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We explore the interaction between a three-level ladder-type atom and a single-mode quantized cavity, described by a symmetric three-
level ladder-type Jaynes-Cummings model in resonance. By employing the exact solution of the Schrödinger equation, we investigate
how the initial conditions of the atom influence the occupation probabilities of the atomic energy levels, average photon number, and the
nonclassicality of light, assessed through the MandelQ(t) parameter and the Wigner function. Our findings are rigorously validated through
comprehensive numerical simulations, ensuring robust and consistent outcomes.
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1. Introduction

The Jaynes-Cummings model (JCM) has been widely recog-
nized and studied as a fundamental cornerstone in the field
of quantum optics. This essential theoretical framework pro-
vides a detailed description of the interaction between a two-
level atom and a single-mode electromagnetic field in a loss-
less cavity [1]. Constructed under the dipole and rotating-
wave approximations, this model is considered the most fun-
damental for studying the interaction between matter and the
field in the realm of quantum optics, due to its exactly in-
tegrable solutions, making it a powerful tool for exploring
quantum dynamics without resorting to perturbative approx-
imations [2-4].

Over the years, numerous extensions and generaliza-
tions of the original JCM have been investigated to address
more complex and realistic aspects of the radiation-matter
interaction. The mathematical description of these mod-
els becomes more complex, making solving the Schrödinger
equation associated with them an even more challenging
task [5-8]. These extensions include atoms with multi-
ple energy levels [9,10], multiple modes of the electromag-
netic field [13,14], losses [13,14], interaction with external
fields [22-24], to name just a few.

Furthermore, the JCM exhibits significant non-classical
properties and sub-Poissonian and super-Poissonian photon
statistics under different conditions of the electromagnetic
field cavity [5,8]. Furthermore, it has been shown that atomic
transitions between the two levels of the atom differ depend-
ing on whether the atom is initially in its excited state or
its ground state [18-21]. Notably, the collapses and revivals

of atomic transitions have already been experimentally ob-
served [22-24].

However, it has been demonstrated that three-level atoms
offer a more complex framework for understanding and an-
alyzing quantum phenomena compared to two-level atoms,
thereby allowing for the exploration of a wider variety of ef-
fects and physical processes [24,25]. The multifaceted na-
ture of three-level atoms provides an ideal platform for in-
vestigating phenomena such as quantum coherence, decoher-
ence [26,27], and the effects of interaction with external elec-
tromagnetic fields [28]. From an experimental standpoint,
the study of three-level atoms is essential for understanding
and developing technologies based on quantum systems, such
as quantum devices and quantum information systems. For
instance, in the context of the maser (microwave amplifica-
tion by stimulated emission of radiation), the three-level atom
plays a crucial role in signal amplification, enabling the gen-
eration of coherent and high-intensity microwaves [24,29].

In this study, we are interested in investigating the non-
classical properties of light in the JCM associated with a
three-level atom interacting in a lossless single-mode cav-
ity, known as the ladder-type three-level JCM. Specifically,
we analyze how different initial conditions in the atom influ-
ence the system dynamics and its statistical behavior, while
the cavity is initially prepared in a coherent state. The struc-
ture of this work is as follows: in Sec. 2, we apply a time-
dependent unitary transformation and, using the traditional
method to solve the dynamics of the JCM, we find the ex-
act solution of the Schrödinger equation associated with the
Hamiltonian that models the system. Then, in Sec. 3, we
analyze how different initial conditions of the atom influ-
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ence its occupation probabilities across different energy lev-
els, as well as the variation in the expected photon number. In
Sec. 4, we explore the nonclassical properties of light asso-
ciated with this model through the study of the MandelQ(t)
parameter and the Wigner distribution. Finally, in Sec. 5, we
present our conclusions.

2. The ladder-type three-level model

Let us consider an atom with three energy levels:|1〉 rep-
resenting the lowest energy level,|2〉 the intermediate level,
and |3〉 the highest level. The transition frequency between
adjacent levels is constant and denoted asω0, meaning that
the energy differences between transitions|1〉 ↔ |2〉 and
|2〉 ↔ |3〉 are both equal to~ω0, as assumed in the symmet-
ric ladder-type configuration. This atom is situated within a
cavity formed by perfectly reflecting mirrors, which main-
tain a single quantized mode of electromagnetic field with a
frequency ofωc. This configuration is illustrated in Fig. 1.

From Fig. 1, we can observe that this system, known in
the literature as a ladder-type three-level system (Ξ), is char-
acterized by allowing only transitions of the form|1〉 ↔
|2〉 ↔ |3〉. To describe these transitions mathematically, we
employ the special unitary group SU(2); this8-dimensional
Lie group consists of unitary3×3 matrices with determinant
1, known asGell-Mann matrices. These matrices generalize
the Pauli matrices used for two-level systems. For this par-
ticular model, the atomic part of the system can be described
by the operatorŝI+ = |3〉 〈2|+ |2〉 〈1|, Î− = |2〉 〈3|+ |1〉 〈2|,
and Îz = |3〉 〈3| − |1〉 〈1|, which satisfy the commutation
relations[Î+, Î−] = Îz and[Îz, Î±] = ±Î±. From these ma-
trices, the Hamiltonian describing the system can be written
as [27,30]

Ĥ = ω0Îz + ωcâ
†â + g

(
Î+â + Î−â†

)
, (1)

whereg is the coupling constant between the three-level sys-
tem and the cavity field under the dipolar approximation. We
assumeg is consistent across all levels. As usual, the cre-
ation and annihilation operators,â† andâ, describe the cav-
ity field mode, satisfying the bosonic commutation relation
[â, â†] = 1. Additionally, for convenience, we have adopted

FIGURE 1. Scheme of a lossless cavity formed by perfectly reflect-
ing mirrors. Inside the region bounded by these mirrors, a three-
level atom, characterized by a transition frequencyω0, interacts
with a cavity field having a frequencyωc.

the convention of setting~ = 1 (reduced Planck constant)
throughout this study. With this convention, the timet used
in this work is dimensionless. To restore physical units, one
must multiply the dimensionless timet by the inverse cavity
frequency,ω−1

c . Thus, the corresponding physical timescale
is set byω−1

c , related to the period of the electromagnetic
field, T = 2π/ωc.

To tackle the Schr̈odinger equation for this system,
we employ a time-dependent unitary transformationT̂ =
exp

[
iωct(n̂ + Îz)

]
, leading to the interaction representation,

where the Hamiltonian is given by

Ĥ = T̂ ĤT̂ † − iT̂ ∂tT̂ † = ∆Îz + g
(
Î+â + Î−â†

)
, (2)

with ∆ = ω0−ωc representing the detuning between the uni-
modal field frequency and the atomic transition frequency.

To solve the Schr̈odinger equation in the interaction pic-
ture, we follow the traditional approach of expanding the
atom-field state vector at timet as a linear combination or su-
perposition of Fock states{|n〉} [5,27,30]. Since the model
only allows atomic transitions of the form|1〉 ↔ |2〉 ↔ |3〉,
this superposition can be written as

|Ψ(t)〉 =
∞∑

n=0

[C3(t) |n, 3〉+ C2(t) |n + 1, 2〉

+ C1(t) |n + 2, 1〉] , (3)

which reduces the problem to solving the following system
of coupled ordinary differential equations

i
d

dt




C3(t)
C2(t)
C1(t)


=




∆ g
√

n + 1 0
g
√

n+1 0 g
√

n+2
0 g

√
n+2 −∆




×



C3(t)
C2(t)
C1(t)


 . (4)

The general solution to these differential equations can
be quite laborious, but it simplifies significantly when we
consider that the atomic transition frequencies and the cav-
ity field frequency are in resonance, i.e., when∆ = 0. In this
case, the solution can be expressed as




C3(t)
C2(t)
C1(t)


 =




M11(t) M12(t) M13(t)
M21(t) M22(t) M23(t)
M31(t) M32(t) M33(t)







C3(0)
C2(0)
C1(0)


 , (5)

where the quantities|C3(0)|2, |C2(0)|2, and |C1(0)|2 de-
termine the initial distribution of photons in the field at the
upper, intermediate, and lower levels of the atom, respec-
tively. Meanwhile,βn = g

√
2n + 3 represents the gener-

alized Rabi frequency. Additionally, the functionsMij(t),
with i, j = 1, 2, 3, are determined by
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TABLE I. Occupation probabilities of the atomic energy levels.

Atom initially in the upper state Atom initially in the intermediate state Atom initially in the lower state

P 3(t) =
∑∞

n=0 |C3(0)|2|M11(t)|2
∑∞

n=0 |C2(0)|2|M12(t)|2
∑∞

n=0 |C1(0)|2|M13(t)|2

P 2(t) =
∑∞

n=0 |C3(0)|2|M21(t)|2
∑∞

n=0 |C2(0)|2|M22(t)|2
∑∞

n=0 |C1(0)|2|M23(t)|2

P 1(t) =
∑∞

n=0 |C3(0)|2|M31(t)|2
∑∞

n=0 |C2(0)|2|M32(t)|2
∑∞

n=0 |C1(0)|2|M33(t)|2

M11(t) =
g2

β2
n

[(n + 1) cos(βnt) + (n + 2)] ,

M12(t) = −i
g
√

n + 1
βn

sin(βnt),

M13(t) =
g2

√
(n + 1)(n + 2)

β2
n

[cos(βnt)− 1] ,

M21(t) = −i
g
√

n + 1
βn

sin(βnt),

M22(t) = cos(βnt),

M23(t) = −i
g
√

n + 2
βn

sin(βnt),

M31(t) =
g2

√
(n + 1)(n + 2)

β2
n

[cos(βnt)− 1] ,

M32(t) = −i
g
√

n + 2
βn

sin(βnt),

M33(t) =
g2

β2
n

[(n + 2) cos(βnt) + (n + 1)] .

(6)

3. Dynamics

Leveraging the results obtained from Eq. (5), the solution to
the Schr̈odinger equation proposed in Eq. (3) is fully deter-
mined. This solution empowers us to calculate and analyze
any observable or dynamical variable of the system, as will be
demonstrated subsequently. The only requirement is to spec-
ify the initial conditions for both the atom and the cavity field,
represented by|Ψ(0)〉 = |ΨF (0)〉⊗ |ΨA(0)〉. For simplicity,
we assume that the cavity field is initially in a coherent state
|α〉, whereα is an arbitrary complex number, while the atom
can reside in any of its three energy levels.

3.1. Atomic occupation probabilities

In scientific literature, the study of the interaction between
the atom and the cavity field often emphasizes the occupa-
tion probabilities of the energy levels of the atom. This focus
is crucial for understanding the dynamics of the system, as
occupation probability indicates the number of atoms present
in a specific energy state at any given time [5,27].

Within the framework of the analyzed model, the atom
can exist in one of three distinct energy levels: the lower state

(|1〉), the intermediate state(|2〉), and the upper state(|3〉).
The occupation probabilities for each level can be determined
by calculating the expected value of the projection operators
corresponding to each initial atomic condition. These results
are summarized in Table I.

Here, P j(t) = |Cj(t)|2 for j = 1, 2, 3. Additionally,
|Cn(0)|2 = Pn, |C2(0)|2 = Pn+1, and |C1(0)|2 = Pn+2,
wherePn representing the photon probability distribution as-
sociated with the coherent state [5,8]

Pn = e−|α|
2 |α|2n

n!
. (7)

The assignments of|C2(0)|2 and |C1(0)|2 have signifi-
cant physical meaning. A detailed analysis of Eq. (3), which
describes the wave function of the complete system, clarifies
our initial assumption of one additional energy quantum in
the intermediate level and two additional energy quanta in
the lower level compared to the upper level. Therefore, if the
atom is in the intermediate or ground state, the probability of
having zero photons in any of these levels within the field is
zero.

In Fig. 2, we show the atomic occupation probabilities
when the cavity field is initially prepared in a coherent state,
using parameter valuesωc = ω0 = 0.3, g = 1.0, andα = 4.
The subfigures illustrate the probability of occupation of the
atom in the upper state a), intermediate state b), and lower
state c), based on its initial condition.

The subfigures corresponding to the initial condition of
the atom in the upper and lower states (left and right, re-
spectively) reveal that the atomic occupation probabilities for
all three states (upper, intermediate, and lower) exhibit very
similar population dynamics [see dashed red lines], owing to
the initially large average number of photons. Examining the
central subfigure, where the atom starts in the intermediate
state, one might expect equivalent probabilities of transition-
ing to the upper and lower states. However, a closer inspec-
tion [see dashed blue lines] shows a slight difference in pop-
ulation dynamics. This distinction primarily arises because
the lower state initially contains two more photons than the
upper state. This difference becomes more pronounced as the
average number of photons decreases and diminishes as this
number increases.

3.2. Average photon number

Another important observable to analyze is the expectation
value of the number operatorn̂, which indicates how the av-
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FIGURE 2. Atomic occupation probabilities corresponding to the initial condition of the cavity field prepared in a coherent state, using the
following parameter values:ωc = ω0 = 0.3, g = 1.0, andα = 4. Subfigures depict the occupation of the atom in the upper state (left),
intermediate state (center), and lower state (right), based on the initial condition of the atom being in the upper, intermediate, or lower state,
respectively. The black lines represent the analytical results, while the green lines depict the numerical solutions obtained using QuTiP [31].

erage number of photons evolves over time. This is crucial
because it provides a better understanding of the statistical
properties of the system, including the photon distribution
and its relation to the dynamics of the atom-field interaction.
In the context of the three-level model, the expectation value
of the number operator̂n is expressed as

〈n̂〉 = 〈Ψ(t)|n̂|Ψ(t)〉

= n +
∞∑

n=0

[ |C2(t)|2 + 2|C1(t)|2
]
. (8)

From this result, we observe that the average number of pho-
tons over time,〈n̂(t)〉, will remain around the initial average
photon numbern, except for transitions related to the second
term in (8). Specifically, the following results are obtained
for the different initial atomic conditions:

Case I: Atom initially in the upper state

〈n̂〉 = n+
∞∑

n=0

|C3(0)|2
(

g

βn

)2

(n + 1)
{

sin2(βnt)

×+2
(

g

βn

)2

(n+2) [cos(βnt)−1]2
}

. (9)

Case II: Atom initially in the intermediate state

〈n̂〉 = n +
∞∑

n=0

|C2(0)|2
{

cos2(βnt)

+ 2
(

g

βn

)2

(n + 2) sin2(βnt)
}

. (10)

Case III: Atom initially in the lower state

〈n̂〉 = n−
∞∑

n=0

|C1(0)|2
(

g

βn

)2 {
(n + 2) sin2(βnt)

+ 2
(

g

βn

)2

[(n + 2) cos(βnt) + (n + 1)]2
}

. (11)

In Fig. 3, the expected value of the photon number opera-
tor n̂ is shown for the same parameters as in Fig. 2, under dif-
ferent initial atomic conditions. Firstly, in Fig. 3a), it can be
observed that the average number of photons centers around
17, one photon more than its initial state, because the upper
level |3〉 has one more photon than the middle level|2〉, and
two more photons than the lower level (|1〉). In Fig. 3b), we
depict the case when the atom is initially in its intermediate
state, as per Eq. (10). It is evident that due to the absence of
transitions between the upper and lower levels, the average
number of photons remains unchanged at the initial average
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FIGURE 3. The average photon number〈n̂(t)〉 corresponds to the
same initial conditions and parameters as those used in Fig. 2. In
a), the average photon number is shown with the atom initially in
the upper level; in b), with the atom in the intermediate level; and
in c), with the atom in the lower level, respectively. The black lines
represent the analytical results, while the green lines depict the nu-
merical results.

photon number (n = |α|2 = 16). Finally, in Fig. 3c), we
illustrate the scenario when the atom starts in its lower state,
given by Eq. (11); in this case, we observe a very similar be-
havior to case (a), but now the average centers around 15,
one photon less than its initial state, because the lower level
|1〉 has one photon less than the middle level|2〉, and two
photons less than the upper level|3〉.

4. Nonclassical properties

In this section, we derive criteria to detect the nonclassicality
in the considered quantum state, exploring how the atomic
initial conditions impact the nonclassicality of light in the
ladder-type three-level JCM. This analysis will allow us to
better understand how different atomic initial states affect the
nonclassical properties of the coupled light field.

4.1. MandelQ parameter

To analyze the photon statistics of a single-mode radiation
field, we consider Mandel’sQ parameter, defined as [32]

Q =
〈n̂2〉 − 〈n̂〉2

〈n̂〉 − 1. (12)

FIGURE 4. The MandelQ(t) parameter for the same initial condi-
tions and parameters as those used in Fig. 2. In a), the MandelQ(t)
parameter is shown with the atom initially in the upper level; in b),
with the atom in the intermediate level; and in c), with the atom
in the lower level, respectively. As in previous figures, the black
lines depict the analytical results, while the green lines depict the
numerical results.

WhenQ = 0, it indicates a Poissonian distribution, while
for values−1 ≤ Q < 0 (Q > 0), the field exhibits sub-
Poissonian (super-Poissonian) photon statistics. Importantly,
the negativity ofQ is not a necessary criterion to differen-
tiate quantum states into classical and nonclassical regimes;
rather, it serves as a sufficient condition. There are instances
where a state may exhibit nonclassical behavior even when
Q is positive [7].

In Fig. 4, Mandel’sQ parameter is shown for different
atomic initial conditions, with the cavity field initially in a
coherent state and using the same parameter values as in the
previous figures. From this figure, it is observed that Man-
del’sQ parameter exhibits oscillatory behavior with varying
amplitudes. The negativity ofQ confirms the nonclassical
nature of the considered cavity field state. Specifically, in
Fig. 4, it is evident that when the atom is initially in the upper
state, greater nonclassicality is observed compared to cases
where the atom starts in the intermediate or lower states. It
is important to note that for the intermediate case, the sys-
tem consistently exhibits classical behavior, albeit closely ap-
proaching the nonclassical limit. Finally, when the atom is in
its lower level, the behavior is predominantly classical, ex-
cept for minor negative contributions; this can be attributed
to the two additional photons in the lower level compared to
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the upper level, as nonclassicality decreases with increasing
α [5,28].

4.2. Wigner distribution

A way to analyze the nonclassical properties of a state is by
examining its distribution in phase space using the Wigner
function. This function establishes a direct connection be-
tween the density operator of a quantum system and a distri-
bution in phase space, providing a comprehensive represen-
tation of the state of the quantum system [5,7]. The Wigner
function can be expressed in series form as follows [33]

W (β, β∗) =
2
π

∞∑

k=0

(−1)k 〈β, k|ρ̂|β, k〉 , (13)

where|β, k〉 = D̂(β) |k〉 is the displaced number state [34],
andρ̂ = |Ψ(t)〉 〈Ψ(t)| represents the density operator.

The presence of negativity in the Wigner function indi-
cates that the associated state is non-classical. However, ob-
serving positive values throughout the Wigner function is not
sufficient to conclude that the state is classical. Therefore, a
state that exhibits a negative region in its phase-space distri-
bution is inherently nonclassical [28].

In Fig. 5, we show the Wigner functionW (β, β∗) corre-
sponding to the same parameter values used in the previous
figures, for different atomic conditions: when the atom starts
in the upper level|3〉, the intermediate level|2〉, and the lower
level |1〉. The subscripts a), b), and c) represent the cases cor-
responding tot = 0, t = 18, andt = 45, respectively. In
Figs. 5a) (t = 0), the Wigner function is well-localized and
shifted 4 units to the left, as expected since the initial condi-
tion is a coherent state withα = 4. In Figs. 5b) (t = 18) (see
the red line in Fig. 4), a significant localized contribution can
be observed in both the upper|3〉 and lower|1〉 levels, ac-
companied by a compressed region and small spots indicat-

FIGURE 5. The Wigner functionW (β, β∗) corresponding to the same initial conditions given in the previous figures. In (a) fort = 0, in (b)
for t = 18, and in (c) fort = 45, corresponding to the different atomic levels:|3〉 upper level,|2〉 intermediate level, and|1〉 lower level,
respectively.
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ing the nonclassicality of the light. In the intermediate level
|2〉, mostly classical light is observed. Finally, in Figs. 5c)
(t = 45), a greater contribution of non-classical light is ob-
served, especially in the upper level|3〉, thus corroborating
the results obtained from the analysis of Mandel’sQ param-
eter.

To conclude this article, it is crucial to reiterate key
findings regarding the classical and nonclassical behavior of
quantum states. For instance, att = 18 for the lower level
|1〉, Mandel’sQ parameter suggests classical behavior. How-
ever, an analysis of the Wigner function reveals that nonclas-
sical behavior is also present. It is essential to clarify that the
negativity of theQ parameter is not a necessary criterion for
distinguishing between classical and nonclassical regimes; it
is merely a sufficient condition. In other words, while a neg-
ativeQ parameter confirms nonclassical behavior, its posi-
tivity does not conclusively indicate classical behavior. On
the other hand, the Wigner function provides a more defini-
tive criterion. The presence of negative regions in the Wigner
function unequivocally indicates that the associated state is
nonclassical. Conversely, observing only positive values in
the Wigner function does not guarantee that the state is clas-
sical. Hence, the negativity of the Wigner function is a neces-
sary condition for nonclassicality. Therefore, for a quantum
state to be considered nonclassical, it must exhibit negative
regions in its phase-space distribution. A state with such neg-
ative regions is inherently nonclassical [5,28].

5. Conclusions

In this study, we have explored the interaction of a ladder-
type three-level atom (Ξ) confined within a lossless cavity
containing a single-mode electromagnetic radiation field.

Specifically, we assume that the field resonates with the tran-
sition frequency between the atom levels.

Based on these premises, we have developed criteria to
detect quantum nonclassicality, exploring how atomic ini-
tial conditions impact these properties in the coupled light
field. We observed that Mandel’sQ parameter exhibits sig-
nificant oscillatory behaviors over time and atomic initial
states, reflecting varying degrees of nonclassicality in the sys-
tem. Specifically, we noted higher nonclassicality when the
atom starts in the upper state|3〉, while predominantly classi-
cal behavior was observed when the atom starts in the lower
state|1〉.

Furthermore, we utilized the Wigner function to examine
phase-space distributions of quantum states. The presence of
negativity in the Wigner function was identified as a defini-
tive indicator of nonclassicality, complementing the results
obtained from Mandel’sQ parameter. Visual representations
of the Wigner function at different time points and atomic
conditions provided visual confirmation of the observed non-
classical behavior in our study.

In summary, our study underscores the importance of
atomic initial conditions in the manifestation of light non-
classicality in the ladder-type three-level Jaynes-Cummings
model (Ξ). The combination of Mandel’sQ parameter and
the Wigner function offers a powerful tool for characterizing
nonclassical quantum states, highlighting the complexity and
richness of quantum phenomena in light-matter systems.
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2023), p. 150.
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