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Complex band structure of two-dimensional thermal wave crystals
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We investigate the complex band structure of temperature oscillations in a two-dimensional thermal wave crystal. We use the Cattaneo-
Vernotte heat model to describe the thermal properties. We apply the plane wave method to calculate the complex band structure of a squar
lattice composed of an infinite array of square bars. We find that a complete band gap exists across the first Brillouin zone, where temperature
oscillations are forbidden. This has potential applications in thermal management, thermal cloaking, and other areas.
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1. Introduction The manipulation of waves is a key issue for the con-
trol of energy via interference phenomena. In the case of a
Fourier’s law is the foundation of classical heat conductiontime-harmonic source of heat, there exist wave-like solutions
analysis. It states that the heat flux is proportional to thefor the CV model where the interference of temperature os-
negative gradient of temperature. When combined with theillations is possible. Considering the possibility of thermal
law of energy conservation this gives rise to a parabolic-typavaves in periodic media, in 2018, A. L. Chenal reported
heat conduction equation. The problem with this equation ishe band structure for thermal wave oscillations in a one-
that its solutions assume an infinite speed for heat transmislimensional Thermal Wave Crystal (TWC) [11]. TWCs are
sion [1]. This is incompatible with the observed finite speedperiodic arrays of two materials where thermal oscillations
of heat propagation in many materials, such as ultra-lowand interference phenomena of waves can exist in a compos-
temperature systems [2], biological tissues [3], and nanomdte medium. The periodicity of a TWC is described by the
terials [4]. To address this issue, models with non-Fourieposition-dependent parameters of dengity), specific heat
heat conduction equations have been developed. These nat{x), thermal conductivity:(x), and time delay(x).
Fourier models take into account the finite speed of heat prop- In this paper, we investigate the complex band structure
agation, and they can be used to accurately model heat transftwo-dimensional periodic structures made of materials that
fer in a wide range of materials [5]. follow the CV model. We apply the plane-wave method
In 1958 the first non-Fourier heat model was developedPWM) to calculate the complex band structure. Our results
independently by Cattaneo [6] and Vernotte [7] introducing ashow that it is possible to obtain a complete band gap in the
time delay between the heat flux and the temperature gradrirst Brillouin Zone. The complex band structure is deter-
ent. This modification known as the Cattaneo-Vernotte (CV)mined by considering an eigenvalue-problem with the wave
model, allows for a finite speed of heat propagation. Thevector as the eigenvaluk(w).
CV model is consistent with experimental results in a variety ~ Our inspiration for determining the complex band struc-
of materials [8]. This makes it a valuable tool for modeling ture comes from the study of photonic crystals (PCs) [12].
heat transfer in non-Fourier materials where the finite spee®Cs are periodic structures that exhibit band gaps for elec-
of heat propagation is important. tromagnetic waves. Most PCs have a real and frequency-
The CV model is the simplest method to analyze non4ndependent dielectric function. For this type of PCs, the
Fourier heat propagation. However, it is a relatively crudePWM has been widely used to calculate the band structure
model because it incorporates all the microscopic effects olfy solving an eigenvalue problem for the frequency at a fixed
heat conduction into a single time delay parameter. To dewave vectorw(k).
scribe the physical process more precisely, other non-Fourier In the field of PCs, some researchers have become in-
heat conduction models have been developed, such as therested in structures with frequency-dependent, dispersive,
dual-phase-lag model [9] and the three-phase-dual modelr dissipative material components [13,14]. The existence
[10]. Recently, A. I. Zhmakin reported a review of non- of frequency-dependent components in a PC introduces dif-
Fourier heat conduction models [5]. ficulty in the calculation because it is no longer possible to
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obtain a canonical eigenvalue problem with the frequency as
an eigenvalue. The problem must be modified to determine 0
the wave vector at a fixed frequenyfw). q(x, ) + T(X)Qq(xv t)=—rx)VI(x,t). (2

The proposal to control heat conduction via interfer-  Thg gquation of energy conservation in the absence of in-
ence phenomena in periodic structgres has recently attractegynal energy sources is given by
widespread attention, both theoretically and experimentally
[15]. The absence of temperatu.re oscillations in a periodic V-a(x,t) = —p(x)c(x)gT(x,t)7 )
lattice can lead to unusual physical phenomena for thermal ¢
conduction [16]. The idea is to create thermal metamateriwherep(x) andc(x) are the position-dependent density and
als that can control the flux of heat, similarly to how light Specific heat, respectively.
is controlled by PCs. For example, a defect state in a peri- In this work, we investigate thermal wave propagation in
odic structure can be locked in an excited state if its energg 2D periodic lattice, where — y is the plane of period-
falls within the band gap. The possible applications of TWCIcity. The medium along the z-axis is homogeneous, and
include heat waveguides [17], thermal isolators [18-20], therthe propagation of the wave vectkris parallel to the pe-
mal diodes [21]. and thermal cloaking [22]. riodicity plane. We analyze a periodic structure that has a

Of particular interest is the prospect of achieving a com-square unit cell of lengtt), which is illustrated in Fig. 1a).
plete band gap, which is defined as a stop band in which thefthe dark-gray square of length corresponds to material
mal vibrations are prohibited for all Bloch vectors. There area and is surrounded by another light-gray medium, which
many important motivations for pursuing this study. For in-corresponds to material We consider a structure where
stance, recent studies have shown that it is possible to contr¥ie have the following periodic parameters: dengitx) =
the flow of heat to design architected thermal devices, such(x + R), specific heat(x) = c(x + R), thermal conduc-
as thermal camouflage and concentrators [23]. tivity x(x) = x(x + R), and time delayr(x) = 7(x + R),

The band structure of TWCs has been calculated for oniyvhereR = D(n,i + n,j) is a lattice vector in the: — y
a few cases to date. For the case of one-dimensional TWCBlane defined by the integens andn,. We seek to find the
the band structure has been calculated using the Transfer MBand structure for an infinite array of parallel rods of square
trix Method (TMM) for two different models: the CV model Section with their axes cutting the— y plane in theR sites
[11,24-26] and the dual-phase-lag (DPL) model [27]. Re-Of a square lattice, as we illustrate in Fig. 1b).
cently, we have applied the PWM for the case of CV model
[28]. —

For the case of two-dimensional TWCs, the band struc-
ture has been calculated for the CV and DPL models by
solving an eigenvalue problem using COMSOL Multiphysics
[29]. Additionally, an attempt has been made to utilize PWM,; d
however, it has not been appropriately implemented in a wave
equation that captures the position-dependent material pa-
rameters [30].

In this paper, we perform the band structure calculation a)
of 2D TWC using the PWM. The theoretical details are de-
scribed as follows. In Sec. 2, we present the deduction of the
wave equation in the frequency domain. In Sec. 3 we apply
the PWM to the wave equation. Section 4 presents our results
and finally in Sec. 5 we have our conclusions.

D

.

2. The wave equation in the frequency-domain

The CV heat conduction model proposes a modification of

Fourier’s law by introducing a time delay into the heat flux
vector, in the form [6,7]

ax,t + 7(x)] = —k(x)VT(x,1), (1)

where T'(x,t), a(x,t), k(x) and 7(x) are the position- b)
qepende”t temperature, flux vector, thermal conductivif[y, ang gure 1. a) Square unit cell of sid®. The square cylinder at the
tme d9|a¥ respectively. We expanq .the |eﬂ'hand. side ofenter has a sidé The dark gray zone at the center corresponds to
Eq. (1) using the Taylor series, retaining only the first twomateriala and the surrounding area corresponds to matérii)
terms to have Infinite lattice constructed by the repetition of the unit cell.
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The position-dependence of the material parameters in  The functionsa(x) and 8(x) are periodic position-
the unit cell are given by the following equations, for the den-dependent variables defined by
Sity
D D
) =it (o= )6 (5~ 1ol ) (5 = bl) @

heat capacity

e(x) = cp+ (ca — ) 0 (D - |x|> (D - |y> . (5) B(x) =By + (Ba — Bp) 0 ([2) - Ix> (? - Iyl) , (7

a(x) = @y + (00 — ) 6 (12) - |a;> (12) - |y|) . (16)

and

2 2
thermal conductivity where we have introduced the following variables
D D
) =+ 5o =)0 (5 = ol ) (5 =101 ®) du= (18)
2 2 twT, — 1
and time delay oy = — (19)
D D inb — ].7
) =+ (r =)0 (5~ 1ol ) (5 - ) . D B = pata 20)

respectively. In Egsl4)-(7) the values o, c,, kK, andr, and

correspond to the values of materahnd, in the same man-

ner py, ¢, kp andr, correspond to the values of materal By = pucy. (21)
The Heaviside function is defined by

() = {1’ faz0 8 3. The eigenvalue equation for the complex
0, ffa<0 wave vector

Considering the case of harmonic thermal waves, the i i i o
Fourier transform allows switching from the time domain In th|§ SEC.IIOI’], we |nve§t|gate the utilization of the PWM
into the frequency domain. The Fourier Transforms for thet€chnique in the analysis of complex band structures. No-
temperature and heat flux are [31] tably, Zheng-Yang L|gt al rgcently employed the I_DWM

method to study two-dimensional structures [30]. It is note-

T(x,t) = 1 /‘X’ T(x, w)e ™ duw, ©) worthy that in their work, t_he PWM tech.n.ique was emplqyed
Vor J_ o to examine a wave equation that specifically characterizes a
homogeneous medium. However, for the PWM approach to

be effectively applied, it is crucial to have a wave equation

1 * iwt that allows for the definition of position-dependent material

alx.t) = Vor [m alx,w)e™ dw. (10) parameters within the unit cell. Our derived Eq. (13) in Sec. 2
serves as an illustrative example of such an equation, high-

lighting the significance of this capability.

and

In the frequency domain, Eqs2)(and 3) can be written

as . L o .
Since the medium is periodic, the material parameters are
a(x, w)[1 — iwr(x)] = —k(x) VT (x,w), (11)  Pperiodic and can be expanded as a Fourier series in the form
and a(x) = Z age'Gx (22)
V- q(x,w) = iwp(x)e(x)T(x,w). (12) N
and

Combining Eqgs./11) and (12) we obtain
V- ax)VT(x,w) = iwlB(x)T(x,w), (13) Blx) = ZﬂGeiG'xa (23)
G

where we have defined ) o ]
whereag and Gg are Fourier coefficients. The reciprocal

a(x) = _’ii, (14) lattice vectors are defined as
iwr(x) —1
A ~ 27 ~ ~
B(x) = p(x)c(x). (15)  wherem, andm,, are integer numbers.
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The Fourier coefficients are obtained by integratingand

Egs. 22) and 23) in the form

D/2  D/2
ag = /D/Z/D/Q x) exp(—iG - x)dzdy, (25)
and
D/2 D/2
fa = Dz /D/2 / by x) exp(—iG - x)dxdy. (26)
After integrating Eqs.25) and 26) we obtain
ag = [ap + flae — )| a0 + floa — )
sin(G4(d/2)) sin(Gy(d/2))
Gaf2) Gyapz) ek @D
and
Ba = [Bp + f(Ba — B)] 0,0 + [(Ba — Bb)
sin(G,(d/2)) sin(Gy(d/2))
G Gy e @9
where the filling fractionf is
2
r=(5) 29)

Co-g =ag-¢G -G + wlg_qg’- (35)

The Eqg. 82) defines a set of equations that give a matrix
equation in the form

(k2A + k,B+ C)T = 0. (36)

HereA, B andC are matrices witlh x n elements given
by Ag_a/,Ba-a’ andCq_q- defined by Eqs./33)-(35) .
We reformulate the Eq/36) as a complex eigenvalue

problem in the form
C B T —k O -A T
O I/ |kT| ™\I O k. T|’

where I and O are matrices of sizen x n that define
the identity-matrix and the zero-matrix, respectively. From
Eq. 37) we may obtain a complex wave vecthky corre-
sponding to thd* — X direction for a given real frequency
w. By performing a frequency scan, we can obtain the com-
plex band structure.

(37)

3.2. T — M direction

In this case, the wave vector is in the— M direction. The
wave vector ik = (k,, k), but in this case th&, compo-
nent is equal td,, k, = k. For this direction, we proceed

The temperature satisfies the Bloch Theorem and can bgimilarly to the previous directiol" — X. Starting with

expanded in terms of plane waves in the form
W) — Z TGei(kJrG)'x’
G

wherek is a wave vector in the first Brillouin zone. Substitu-
tion of Eqgs. (22), (23) and (30) in Eq. (13) yields

(30)

Y lac-c(k+G) - (k+G') +iwfc-a/] Ter = 0.
¢ (31)

To solve this equation, we write an eigenvalue problem
for the directions of high symmetry defined by the direc-

tionsT' — X, X — M andM — T, whereI' = (0,0),
X =[(2m)/D](1/2,0) andM = [(27)/D](1/2,1/2).

3.1. T — X direction
In this direction, the wave vector is only in thedirection,

k = (k;,0). In this case, it is possible to write the EQ1J
as

Z [k2Ac-c' + ksBa-a + Ca-a'] Tar =0, (32)
G/
where we have introduced
Ag-¢ = ag-a’, (33)
Bg_-a = ag-c (Gs +GY), (34)

Eq. (31) we obtain a set of equations that can be written in
the same manner as ER2f. The difference is that in this
case, the matrix elements are defined by the relations

Ag_¢' = ag-a, (38)
1
Bg_¢' = iacfc/(GI + G, + Gy + G, (39)
and
1 , 1.
CG—G’ = ia(;_(;/G -G + 510)5(;_(;/‘ (40)

3.3. X — M direction

In this case, the wave vectorks= (7/D, k, ). Starting with
Eq. (31) we obtain an eigenvalue equation fgrin the form

(kA +k,B+C)T =0, (41)

where the elements of the matricksB andC are given by

Ag-c' = ag-a, (42)
1
Bg_g = §OéG7G’ (GU + G;), (43)
and
_ e r (TN
Co_g =ag_a |G- G +d(Gm+Gm+(d) :|
+iwlBg_a'- (44)
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The Eqg. (41) can be written as an eigenvalue problem as 200 y—=;

e M e e N

o 1)|kT I O)|kT

wherek, is the complex eigenvalue.

Frequency (H
=
o
o

75 1
4. Numerical results =y

25 1
We now apply the theory described in Section Il to the case o M
of a 2D square array of rectangular bars. The materiala r

stratum-like material, and the laykis a dermis-like material £ 5 re 2. Band structure for thermal waves of a 2D TWC com-
[11]. For the m':'_‘t?”ah we have the following pa'jé}mEterS: posed of an arrangement of square bars in a square lattice. The bars
thermal conductivityt, = 0.235 W m~! K~!, specific heat  are made of materiatsand the surrounding background has mate-
ca = 3600 J kg=! K1, densityp, = 1500 kg m~3, and  rial b. The filling fraction of materiak in the unit cell isf = 0.7.

time delayr, = 1 s. For the materiab we have the following  We observe a complete band gap with red color.

parameters: thermal conductivity = 0.445 W m~* K1, . _
specific heat;, = 3300 J kg~! K—1, densityp, = 1116 kg ~ modes and have been previously reported in PCs where the

m~3, and relaxation time;, = 20 s. The period of the unit PWM has been applied to calculate the complex relation dis-
cellis D = 0.001 m. persion. [13,14,32].

As a specific application of our method, we consider the
case of a filling fractionf = 0.7 For the calculation of the 5§  Conclusions
band structure shown here we use a total of 121 plane waves.
However, the calculation was also performed with 196 pland-or computing the band structure of thermal waves, we have
waves and no difference was observed in the band structurdeveloped a theoretical formalism. We found that an eigen-
The band structure is shown in Fig. 2, where the wave vectorgalue problem for the frequency cannot be obtained for the
are in the abscissa coordinate, and in the ordinate coordina@V model. The wave vector at a certain frequency may nev-
we have the frequency; = w/(27). The main effect of ertheless be determined by solving an eigenvalue problem.
this band structure is the existence of a complete band gaye applied our formalism to the calculation of a square array
through the whole First Brillouin Zone, which is illustrated of square bars of stratum-like material in a dermis-like ma-
in red color. We also observed a line in thEI" that we mark  terial background. We achieve a well-converged band struc-
with a green arrow. These solutions correspond to evanescetuire, in which exists a complete band gap in the FBZ.
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