
− 1

2
d3A

dt3
q − d2B

dt2
= 2ω2 dA

dt
q + ω2B,

which must hold for all values ofq. Hence,

d3A

dt3
+ 4(ω2 − γ2)

dA

dt
= 0,

d2B

dt2
+ 2γ

dB

dt
+ ω2B = 0. (27)

The general solution of the first of Eqs. (27) contains three arbitrary constants while the general solution of the second one
contains two additional arbitrary constants; therefore, the Hamiltonian (13) possesses five one-parameter groups of variational
symmetries. Perhaps the simplest of these groups corresponds toA = c1, B = 0, wherec1 is a constant. Then,ξ = c1 and
η = −c1γq. From Eqs. (25)–(26) we see thatG can be taken equal to zero and the constant of motion associated with this
symmetry is [see Eq. (19)]

ξH − ηipi −G = c1H + c1γqp = c1

(
e−2γt p2

2m
+ e2γt m

2
ω2q2 + γqp

)
.

It may be noticed that whenγ = 0 the expression inside the parenthesis is the energy of an undamped harmonic oscillator.
(The one-parameter group of transformations generated byξ = c1, η = −c1γq is given byt′ = t + c1s, q′ = qe−γc1s [see
Eqs. (17)]).

4. Concluding remarks

The results of Sec. 2 show once again that the form of the Hamilton equations can be preserved by coordinate transformations
that are not canonical transformations (another example are the canonoid transformations, see,e.g., Ref. [3], Sec. 5.5).

Even though the one-parameter families of variational symmetries of a Lagrangian or a Hamiltonian may not lead to all the
conserved quantities of the corresponding system, the fact that they are determined by the functionsξ andηi, which depend on
qi andt only, simplifies their finding, as illustrated in the example given above.

As shown in Ref. [4], each solution of the Schrödinger equation for a harmonic oscillator can be expressed as the product
of a solution of the Schrödinger equation for a free particle by certain fixed factor, making use of the coordinate transformation
(1) with γ = 0. It turns out that a similar result is applicable in the example given in Sec. 2: each solution of the Schrödinger
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equation corresponding to the Hamiltonian (13), Ψ(q, t), can
be expressed as the product of a solution of the Schrödinger
equation for a free particle,Ψ′(q′, t′), by a fixed factor, mak-
ing use of the coordinate transformation (1). Specifically,

Ψ(q, t) = (eγt sec
√

ω2 − γ2t)1/2 eiF/~Ψ′(q′, t′)

with F defined by (12), provided that the coordinates(q, t)
are related to(q′, t′) through (1). Moreover,Ψ is normal-
ized if and only if Ψ′ is normalized (thanks to the factor
(eγt sec

√
ω2 − γ2t)1/2).

In the transformations considered here the time can be
transformed in an arbitrary manner jointly with the coordi-
nates, and in this sense we obtain a treatment similar to that
of the generally covariant systems studied in field theory (see,
e.g., Ref. [5]).
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