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Smoothed Particle Hydrodynamics (SPH) has become a promising tool for the simulation of fluids. Although too much research has been
addressed to improve the method over the years, a comparison of the errors and consistency evolution when trying different approaches ar
still necessary to define the best scheme for practical applications. Here, a two-dimensional Poiseuille flow test benchmark is employed to
enforce comparisons when varying the kernel, the definition of the sound speed in the pressure term, the viscosity and the Reynolds humber
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1. Introduction the implementation of the method itself in practical problems,
where truncation of the kernel due to the presence of physi-

Smoothed Particle Hydrodynamics (SPH) is a fully La- cal boundaries, particle disorder, and spatially and temporally
grangian particle method originally introduced by Lucy [1] V&©¥ing smoothing Iepgths are some of the causes that give
and Gingold and Monaghan [2] to deal with astrophysical'S€ t0 & loss of consistency and therefore poor convergence.

flows. Since then, the method has spread into numeroud humerical drawback of SPH is the absence of particle con-
applications in the areas of computational physics and ersistency, which affects the accuracy and convergence of the
gineering due to its ease of implementation, flexibility, andmethod.
robustness. The Lagrangian nature of SPH enables the simu- Consistency refers to how well a numerical method ap-
lation of complex systems, such as breaking waves, splashingoximates the actual differential or integral equation as the
fluids, flow in porous media and other phenomena involv-step size approaches zero. It measures the error introduced in
ing moving boundaries or interfaces, that would otherwise bea single step of the numerical method. A numerical method
very difficult to simulate using traditional grid-based schemess said to be consistent if the local truncation error (the error
[3,4]. made in one step) tends to zero as the step size tends to zero.
The SPH discretization is performed by means of an in_Conve_rgence, on the other hand,. refers to the behavior of.the
terpolation function commonly referred to as the kernel, usnumerical solution as the step size decreases. A numerical
ing the influence of the surrounding particles to evaluate théhethod is said to be convergent if the solution produced by
properties of an observation point (or particle). The kernefh® method approaches the exact solution of the differential
function is made to depend on the distance between the o9 inteégral equation as the step size goes to zero [5,6].
servation particle and its neighbors as well as on the size of In SPH the convergence has been explored in the limit
the kernel support defined by the smoothing lerngtiAs for ~ whenh — 0 the kernel function tends to the Diracedis-
any other method, the error carried by the SPH approximatiotribution, and the exact solution of the differential equations
is defined by the distance between the discretized equatiorisllows [2]. In the discrete case, however, whéres finite,
and the exact differential equations. This error comes fronRasio [7] showed that the convergence properties of SPH are
the spatial discretization when passing from the continuouslso a function of both the total number of particlésand the
to the discrete space. A second source of error comes fromumber of neighbors within the kernel support. The SPH
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simulations of Gabbasat al. [8] and Reactt al. [9] showed  In general, the SPH treatment of viscosity in a rigorous man-
that consistency is completely lost due to zeroth-order erroner is difficult because it is necessary to find a stable and ac-
terms, which would persist when working with a finite num- curate SPH representation for the second-order spatial deriva-
ber of neighbors even though — oo andh — 0. Zhuet tives of the velocity. In this context, a popular approach in the
al. [10] demonstrated that full particle consistency can be reSPH community has been to use an artificial viscosity, which
stored only in the joint limitN- — oo, h — 0, andn — oo,  is equivalent to a bulk viscosity but acting effectively on an
providing good evidence that the SPH discretization error igrregular motion on the short scale [21], and the so-called
not only related to the finite number of particles filling the laminar viscosity proposed by Lo and Shao [22]. In general,
computational domain, but also to the sizewand the num-  the artificial viscosity is used to mediate strong discontinu-
ber of neighbors filling the kernel support. A numerical errorities in shock problems with large Reynolds numbers (Re),
analysis reported by Sigalott al. [11] have confirmed Zhu while the laminar viscosity is suitable for low Re.
et al, findings. The formal demonstration of the dependence When the average velocity increases, the total error also
of the SPH truncation errors on the interpolation parametermcreases, because one or more particles can achieve a large
h, N, andn have been recently reported by Sigal@tial.  velocity compared to their immediate neighbors, thereby af-
[12]. On the other hand, Violeau and Fonty [13] have com-fecting the solution. On the other hand, the viscosity may
puted the exact SPH error as a function of the kernel standaraso affect the solution when the particles are disordered, in
deviation using a differential operator applied to the interpo-which case the averaging of the momentum term is not ho-
lated field. mogeneous, causing small errors that may increase during
Many applications in the fields of mechanical, chemical,the evolution.
and petroleum engineering involve slow as well as fast vis-  In order to understand how these issues may affect error,
cous incompressible flows in pipes and conduits. An exactonsistency, and consequently convergence in the SPH sim-
solution to the case of viscous fluids in pipes can be foundilation of pipe flows, we consider numerical calculations of
in the classical literature [14]. This solution can be used agime-dependent plane Poiseuille flow at different Reynolds
a benchmark test to evaluate the errors carried by the nuegimes using different approaches. In the present numer-
merical solution. Since errors in practical SPH simulationscal experiments a measurement of how the different ap-
can also depend on several other factors, such as the typeoaches may affect the overall convergence is studied in
of kernel function, the truncation of the kernel near physi-the case when: (i) two different kernels (a Gaussian ker-
cal boundaries, the pressure through the equation of state, thel and a Wendland function) are used for two different
form of the viscosity and also on definition of sound speged Reynolds regimes, (ii) the value of the artificial sound speed
which is related with convergence and the Courant conditiorin the equation of state is varied for three different Reynolds
for weakly compressible approach, here we explore the influregimes, and (jii) the artificial versus laminar viscosity are
ence of these factors on the simulation of pipe flow. On theused. The plan of the paper is as follows: The SPH method
other hand, studies of SPH consistency have been report@inployed and the details of the pipe flow model calculation
for the simulation of astrophysical flows [8] and anisotropicare briefly described in Sec. 2. The consistency relations
dispersion of contaminants [15]. However, as far as we knowaimed at measuring the quality of the SPH convergence are
such analyses have not been performed to the case of flow @iven in Sec. 3. Section 4 present the results of the numerical
pipes. simulations and Sec. 5 contains the conclusions.

In this paper we report numerical experiments to evaluate
the error and SPH consistency i.n §imulations of pipe flow.y Numerical scheme and pipe flow model
The performance of the method is first explored by evaluat-
ing the influence of the kernel function on the solution. Since2. 1. The SPH method
in most practical applications incompressible fluids are usu-
ally involved, it is a common practice in SPH to model suchSPH is a particle-based, Lagrangian computational method
fluids using a weakly compressible approach through the usésed for simulating the mechanics of continuous media. The
of a polytropic-like equation of state [16], in which case themethod reconstructs a continuous field at any point in space
pressure is made to depend explicitly only on the local denand time from a cloud of discrete particles which are the
sity. Therefore, the particle motion is driven by local densityproperty carriers. This is accomplished by employing a three-
gradients. In order to keep density fluctuations at a low leveflimensional (3D) interpolation of the scattered data using the
the sound speed is artificially imposed. Several criteria existollowing approximation [2,23]
in the literature to define the sound speed [17-20] and there-
fore, it is worth exploring how this factor may influence the (f(r)) = / fFOYW(r —r' h)dr’ + 0(h?), (1)
numerical solution. v

In a Lagrangian fluid, the viscous forces over a particlewhere f(r) is any scalar function defined over a volurvie
are exerted by its surrounding companions. This can be alW (r — v/, h) is the interpolation kernel, is its characteris-
important issue in the vicinity of a boundary since the fluid-tic width (known as the smoothing length), adid is a dif-
solid interaction is not embodied by the equation of motion ferential volume element. The functidii(r)) is commonly
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referred to as the kernel approximation of the exact function
f(r). This expression comes from the well-known sampling
property of the Dirac} distribution by simply replacing the Z &sz £ 1, (4)
Dirac- distribution by the interpolation kernel. The second- j
order accuracy of the kernel approximation arises from the
vanishing of the kernel gradient at= ' , [24,25], for any — and
finite densityp(r). n )

From Eq. @), it is possible to derive the discretized form 1 Z m; (1 + p22> ViWi; # 0. (5)
of any functionf;, in terms of the kernelV/;; St Pj

o The errors associated with the kernel approximation are

m;
fi= Zpijfjwij’ @ minimized by reducing the smoothing length, while the
=t zeroth-order errors carried by the particle approximation are
wheref; = f(r;) is the particle approximation of the func- reduced by increasing the number of neighbors within the
tion at the position of the observation particleW;; =  kernel support [10,8]. A fully consistent scheme is there-
W(r;—ry,h), whilem;, p; = p(r;) andf; = f(r;) denote, fore obtained in the joint limit, — 0 andn — oo, when
respectively, the values of the mass, density, and position ahe total number of particles filling the computational do-
neighboring particle. main also tends to infinity. In this limit, the zeroth-order
Almost all modern applications of SPH assume tHat  sampling errors vanish, and the particle discretization error
has a compact support, thati&,(r —r’,2) = 0for [r —r’| > tends to the second-order kernel approximation. This means
kh, where usually: < 3. This way the total number of par- that in this limit, the particle approximations for the constant
ticles N in the summation (3) is replaced by the number function and zero gradients in Eq#) @nd &) will tend to
of nearest neighbors of particlewithin the kernel support. one and zero, respectively. Thus, for a finite number of par-
Equation ) represents the basis of all SPH formulations.ticles, the most accurate SPH scheme results from working
For the SPH discretization of a field, it would be necessaryyith large numbers of neighbors and small smoothing lengths
to have a suitable approximation for the spatial derivatives of11]. However, this makes the simulations expensive from the
any given quantity. In SPH, a number of estimators can be&omputational point of view, thereby requiring efficiency im-
constructed for the gradient of a scalar field. For instance, drovements [32]. While these two requirements seem most
commonly used estimator has the pairwise symmetric form:important for simulating compressible fluids, other problems
n . within the method itself and the implementation of mathe-
(V)i = ps ij (f; + f;) ViWij. (3) matical improvements require attention. Here, we test how
j=1 i J the kernel function, pressure value, and viscosity formulation
However, this representation is not exact for a constant@" affect the error, and cqnsistepcy_properties of .SPH for
function. It is particularly convenient for approximating the weakly compressible flows; in applications of SPH to incom-

pressure gradierfv'p)/p in the Navier-Stokes equations be- pressible fluids, the equation to be discretized is the Navier-
cause it improves the angular momentum conservation ugftokes equation for the temporal rate of change of fluid ve-

This is also the form of the gradient that arises naturally fro ocity.
a Lagrangian formulation of the fluid equations. dv 1 Ny
Although SPH has been successfully applied to a wide i —;VP + ;V V+g, (6)

range of problems in science and engineering [18,23,26-

29,30,31] there are still pending issues to solve associategtheren is the dynamic viscosityy the velocity, andy the
with its convergence. A longstanding problem has been thgravity

loss of consistency due to the kernel truncation at and near Moreover, in SPH there are two traditional forms to ac-
physical boundaries as well as particle disorder and the useount for viscous dissipation. The first form is given by the
of spatially and varying smoothing lengths. The inconsis-so-called artificial viscosity introduced by Monaghan [24]
tency persists even when the join linlit — co andh — 0 and the second one, which is mostly used in applications to
is achieved with a finite number of neighbors within the ker-pipe flow, is the laminar viscosity of Lo and Shao [22]. The
nel support. The inconsistency arises because of zeroth-ord8PH approximation of Eq6] with the viscous term repre-
errors are inherent in the SPH discretization [9]. The errorsented by the laminar viscosity is given by [22]

carried by the SPH approximatio)(encompass both the

O(h?) errors carried by the kernel approximation and those dv; ol (P P oy
carried by the particle discretization, which is due to incom- dt 231 J E + 75 vy
J=

plete sampling of the smoothing kernel. These errors come

into evidence when using the above approximations for a N VT VW

. . . 1 7'y 1VVaig
constant function,f(r) = 1, and its gradientV f(r) = 0, vy my——L 5 )
ie. o Pyl te
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Here, the ternv refers to the velocity of the particles,to L, L
their position, and the termis a factor that prevents the right- Yol
hand side of the equation from becoming infinite, which, for
the purposes of this work, was definedeas 0.001.

To close the system of discrete equations it is necessary
to define a pressure-density relation, which for weakly com-
pressible flows is given by the relation [16]

ppoKppO)Wl}? (8) T

wherey = 7, py = c3po/7, po is a reference density, for this
work, it was defined as that of water at ambient temperaturefIGURE 1. Schematic drawing showing the initial particle distri-
andc, is the speed of sound in the medium. Setting> pin bution. The blue particles represent the fluid domain, while the red
the summation interpolant (3), the following equation is the®nes are ghost particles.

alternative SPH form of the mass conservation equation.

Pipe width (m}

Pipe length {m}) %103

p = 1000 kgm—3, a pipe diameted = 0.001 m, and pipe
n length of twice its widthj.e., L = 0.002 m. The inter-patrticle

pi =y mWi. (9)  spacing was set tds = 3.3 x 10~° m and the smoothing

j=1 length toh = 1.8ds = 6 x 10~®> m. Equation/8) was used

The fluid acceleration in Eq7) can be evaluated once 2S the pressure density relation with= 7 as itis suitable for
the pressure and density are calculated according to Bys. (Vater- Steady flow is achieved afi@00 time steps, using a
and ©), respectively. A direct evaluation of second-orderlime stepping obt = 0.0001 s, which amounts t0 0.6 s. A

derivates is not required, and the Wendland funcfid will ~ total number ofV = 1891 initially uniformly distributed par-
be used as the interpolation kernel [33,34]: ticles is useq to represent th.e fluid and the pou_ndanes were
modeled using60 ghost particles as shown in Fig. 1. This
7 q\* amounts to three rows of particles above the upper plate and
W (g, h) = (1—7) 2 +1), 10
(g,h) 47h? 2 (2+1) (10) below the lower plate.
wereq = —r—; /b if |r — r'| < h and 0 otherwise. In order to limit the .rel.ative density fluctuatiops to ap-
proximately 1% and mimic a weakly compressible fluid,
22 Poisedille flow model a sound speed large enough to control density fluctuations

but small enough to avoid a stiff stability restriction on the
For time-dependent Poiseiulle flow in a plane, the Naviertime step is imposed. This approach has been also used

Stokes equatiorb) admits the analytical solution in grid-based methods to model incompressible fluids [36].
- " For the present test the speed of sound was defined to be
_F oy s 16(—1)"d°F co = 0.10max, Wherewv,,, is the estimated maximum ve-
vy t) = o= (P —d) + > =0 ; .

2v Pt vr3(2k 4+ 1)3 locity defined as a function oRe, i.e., vax = Ren/L =

2.51 x 10~® ms™! for this particular case. Therefore,
5% COS (Wl)ﬂy) is made to depend upon the initial velocity [18]. In this

2d particular case a Reynolds regime @625 was set. Inlet-

—(2k + 1)2720t putlet boundary conditions appropriate for I_aminar flow were
X €xp ) (11)  imposed at the entrance and exit of the pipe, following the

method outlined in Alvarado’s work [37]. At the pipe outlet,

whered is half distance between the parallel plates of thethere is a region outside the computational domain that al-
channel and the = 7)/p is the kinematic viscosity. The fluid lows for the calculation of the kernel to reduce the truncation
is moved by applying a force proportional to the pressure difeffect of the kernel at the pipe exit and the associated error.
ferenceAp, which is equal td" = —2vwv,/d? in terms of the The left panel of Fig. 2 shows the numerically obtained
flow velocity v, at the center of the pipe. velocity profiles at three different times (symbols) as com-

This solution is valid for laminar flows. In our case, it pared with the analytical solution (solid line) as given by
will be employed to compare against numerical results folEqg. (11). The right panel shows the corresponding percent
Reynolds numbers below or equal to 100, ensuring we reerror between the numerical and analytical solution.
main within the laminar flow regime [35]. For the purposes  The error varies from a maximum value-f6.25% close
of this work, all codes were executed using Matlab on an i7#o the pipe boundaries to a minimum value of about 0.08% in
computer with 16GB of RAM. A Verlet integration scheme the center of the pipe, where the flow is fully developed. In
was employed for all the simulations. order to gain insight into the convergence and therefore the

A reference calculation of Poiseuille flow using particle consistency for this model calculation, we shall ex-
the scheme of previous section is presented for a densitylore the effects of changing several conditions. Although

Rev. Mex. Fis71 020602
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%107 Poiseuille profile Re=0.025 6
25 E _ —*— dt=0 steps
—&— dt=1000 steps
5| —=— dt=2000 steps ]
S XXKsg Y —v— dt=6000 steps ¥
2 ><X)<>< xxxx s
X X
X X
xx ><x ar
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T
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7

051k - Theoretical ]
*, 0,x,V, Numerical 1L
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Pipe width (2x107* m) Pipe width (2x10™* m)

FIGURE 2. a) Numerically obtained Poiseuille velocity profile at three different times until steady-state is achieved after 0.6 s (symbols)
as compared with the analytical solution (solid line). b) Percent error between the numerical and analytical solutions for the same times
displayed in the left panel.

the test model under consideration is a very simple one, the d

improvements are applicable to more complex flows and pipe Mo = Z FoaWar AVh, (13)
geometries. b=t

3. Particle consistency relations ho =S VWAV, (14)
Estimation of the error carried by a humerical simulation re- b=1

quires comparing the exact solution with the numerical one.

Althoughitis possible to measure this error theoretically [11- n

13], comparing the exact and numerical solutions may be use- Mio = r0aVaWa AV, (15)
ful to estimate the influence of other aspects involved in the b=1

numerical solution. In particular, the consistency is related to

how closely the exact equations are approximated by the digvherery, = r, —rq, AV, = my/py is the volume of par-
crete equations. Therefore, consistency is a measure of thi€le b, ms is its mass, ang, is its density. Equationl@)
local truncation error. This work is concerned with testingis the normalization condition (or zeroth-order moment) of
the influence of different approaches on the local truncatiorihe kernel, while Eq. ¥3) is the first-order moment of the
error carried by the numerical solution. One way to checkkernel. Equationsli4) and (L5) are, respectively, the zeroth-
whether a numerical solution is converging to the exact soluand first-order moments of the kernel gradieat’-particle
tion is by monitoring during the evolution the behavior of the consistency of the kernel demands thés,, = 1, while C'-
so-called SPH consistency relations, which can be derivearticle consistency is always guaranteed becadisg = 0
by means of Taylor series expansions [8,11]. In order to seBwing to the symmetry of the kernel, whebe= (0,0, 0) is

if C'l-consistency (or second-order accuracy) is achieved, i€ null vector. On the other hand;’-particle consistency
suffices to calculate the temporal evolution of the zeroth- andor the gradient estimate requires thdf , = 0, while c'-
first-order moments of the kernel and its gradient, which inParticle consistency is achieved whei , =1, wheretis the

discrete form read as follows identity tensor. These quantities measure the quality of par-
n ticle consistency during the evolution for most practical SPH
Moo = Z WAV, (12) applications. This approach was first tested in SPH simula-
' b1 tions of astrophysical flows in the absence of physical bound-
aries [8].
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FIGURE 3. Percent error and error evolution as a function of time for Poiseuille flow at 0.3 s fet Ré25 a) and 1.0 b). The red and
black curves correspond to the model simulation with the Gaussian kernel and the Wendland function, respectively. Figure c) depicts the
time evolution of the root-mean-square error (RMSE) for the same calculations of Figs. a) and b).

4. Numerical results evolution was calculated with a time steppifig= 5 x 10~°
s and the errors were measured after 6000 time stepsaf-
ter 0.3 s) when the flow reached steady-state conditions. As
in the reference calculation of Fig. 1, the sound speed was

In SPH the properties of an observation particle are deter-

mined from the properties of its neighbors by means of the in-Set 10y = 0.LVmax, WNerEUm, is the estimated maximum

. . velocity. In this particular casey, .. = 2.51 x 107> ms™!
terpolating kernel. The influence of the kernel on the overall for Re = 0.025) and 0.001004 ms' (for Re = 1.0). In-

error of the numerical solution is here explored by comparin g
. . ) et and outlet boundary conditions were employed at the en-
the performance of the consistency relations when using th ; : . )
. rance and exit of the pipe, where particles leaving the com-
Gaussian kernel . . ; :
putational domain on the right side are forced to enter on the
—Ir—r| ) 2 1 left side at the same height and with the same velocity.

4.1. The kernel function

h (16 Figure 3 shows the percent errors of the steady-state solu-
tion for the velocity at 0.3 s. The results for Re0.025 and

wherea = 1/(7h?) in two dimensions, and the Wendland 1.0 are displayed in Figs. 3a) and b), respectively. A maxi-
function, defined previously in Eq10) [33,34]. mum error of~ 147.07% occurs near the wall boundary for

In particular, Wendland functions have become quite popRe = 0.025 when working with the Gaussian kernel. A sim-
ular because of its ability to support a large number of neighilar behavior is found for Re= 1.0 with maximum errors of
bors without suffering from tensile instabilities, which occur about 150% close to the wall boundaries. The same calcu-
when particles are in a state of tensile stress, causing thel@tions with the Wendland function resulted in considerably
motion to become unstable. This can lead to particle clumpmuch lower errors everywhere. The lowest errors for both the
ing or even a complete blowup in the computation [23]. Gaussian kernel and the Wendland function occur at the pipe

On the other hand, the choice of the Gaussian kernel isenter, where the maximum error is less than about 5.3% for
due to the fact that it is known to be stable and sufficientlyboth Re = 0.025 and 1.0 in the Wendland case. The maximum
smooth even for higher order derivatives. error for the Gaussian kernel is close to 150% at the bound-

Two model calculations with Re= 0.025 and 1.0 were aries in both cases Re 0.025 and 1.0. Evidently, the Wend-
employed for the present numerical experiments, startindand function provides a superior performance compared to
with a fluid densityp = 1000 kgm~3, as is adequate for the Gaussian kernel. Figure 3c) depicts the time evolution
water at ambient temperature. The pipe diameter was set tf the root-mean-square error (RMSE) for all four models.
d = 0.001 m and its total length td, = 0.002 m. The fluid  There is actually little difference when increasing Re from
domain was filled with, 11000 uniformly distributed particles 0.025 to 1.0 in both cases. However, the RMSEs are seen
with spacingds = 2 x 10~° m along ther- andy-directions,  to grow almost linearly in the calculations with the Gaussian
while a total number of 1500 ghost particles were used tkernel, reaching values close to 130% by 0.3 s. In contrast,
model the pipe wall boundaries. The value of the smoothingvhen working with the Wendland function, the RMSEs grow
length was chosen to be= 1.8ds = 3.6 x 107° m. The at a faster rate during the first 0.05 s when they become close

W(r—r',h) =aexp (

Rev. Mex. Fis71 020602
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FIGURE 4. Figures a), €) and b), f) show the zeroth- and first-order moments of the kernel, respectively, while Figs. c), g) and d), h) show the
zeroth- and first-order moments of the gradient, respectively, as a function of time for Poiseuille flow at 0.3-s foO&e(top figures) and

1.0 (bottom figures). The black curves depict the moments for t
for the Gaussian kernel.

he simulation with the Wendland function, while the red ones do the same

TABLE |. Maximum errors and maximum spread values of the ze
and Wendland kernels for two different values of Re.

roth- and first-order moments of the kernel and its gradient for the Gaussian

Error Max (%)

First moments of the kernel (a.u)

First moments of the gradient (a.u)

. Gaussian Wendland Gaussian Wendland
Gaussian| Wendland . n ; v
(Mo) | (Mi) (Mo) (Mz) (Mp) (M1) | (Mp) (M7)
Re=0.025 | 147.07 5.46 0.6154| —1.92 x 107° | 1.0001| 3.2 x107'? —2.9763 | 0.2258| —0.0716 | 0.9917
Re=1 150.05 5.32 0.6154| —2.14 x 1078 | 1.0001| 2.38 x 107 33.519 0.2258| 0.6347 | 0.9921

to 2%. Thereafter, the rate decays and approaches an almastnot guaranteed when working with the Gaussian kernel.

constant trend for the remainder of the evolution, reachindvioreover, for Re= 0.025 and Re= 1, the calculation with

values slightly above 2.2% at= 0.3 s.

the Wendland function also reproduces with a good approx-

Figure 4 displays the time evolution of the zeroth- andimation the conditiorM; , = 0, while the same is not true
first-order moments of the kernel and its gradient for both thdor the Gaussian kernel, where significant departures from
Wendland and the Gaussian interpolation functions. The upzero are evident in Figs. 4b) and 4f). In particular, When

per frames in this figure depict the case when-R&.025,
while the lower frames show the evolution for Rel. Equa-
tion (12) was used to compute the time evolution/df, de-
picted in Figures 4a and e. Sind&; and M|, are vectors,
the quantitiegM,) and (M) depicted in Figs. 4b), 4f) and
4c), 4g) correspond to mean values between theiand
y-components. SimilarlyM/, as given by Eq.X5), is a
second-rank tensor and therefore the quarikity) displayed
in Figs. 4d), 4h) correspond to mean values of the diago
components of the tensor.

the Reynolds number is raised to unity, the simulation with
the Gaussian function oscillates about zero, exhibiting a saw-
tooth behavior. Figures 4c), 4g) and 4d), 4h) also shows that
(Mj) ~ 0and(M}) ~ 1 when using the Wendland function,
implying thatC°- andC*-particle consistencies are achieved
for the kernel gradient. However, the same is not true for
the Gaussian kernel, whex@1;) deviates from zero and
(M}) = 0.2 for both values of Re. From these figures it is
natlear thatC- andC!-particle consistencies are achieved for
the kernel and its gradient when working with the Wendland

The calculation with the Wendland function reproducedfunction, while the same calculations using the Gaussian ker-

the normalization condition of the kernel/, = 1, during

nel suffer from a loss of consistency. This is a consequence

the whole evolution with very good accuracy. In contrast,of the much larger errors achieved by these latter calculations
the Gaussian kernel deviates substantially from unity, withclose to the pipe walls (see Fig. 3). For further comparison

My =~ 0.6 for both values of Re. This significant departure of the errors, Table | lists the maximum errors and maximum

from unity means tha€-particle consistency of the kernel
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FIGURE 5. Percent error in the full section of the pipe and its time evolution up to 0.3 s when a steady-state solution is reached. The
dependence of the errors on Re and the choice &f displayed in full.

values achieved by the first two moments of the kernel and its  In order to evaluate the effects of varying the value of

gradient for both interpolation kernels and varying Re. on the numerical solution, the same test case model as before
was employed. A total of 11000 SPH particles were used to
4.2. The effects of pressure fill the computational domain. With this choice, the initial

uniform spacing between particles wéds = 2 x 107> m
Weakly compressible SPH schemes are traditionally base@long thez- andy-directions, while a total number of 1500
on the use of Eq/8) for the calculation of the pressure [16]. ghost particles were used to deal with the pipe wall bound-
However, this equation requires setting the reference valu@ries and the smoothing length was set equalt01.8ds =
o, which in turn depends upon the sound spegdand the 3.6 x 107° m. The effects of varying the magnitude of the
initial reference densityyy. In order to keep the fluctuations pressure was tested for valuesdf= 0.1, 0.5, 5, and 10
in the density field at a low level, the value®fis artificially ~ for three different Reynolds regimes (Re 0.025, 1.0, and
set as 10). The Wendland function (18) was used as the interpolat-
ing kernel for all runs and the numerical solution was com-
€0 = OcVmax, (17) paredto the analytical one after about 0.3 s when the flow has
reached a steady-state condition. Similarly to the previous
whereé, is a constant parameter angl.,. is the maximum case, atime stepping = 5 x 10~° s was used and the errors
fluid velocity. In particular, the sound speed must be largenvere measured after 3000 time steps (after 0.3 s). In this
enough to control density fluctuations and avoid too smalparticular caseyy,.x = 2.51 x 107> ms~! (for Re = 0.025),
time steps. In order to keep fluctuations less than about 1%, = 0.001004 m s~! for Re= 1, andv,,,, = 0.01004 m
it is customary to sef. = 10, [18]. In low Re flows, the s~! for Re= 10.
local variations of the pressure gradient can be very small Figure 5 shows the percent errors for all runs. The left
compared to the hydrostatic pressure gradient, making thisolumn of frames shows the resulting percent error of the nu-
approach suitable for the simulation of pipe flows [17]. merical solution for Re= 0.025, 1.0, and 10 [Figs. 4a), 4c)
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FIGURE 6. Figures a), e), i) and b), f), j) show the time evolution of the zeroth- and first-order moments of the kernel, respectively, while
figures c), g), k) and d), h), i) show the same for the zeroth- and first-order moments of the gradient, respectively, for Poiseuille flow at 0.3 s
for Re= 0.025 (top figures), Re- 1 (middle figures), and Re 10 (bottom figures) and varied choices of the paraméter

and 4e)], when the values éf are varied between 0.1 and 4a), 4c), and 4e), the errors are kept at a relatively low level
10. All curves correspond to values at the end of the simulaenly whené,. = 0.1, regardless of the value of Re.
tions. For Re= 0.025 the error is almost independent &f The time evolution of the first moments of the kernel
and grows to a maximum value of about 5% close to the pipéunction and its gradient are displayed in Fig. 6 for Re
wall. When Re is raised to unity, the error shows a more clea.025, 1, and 10 and varying values 6f between 0.1 and
dependence o#.. Ford. < 0.5, the errors behave similarly 10. From Figs. 6a), ), and i we may see that the normaliza-
to those depicted in Fig. 5a) with maximum values between 4ion condition of the kernel is almost exactly recovered in the
and 5% near the pipe wall. When the valugdofs increased particle approximation fos. = 0.1 [Figs. 6a)] and with a
to 5 and 10, the errors magnify everywhere with peaks of 5&7ery good approximation for the other valuesip{Figs. 6e)
and 70% close to the pipe wall, respectively. This behavioland 6i)] almost independently of the Re-value. On the other
becomes even more pronounced with peak values of aboliiand, the first moment of the kernel keeps close to zero for
20% ford. = 0.1 and more than 1000% fax. = 10 when  Re= 0.025 regardless of the value éf [Fig. 6b)], implying
Re = 10. Independently of Re, the lowest percent errors althat C'-consistency is approximately achieved in this case.
ways occur when, = 0.1. However, when Re is raised to unitg;'-consistency is re-
Figures 5b), 5d), and 5f) show the temporal evolution ofstored only for§, < 0.5, and is completely lost whef). = 5
the average error through the pipe section for varyingnd and 10 [see Fig. 6f)]. For Re 10 the situation worsens
Re. When Re= 0.025, the error grows similarly for all val- as only for§, = 0.1 is C'-consistency restored in an ap-
ues ofé., implying that for small Re, the choice of inthe  proximate sense. In this case, the first moment of the ker-
pressure equation does not affect the numerical solution. Inel oscillates with very small amplitudes about zero. These
all cases, the error grows steeply during the first 0.05 s andmall-amplitude oscillations may be the result of using pe-
then slows down, reaching a value slightly below 2.5% byriodic boundary conditions, which as Re is increased, intro-
the end of the simulation. When Re is increased to unity, th&@uce more noise into the solution in the course of the simula-
error foré. < 0.5 behaves almost in the same manner as betion.
fore, and becomes larger fér = 5 and 10. At Re= 10, The time evolution of the zeroth-order moment of the
the errors amplify and their evolution depends more stronghgradient is depicted in Figs. 6¢), 6g), and 6k). The rela-
on the value ofi.. Evidently the red curves corresponding tion Mj , = 0 is very well reproduced for Re 0.025 al-
to 6. = 5 and 10 shows that the errors become exceedinglynost independently of.. [see Fig. 6¢)], implying that°-
larger compared té6. = 0.1 and 0.5. From this last figure it consistency for the gradient at this low Re-values is restored
is clear that the errors are more sensitivétwhen Re is in-  regardless of the choice of the pressure scaling. However, for
creased. As was already concluded from inspection of FigRe = 1, C°-consistency for the gradientis achieved only
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TaBLE Il. Maximum percent errors and maximum spread values of the zeroth- and first-order moments of the kernel and its gradient for
differenté. values.

5 Error Max (%) First moments of the kernel (a.u)| First moments of the gradient (a.u)
c 0
(Mo) (M) (Mp) (M71)
5. =0.1 5.461 1.0001 3.20 x 10712 —0.0716 0.9916
Re— 0.025 6. =05 5.460 1.0001 3.2072 x 1012 —0.0716 0.9916
o Se=05 5.377 1.0001 3.0896 x 10712 —0.0708 0.9916
5. =10 5.127 1.0001 2.7378 x 10712 —0.0683 0.9916
5. =0.1 5.327 1.0001 —2.2870 x 10710 0.6347 0.9912
Re— 1 6. =05 4.077 1.0001 —4.5074 x 10710 1.2438 0.9912
N d.=5 50.310 1.0001 —1.2725 x 1078 34.986 0.9820
5. =10 71.338 1.0003 —9.5240 x 107° 26.4480 0.9776
S.=0.1 2.3178 1.0001 —3.8018 x 10710 —0.7557 0.9914
Re=10 5. =0.5 51.433 1.0003 —5.2176 x 107° 14.5610 0.9885
d.=5 339.799 1.0005 —8.8931 x 107° 24.6420 0.8951
5. =10 71.338 1.0006 —8.7036 x 107° 23.8870 0.7564

whend. < 0.5 and is lost forj. = 5 and 10 [Fig. 6g)]. where a widely used form is given by the relation
When Re is increased to 10°-particle consistency for the
gradient is only restored fa¥. = 0.1, as shown in Fig. 6Kk). Vii - [is
Finally, the time evolution of the first-order moment of the i = —wy (M) : (19)
gradient is displayed in Figs. 6d), 6h), and 6l). In particular, K

wheree = 0.01 to prevent a singularity when the valuergj,

Fig. 6d) shows that the consistency relatial , = Tis also
very well reproduced numerically for all values &f when
becomes too smal,; = (v; —v;), andr;; = (r; —r;).

Re = 0.025, implying C!-particle consistency for the gradi-

ent in all cases. The same is true for< 0.5 when Re= 1 The proportionality factor, is defined according to
and 10 [Figs. 6h) and 6l)].

Table Il lists the maximum errors and maximum values v, = QiscloCo (20)
of the first two moments of the kernel and its gradient for all Pab

models.C*-consistency for the kernel is always restored in-

dependently o, and Re. However, the same is not true for where,ho, co, anda,;s. represent the smoothing length, the
the gradient where approximat&'-consistency is achieved sound speed, and a constant used to tune the artificial vis-
only when Re= 0.025 almost independently of. and only ~ cosity, respectively. In the numerical experiments, the value

for 6. = 0.1 at larger values of Re. of a5 Was chosen to minimize the error when varying
the value of the Reynolds number (Re). For example, for
4.3. Atrtificial versus laminar viscosity Re = 0.025, the optimal value ofv,;,. was found to be

80000, while for Re= 1, 10, 100 the optimal values of s

In this section, we study how the choice of the viscous termjyere found to be 2200, 200, and 25, respectively. According
in the momentum equation can affect convergence. In particy this form of the artificial viscosity, when two particles ap-
ular, we compare the results when working with an artificialproach each other they will feel a repulsive force, while when
and a laminar viscosity formulation. The artificial viscosity they recede from each other the force is attractive. Therefore,
was introduced in many SPH applications to mediate stronghe viscosity term may affect the solution when too much
shocks and discontinuities in the solution [19,21]. Since ity too low dissipation is applied to the fluid, thereby intro-
has been built analogously to the real gas viscosity, it hagycing an error. This is particularly important when dealing
been used in many applications to model the dynamics ofyith high Reynolds numbers. In pipe flows, this is a con-
viscous fluids. On the other hand, the laminar viscosity Wagern pecause of the wall boundaries. Therefore, it is worth to
introduced to be more in line with the definition of the vis- compare both methods to evaluate their influence on the error
cous stress tensor [22]. This latter form is modeled by thgayried by the numerical simulation. The same initial param-
last term on the left-hand side of E&)( In contrast, the  eters of Sec. 4.2 were employed for the simulations. The
artificial viscosity,I1;;, enters the momentum equation as  ggynd speed was set by choosiiag= 0.1 and the calcula-
v, N P p; tions were carried out for four differerjt vaIue; o_f Rg, namely
T ij (p? + ? + Hij) VWi + g, (18) Re=0.025, 1.0, 10, and 100. The fluid domain is filled with

i J 11000 SPH particles and the wall boundary was implemented

j=1
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FIGURE 7. Percent error in the full section of the pipe and its time evolution up to 0.3 s for varied Reynolds numbers when working with the
laminar (top figures) and the artificial viscosity (bottom figure).

by setting 1500 ghost particles which were uniformly dis-grow steadily to much higher percent values compared to the
tributed in three layers on each side of the pipe walls. Thdaminar case. These trends clearly imply that the use of the
initial smoothing length was set equal tg = 1.8ds = artificial viscosity introduces much larger average errors in
3.6 x 1075 m. the simulations and therefore it must be used in current flow
The results of the simulations are displayed in Figs. 7 an@pplications with caution.
8. Figures 7a) and 7b) display the percent error across the en- Figure 8 depicts the zeroth- and first-order moments of
tire pipe section and its time evolution, respectively, for thethe kernel and its gradient as a function of time, as in the pre-
simulations using the laminar viscosity, while Figs. 7c¢) andvious cases. The top frames correspond to runs with a lam-
d shows the same when working with the artificial viscosity.inar viscosity and varying Re, while the bottom frames cor-
In both cases the black curves correspond to=R@025, 1,  respond to identical models using the artificial viscosity. In
and 10, while the red curve in each plot correspond to thdoth case§'°-particle consistency is approximately achieved
case when Re= 100. For all Re-values the maximum er- almost independently of the Reynolds number. Even when
rors always occur near the pipe wall when working with theRe = 100, the zeroth-order moment of the kernel follows
laminar viscosity. These maximum errors are about 5.46% ragged behavior with values in the worst casel.0006
for Re = 0.025 and 1, 2.3% for Re= 10, and 350% for [Fig. 8a)]. A similar behavior is seen in Fig. 8e) when work-
Re = 100. When the laminar viscosity is replaced with the ing with the artificial viscosity, with maximum deviations
artificial viscosity, the error at the center of the pipe increasefrom unity being< 1.0004 in this case. A close inspection of
to approximately 21.63% wheRe = 0.025, 13.26% when Figs. 8b) and 8f) shows that!-particle consistency for the
Re = 1, 22.40% when Re= 10, and finally, to 265.50% kernel is achieved for R& 10 when using the laminar vis-
when Re= 100. In this latter case, however, the maximum cosity. Again, the worst case occurs for Rel00, where the
error occurs close to pipe wall and not in the center of thdirst-order moment of the kernel oscillates erratically around
pipe as for Re< 10. zero. Since the mean value of the oscillations is close to zero,
Figures 7b) and d display the time evolution of the ve-C!-particle consistency is also approximately achieved at this
locity errors for the laminar and artificial viscosity, respec- high Re. In contrast, when using the artificial viscogity-
tively. For Re< 10 the error grows steeply during the first particle consistency is restored only for Re).025, while it
0.05 s and then at a much slower rate until percent errors less evidently lost for higher values of Re.
than about 2.5% are achieved by the end of the simulations The evolution of the zeroth- and first-order moments of
when a laminar viscosity is used. When Re is increased tthe gradient are depicted in Fig. 8c), 8g) and 8d), 8h) for
100, the errors grows steadily towards a much higher percerthe laminar and artificial viscosity cases, respectively. From
level. When the artificial viscosity is employed the errors allFigs. 8c) and d is clear that!-particle consistency for the
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FIGURE 8. Figures a), e) and b), f) show the zeroth- and first-order moments of the kernel, respectively, while figures c), g) and d), h) show
the zeroth- and first-order moments of the gradient as a function of time for Poiseuille flow up to 0.3 s for varied Re when working with the
laminar (top figures) and the artificial viscosity (bottom figures).

TABLE lIl. Maximum percent errors and maximum spread values of the zeroth- and first-order moments of the kernel and its gradient for
Poiseuille flow at varying Reynolds numbers using a laminar and artificial viscosity in the momentum equation. Letters B and C in the
Laminar and Artificial columns refer to the locations of the maximum erBr- Boundaries, andC' — Center of the pipe.

Error Max (%)

‘ First moments of the kernel (a.u)

First moments of the gradient (a.u)

. . Laminar Artificial Laminar Artificial
Laminar | Artificial ; y ; y
0) | (Mi) (Mo) (Mz) (Mp) (M1) | (Mo) (M7)
Re=0.025 | B5.46 C21.63 1.0001 3.20 x 10712 1.0001| 7.53 x 1072 —0.0716 | 0.9917| —0.0905 | 0.9916
Re=1 B 5.46 C13.26 1.0001 3.20 x 10712 1.0001| 9.19 x 1071 —0.071 | 0.9916| —2.4058 | 0.9913
Re= 10 B2.31 B22.40 1.0001] —3.80 x 107!° | 1.0001| 2.49 x 10~  —0.7557 | 0.9914| —6.99 0.9893
Re= 100 B47.39 | B265.50 1.0006/ 1.08 x 1078 1.0004| —3.69 x 102 —30.13 | 0.9190| 10.33 0.9638

gradient is achieved for Re 10 with a very good approx- dently of Re, while approximat€ -particle consistency for
imation. However, when Re is raised to 100, the zeroth-ordethe gradient is lost when Re 100 for the laminar case and
moment is seen to oscillate erratically about zero, while thavhen Re> 1 for the artificial viscosity.

first-order moment deviates significantly from unity. Thus, at
such high value of Re&;!-particle consistency of the gradient

is lost. In contrast, when working with the artificial viscosity, S

C'-particle consistency is guaranteed only for Re).025, ) ) _
even though the first-order moment seems to be well-behaved this work we have explored the effects of the using two dif-

and close to unity for all Re-values. The maximum errors anderent kernel interpolation functions (i.e., a Gaussian kernel
the maximum values of the first two moments of the kernelV€rSus a Wendland function), varying the scaling of the refer-
and its gradient are listed in Table Il for both viscosity for- €NC€ Pressure in an equation of state which is typically used
mulations and varying Re. Evidently, the maximum errors in'n SPH applications of weakly compressible flows, and vary-
both formulations occur for Re: 100, with the artificial vis- N9 the viscosity formulation fro_m an artificial to a laminar
cosity exhibiting larger errors compared to the laminar vis-ON€ 0N the convergence properties of SPH. Here convergence
cosity at all values of Re.C''-particle consistency for the Was measured in terms of how accurately the consistency re-

kernel is achieved for both viscosity formulations indepen-@tions for the first two moments of the kernel and gradient
are reproduced, which provides information of the order of

Conclusions
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consistency. As a benchmark test case for this study we havamployed here is a simple one, the present results apply to

used the simple case of Poiseuille flow in two-space dimenmore complex pipe geometries. Future work in this line will

sions. This simulation presents validated results upon whiclextend the present study to three-space dimensions and in-

the changes are introduced. vestigate how the dimensionality may affect the convergence
The results show that the Wendland function performsproperties of SPH, the initial particle distribution homogene-

in general much better than the Gaussian kernel drasticalligy and the effect of ghost particles.

reducing the errors and improving the consistency. When

changing the scaling of the reference pressure in the equg;

tion of state, the best results were obtained when the sour%CknOV\lledgments

speed value, calculated 8§ = d0cvmax, Was defined with e acknowledge funding from the European Union's Hori-
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