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Complex band structure of two-dimensional thermal wave crystals
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We investigate the complex band structure of temperature oscillations in a two-dimensional thermal wave crystal. We use the Cattaneo-
Vernotte heat model to describe the thermal properties. We apply the plane wave method to calculate the complex band structure of a square
lattice composed of an infinite array of square bars. We find that a complete band gap exists across the first Brillouin zone, where temperature
oscillations are forbidden. This has potential applications in thermal management, thermal cloaking, and other areas.
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1. Introduction

Fourier’s law is the foundation of classical heat conduction
analysis. It states that the heat flux is proportional to the
negative gradient of temperature. When combined with the
law of energy conservation this gives rise to a parabolic-type
heat conduction equation. The problem with this equation is
that its solutions assume an infinite speed for heat transmis-
sion [1]. This is incompatible with the observed finite speed
of heat propagation in many materials, such as ultra-low-
temperature systems [2], biological tissues [3], and nanoma-
terials [4]. To address this issue, models with non-Fourier
heat conduction equations have been developed. These non-
Fourier models take into account the finite speed of heat prop-
agation, and they can be used to accurately model heat trans-
fer in a wide range of materials [5].

In 1958 the first non-Fourier heat model was developed
independently by Cattaneo [6] and Vernotte [7] introducing a
time delay between the heat flux and the temperature gradi-
ent. This modification known as the Cattaneo-Vernotte (CV)
model, allows for a finite speed of heat propagation. The
CV model is consistent with experimental results in a variety
of materials [8]. This makes it a valuable tool for modeling
heat transfer in non-Fourier materials where the finite speed
of heat propagation is important.

The CV model is the simplest method to analyze non-
Fourier heat propagation. However, it is a relatively crude
model because it incorporates all the microscopic effects of
heat conduction into a single time delay parameter. To de-
scribe the physical process more precisely, other non-Fourier
heat conduction models have been developed, such as the
dual-phase-lag model [9] and the three-phase-dual model
[10]. Recently, A. I. Zhmakin reported a review of non-
Fourier heat conduction models [5].

The manipulation of waves is a key issue for the con-
trol of energy via interference phenomena. In the case of a
time-harmonic source of heat, there exist wave-like solutions
for the CV model where the interference of temperature os-
cillations is possible. Considering the possibility of thermal
waves in periodic media, in 2018, A. L. Chenet al reported
the band structure for thermal wave oscillations in a one-
dimensional Thermal Wave Crystal (TWC) [11]. TWCs are
periodic arrays of two materials where thermal oscillations
and interference phenomena of waves can exist in a compos-
ite medium. The periodicity of a TWC is described by the
position-dependent parameters of densityρ(x), specific heat
c(x), thermal conductivityκ(x), and time delayτ(x).

In this paper, we investigate the complex band structure
of two-dimensional periodic structures made of materials that
follow the CV model. We apply the plane-wave method
(PWM) to calculate the complex band structure. Our results
show that it is possible to obtain a complete band gap in the
First Brillouin Zone. The complex band structure is deter-
mined by considering an eigenvalue-problem with the wave
vector as the eigenvalue,k(ω).

Our inspiration for determining the complex band struc-
ture comes from the study of photonic crystals (PCs) [12].
PCs are periodic structures that exhibit band gaps for elec-
tromagnetic waves. Most PCs have a real and frequency-
independent dielectric function. For this type of PCs, the
PWM has been widely used to calculate the band structure
by solving an eigenvalue problem for the frequency at a fixed
wave vector,ω(k).

In the field of PCs, some researchers have become in-
terested in structures with frequency-dependent, dispersive,
or dissipative material components [13,14]. The existence
of frequency-dependent components in a PC introduces dif-
ficulty in the calculation because it is no longer possible to
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obtain a canonical eigenvalue problem with the frequency as
an eigenvalue. The problem must be modified to determine
the wave vector at a fixed frequency,k(ω).

The proposal to control heat conduction via interfer-
ence phenomena in periodic structures has recently attracted
widespread attention, both theoretically and experimentally
[15]. The absence of temperature oscillations in a periodic
lattice can lead to unusual physical phenomena for thermal
conduction [16]. The idea is to create thermal metamateri-
als that can control the flux of heat, similarly to how light
is controlled by PCs. For example, a defect state in a peri-
odic structure can be locked in an excited state if its energy
falls within the band gap. The possible applications of TWC
include heat waveguides [17], thermal isolators [18-20], ther-
mal diodes [21]. and thermal cloaking [22].

Of particular interest is the prospect of achieving a com-
plete band gap, which is defined as a stop band in which ther-
mal vibrations are prohibited for all Bloch vectors. There are
many important motivations for pursuing this study. For in-
stance, recent studies have shown that it is possible to control
the flow of heat to design architected thermal devices, such
as thermal camouflage and concentrators [23].

The band structure of TWCs has been calculated for only
a few cases to date. For the case of one-dimensional TWCs,
the band structure has been calculated using the Transfer Ma-
trix Method (TMM) for two different models: the CV model
[11,24-26] and the dual-phase-lag (DPL) model [27]. Re-
cently, we have applied the PWM for the case of CV model
[28].

For the case of two-dimensional TWCs, the band struc-
ture has been calculated for the CV and DPL models by
solving an eigenvalue problem using COMSOL Multiphysics
[29]. Additionally, an attempt has been made to utilize PWM;
however, it has not been appropriately implemented in a wave
equation that captures the position-dependent material pa-
rameters [30].

In this paper, we perform the band structure calculation
of 2D TWC using the PWM. The theoretical details are de-
scribed as follows. In Sec. 2, we present the deduction of the
wave equation in the frequency domain. In Sec. 3 we apply
the PWM to the wave equation. Section 4 presents our results
and finally in Sec. 5 we have our conclusions.

2. The wave equation in the frequency-domain

The CV heat conduction model proposes a modification of
Fourier’s law by introducing a time delay into the heat flux
vector, in the form [6,7]

q[x, t + τ(x)] = −κ(x)∇T (x, t), (1)

where T (x, t), q(x, t), κ(x) and τ(x) are the position-
dependent temperature, flux vector, thermal conductivity, and
time delay respectively. We expand the left-hand side of
Eq. (1) using the Taylor series, retaining only the first two
terms to have

q(x, t) + τ(x)
∂

∂t
q(x, t) = −κ(x)∇T (x, t). (2)

The equation of energy conservation in the absence of in-
ternal energy sources is given by

∇ · q(x, t) = −ρ(x)c(x)
∂

∂t
T (x, t), (3)

whereρ(x) andc(x) are the position-dependent density and
specific heat, respectively.

In this work, we investigate thermal wave propagation in
a 2D periodic lattice, wherex − y is the plane of period-
icity. The medium along the z-axis is homogeneous, and
the propagation of the wave vectork is parallel to the pe-
riodicity plane. We analyze a periodic structure that has a
square unit cell of lengthD, which is illustrated in Fig. 1a).
The dark-gray square of lengthd corresponds to material
a and is surrounded by another light-gray medium, which
corresponds to materialb. We consider a structure where
we have the following periodic parameters: densityρ(x) =
ρ(x + R), specific heatc(x) = c(x + R), thermal conduc-
tivity κ(x) = κ(x + R), and time delayτ(x) = τ(x + R),
whereR = D(nxî + ny ĵ) is a lattice vector in thex − y
plane defined by the integersnx andny. We seek to find the
band structure for an infinite array of parallel rods of square
section with their axes cutting thex − y plane in theR sites
of a square lattice, as we illustrate in Fig. 1b).

FIGURE 1. a) Square unit cell of sideD. The square cylinder at the
center has a sided. The dark gray zone at the center corresponds to
materiala and the surrounding area corresponds to materialb. b)
Infinite lattice constructed by the repetition of the unit cell.
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The position-dependence of the material parameters in
the unit cell are given by the following equations, for the den-
sity

ρ(x) = ρb + (ρa − ρb) θ

(
D

2
− |x|

)(
D

2
− |y|

)
, (4)

heat capacity

c(x) = cb + (ca − cb) θ

(
D

2
− |x|

)(
D

2
− |y|

)
, (5)

thermal conductivity

κ(x) = κb + (κa − κb) θ

(
D

2
− |x|

) (
D

2
− |y|

)
, (6)

and time delay

τ(x) = τb + (τa − τb) θ

(
D

2
− |x|

)(
D

2
− |y|

)
, (7)

respectively. In Eqs. (4)-(7) the values ofρa, ca, κa andτa

correspond to the values of materiala and, in the same man-
nerρb, cb, κb andτb correspond to the values of materialb.
The Heaviside function is defined by

θ(α) =

{
1, if α ≥ 0
0, if α < 0

. (8)

Considering the case of harmonic thermal waves, the
Fourier transform allows switching from the time domain
into the frequency domain. The Fourier Transforms for the
temperature and heat flux are [31]

T (x, t) =
1√
2π

∫ ∞

−∞
T (x, ω)e−iωtdω, (9)

and

q(x, t) =
1√
2π

∫ ∞

−∞
q(x, ω)e−iωtdω. (10)

In the frequency domain, Eqs. (2) and (3) can be written
as

q(x, ω)[1− iωτ(x)] = −κ(x)∇T (x, ω), (11)

and

∇ · q(x, ω) = iωρ(x)c(x)T (x, ω). (12)

Combining Eqs. (11) and (12) we obtain

∇ · α(x)∇T (x, ω) = iωβ(x)T (x, ω), (13)

where we have defined

α(x) =
κ(x)

iωτ(x)− 1
, (14)

and

β(x) = ρ(x)c(x). (15)

The functionsα(x) and β(x) are periodic position-
dependent variables defined by

α(x) = αb + (αa − αb) θ

(
D

2
− |x|

)(
D

2
− |y|

)
, (16)

and

β(x) = βb + (βa − βb) θ

(
D

2
− |x|

)(
D

2
− |y|

)
, (17)

where we have introduced the following variables

αa =
κa

iωτa − 1
, (18)

αb =
κb

iωτb − 1
, (19)

βa = ρaca, (20)

and

βb = ρbcb. (21)

3. The eigenvalue equation for the complex
wave vector

In this section, we investigate the utilization of the PWM
technique in the analysis of complex band structures. No-
tably, Zheng-Yang Liet al recently employed the PWM
method to study two-dimensional structures [30]. It is note-
worthy that in their work, the PWM technique was employed
to examine a wave equation that specifically characterizes a
homogeneous medium. However, for the PWM approach to
be effectively applied, it is crucial to have a wave equation
that allows for the definition of position-dependent material
parameters within the unit cell. Our derived Eq. (13) in Sec. 2
serves as an illustrative example of such an equation, high-
lighting the significance of this capability.

Since the medium is periodic, the material parameters are
periodic and can be expanded as a Fourier series in the form

α(x) =
∑

G

αGeiG·x (22)

and

β(x) =
∑

G

βGeiG·x, (23)

whereαG andβG are Fourier coefficients. The reciprocal
lattice vectors are defined as

G = Gxî + Gy ĵ =
2π

D
(mxî + my ĵ), (24)

wheremx andmy are integer numbers.
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The Fourier coefficients are obtained by integrating
Eqs. (22) and (23) in the form

αG =
1

D2

∫ D/2

−D/2

∫ D/2

−D/2

α(x) exp(−iG · x)dxdy, (25)

and

βG =
1

D2

∫ D/2

−D/2

∫ D/2

−D/2

β(x) exp(−iG · x)dxdy. (26)

After integrating Eqs. (25) and (26) we obtain

αG = [αb + f(αa − αb)] δG,0 + f(αa − αb)

× sin(Gx(d/2))
Gx(d/2)

sin(Gy(d/2))
Gy(d/2)

(1− δG,0), (27)

and

βG = [βb + f(βa − βb)] δG,0 + f(βa − βb)

× sin(Gx(d/2))
Gx(d/2)

sin(Gy(d/2))
Gy(d/2)

(1− δG,0), (28)

where the filling fractionf is

f =
(

d

D

)2

. (29)

The temperature satisfies the Bloch Theorem and can be
expanded in terms of plane waves in the form

T (x, ω) =
∑

G

TGei(k+G)·x, (30)

wherek is a wave vector in the first Brillouin zone. Substitu-
tion of Eqs. (22), (23) and (30) in Eq. (13) yields

∑

G′
[αG−G′(k + G) · (k + G′) + iωβG−G′ ]TG′ = 0.

(31)

To solve this equation, we write an eigenvalue problem
for the directions of high symmetry defined by the direc-
tions Γ → X, X → M andM → Γ, whereΓ = (0, 0),
X = [(2π)/D](1/2, 0) andM = [(2π)/D](1/2, 1/2).

3.1. Γ → X direction

In this direction, the wave vector is only in thex-direction,
k = (kx, 0). In this case, it is possible to write the Eq. (31)
as

∑

G′

[
k2

xAG−G′ + kxBG−G′ + CG−G′
]
TG′ = 0, (32)

where we have introduced

AG−G′ = αG−G′ , (33)

BG−G′ = αG−G′(Gx + G′x), (34)

and

CG−G′ = αG−G′G ·G′ + iωβG−G′ . (35)

The Eq. (32) defines a set of equations that give a matrix
equation in the form

(k2
xA + kxB + C)T = 0. (36)

HereA, B andC are matrices withn× n elements given
by AG−G′ ,BG−G′ andCG−G′ defined by Eqs. (33)-(35) .

We reformulate the Eq. (36) as a complex eigenvalue
problem in the form

(
C B
O I

)[
T

kxT

]
= kx

(
O −A
I O

)[
T

kxT

]
, (37)

where I and O are matrices of sizen × n that define
the identity-matrix and the zero-matrix, respectively. From
Eq. (37) we may obtain a complex wave vectorkx corre-
sponding to theΓ → X direction for a given real frequency
ω. By performing a frequency scan, we can obtain the com-
plex band structure.

3.2. Γ → M direction

In this case, the wave vector is in theΓ → M direction. The
wave vector isk = (kx, ky), but in this case theky compo-
nent is equal tokx, ky = kx. For this direction, we proceed
similarly to the previous directionΓ → X. Starting with
Eq. (31) we obtain a set of equations that can be written in
the same manner as Eq. (32). The difference is that in this
case, the matrix elements are defined by the relations

AG−G′ = αG−G′ , (38)

BG−G′ =
1
2
αG−G′(Gx + G′x + Gy + G′y), (39)

and

CG−G′ =
1
2
αG−G′G ·G′ +

1
2
iωβG−G′ . (40)

3.3. X → M direction

In this case, the wave vector isk = (π/D, ky). Starting with
Eq. (31) we obtain an eigenvalue equation forky in the form

(k2
yA + kyB + C)T = 0, (41)

where the elements of the matricesA, B andC are given by

AG−G′ = αG−G′ , (42)

BG−G′ =
1
2
αG−G′(Gy + G′y), (43)

and

CG−G′ = αG−G′

[
G ·G′ +

π

d
(Gx + G′x +

(π

d

)2
]

+ iωβG−G′ . (44)
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The Eq. (41) can be written as an eigenvalue problem as
the form

(
C B
O I

) [
T

kyT

]
= ky

(
O −A
I O

)[
T

kyT

]
, (45)

whereky is the complex eigenvalue.

4. Numerical results

We now apply the theory described in Section II to the case
of a 2D square array of rectangular bars. The materiala is a
stratum-like material, and the layerb is a dermis-like material
[11]. For the materiala we have the following parameters:
thermal conductivityka = 0.235 W m−1 K−1, specific heat
ca = 3600 J kg−1 K−1, densityρa = 1500 kg m−3, and
time delayτa = 1 s. For the materialb we have the following
parameters: thermal conductivitykb = 0.445 W m−1 K−1,
specific heatcb = 3300 J kg−1 K−1, densityρb = 1116 kg
m−3, and relaxation timeτb = 20 s. The period of the unit
cell isD = 0.001 m.

As a specific application of our method, we consider the
case of a filling fractionf = 0.7 For the calculation of the
band structure shown here we use a total of 121 plane waves.
However, the calculation was also performed with 196 plane
waves and no difference was observed in the band structure.
The band structure is shown in Fig. 2, where the wave vectors
are in the abscissa coordinate, and in the ordinate coordinate
we have the frequency,ν = ω/(2π). The main effect of
this band structure is the existence of a complete band gap
through the whole First Brillouin Zone, which is illustrated
in red color. We also observed a line in theMΓ that we mark
with a green arrow. These solutions correspond to evanescent

FIGURE 2. Band structure for thermal waves of a 2D TWC com-
posed of an arrangement of square bars in a square lattice. The bars
are made of materialsa and the surrounding background has mate-
rial b. The filling fraction of materiala in the unit cell isf = 0.7.
We observe a complete band gap with red color.

modes and have been previously reported in PCs where the
PWM has been applied to calculate the complex relation dis-
persion. [13,14,32].

5. Conclusions

For computing the band structure of thermal waves, we have
developed a theoretical formalism. We found that an eigen-
value problem for the frequency cannot be obtained for the
CV model. The wave vector at a certain frequency may nev-
ertheless be determined by solving an eigenvalue problem.
We applied our formalism to the calculation of a square array
of square bars of stratum-like material in a dermis-like ma-
terial background. We achieve a well-converged band struc-
ture, in which exists a complete band gap in the FBZ.
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