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Consistency and errors in Smoothed Particle
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Smoothed Particle Hydrodynamics (SPH) has become a promising tool for the simulation of fluids. Although too much research has been
addressed to improve the method over the years, a comparison of the errors and consistency evolution when trying different approaches are
still necessary to define the best scheme for practical applications. Here, a two-dimensional Poiseuille flow test benchmark is employed to
enforce comparisons when varying the kernel, the definition of the sound speed in the pressure term, the viscosity and the Reynolds number.
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1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a fully La-
grangian particle method originally introduced by Lucy [1]
and Gingold and Monaghan [2] to deal with astrophysical
flows. Since then, the method has spread into numerous
applications in the areas of computational physics and en-
gineering due to its ease of implementation, flexibility, and
robustness. The Lagrangian nature of SPH enables the simu-
lation of complex systems, such as breaking waves, splashing
fluids, flow in porous media and other phenomena involv-
ing moving boundaries or interfaces, that would otherwise be
very difficult to simulate using traditional grid-based schemes
[3,4].

The SPH discretization is performed by means of an in-
terpolation function commonly referred to as the kernel, us-
ing the influence of the surrounding particles to evaluate the
properties of an observation point (or particle). The kernel
function is made to depend on the distance between the ob-
servation particle and its neighbors as well as on the size of
the kernel support defined by the smoothing lengthh. As for
any other method, the error carried by the SPH approximation
is defined by the distance between the discretized equations
and the exact differential equations. This error comes from
the spatial discretization when passing from the continuous
to the discrete space. A second source of error comes from

the implementation of the method itself in practical problems,
where truncation of the kernel due to the presence of physi-
cal boundaries, particle disorder, and spatially and temporally
varying smoothing lengths are some of the causes that give
rise to a loss of consistency and therefore poor convergence.
A numerical drawback of SPH is the absence of particle con-
sistency, which affects the accuracy and convergence of the
method.

Consistency refers to how well a numerical method ap-
proximates the actual differential or integral equation as the
step size approaches zero. It measures the error introduced in
a single step of the numerical method. A numerical method
is said to be consistent if the local truncation error (the error
made in one step) tends to zero as the step size tends to zero.
Convergence, on the other hand, refers to the behavior of the
numerical solution as the step size decreases. A numerical
method is said to be convergent if the solution produced by
the method approaches the exact solution of the differential
or integral equation as the step size goes to zero [5,6].

In SPH the convergence has been explored in the limit
whenh → 0 the kernel function tends to the Dirac-δ dis-
tribution, and the exact solution of the differential equations
follows [2]. In the discrete case, however, whereh is finite,
Rasio [7] showed that the convergence properties of SPH are
also a function of both the total number of particlesN and the
number of neighborsn within the kernel support. The SPH
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simulations of Gabbasovet al. [8] and Readet al. [9] showed
that consistency is completely lost due to zeroth-order error
terms, which would persist when working with a finite num-
ber of neighbors even thoughN → ∞ andh → 0. Zhu et
al. [10] demonstrated that full particle consistency can be re-
stored only in the joint limitN → ∞, h → 0, andn → ∞,
providing good evidence that the SPH discretization error is
not only related to the finite number of particles filling the
computational domain, but also to the size ofh and the num-
ber of neighbors filling the kernel support. A numerical error
analysis reported by Sigalottiet al. [11] have confirmed Zhu
et al., findings. The formal demonstration of the dependence
of the SPH truncation errors on the interpolation parameters
h, N , andn have been recently reported by Sigalottiet al.
[12]. On the other hand, Violeau and Fonty [13] have com-
puted the exact SPH error as a function of the kernel standard
deviation using a differential operator applied to the interpo-
lated field.

Many applications in the fields of mechanical, chemical,
and petroleum engineering involve slow as well as fast vis-
cous incompressible flows in pipes and conduits. An exact
solution to the case of viscous fluids in pipes can be found
in the classical literature [14]. This solution can be used as
a benchmark test to evaluate the errors carried by the nu-
merical solution. Since errors in practical SPH simulations
can also depend on several other factors, such as the type
of kernel function, the truncation of the kernel near physi-
cal boundaries, the pressure through the equation of state, the
form of the viscosity and also on definition of sound speedcs

which is related with convergence and the Courant condition
for weakly compressible approach, here we explore the influ-
ence of these factors on the simulation of pipe flow. On the
other hand, studies of SPH consistency have been reported
for the simulation of astrophysical flows [8] and anisotropic
dispersion of contaminants [15]. However, as far as we know,
such analyses have not been performed to the case of flow in
pipes.

In this paper we report numerical experiments to evaluate
the error and SPH consistency in simulations of pipe flow.
The performance of the method is first explored by evaluat-
ing the influence of the kernel function on the solution. Since
in most practical applications incompressible fluids are usu-
ally involved, it is a common practice in SPH to model such
fluids using a weakly compressible approach through the use
of a polytropic-like equation of state [16], in which case the
pressure is made to depend explicitly only on the local den-
sity. Therefore, the particle motion is driven by local density
gradients. In order to keep density fluctuations at a low level
the sound speed is artificially imposed. Several criteria exist
in the literature to define the sound speed [17-20] and there-
fore, it is worth exploring how this factor may influence the
numerical solution.

In a Lagrangian fluid, the viscous forces over a particle
are exerted by its surrounding companions. This can be an
important issue in the vicinity of a boundary since the fluid-
solid interaction is not embodied by the equation of motion.

In general, the SPH treatment of viscosity in a rigorous man-
ner is difficult because it is necessary to find a stable and ac-
curate SPH representation for the second-order spatial deriva-
tives of the velocity. In this context, a popular approach in the
SPH community has been to use an artificial viscosity, which
is equivalent to a bulk viscosity but acting effectively on an
irregular motion on the short scale [21], and the so-called
laminar viscosity proposed by Lo and Shao [22]. In general,
the artificial viscosity is used to mediate strong discontinu-
ities in shock problems with large Reynolds numbers (Re),
while the laminar viscosity is suitable for low Re.

When the average velocity increases, the total error also
increases, because one or more particles can achieve a large
velocity compared to their immediate neighbors, thereby af-
fecting the solution. On the other hand, the viscosity may
also affect the solution when the particles are disordered, in
which case the averaging of the momentum term is not ho-
mogeneous, causing small errors that may increase during
the evolution.

In order to understand how these issues may affect error,
consistency, and consequently convergence in the SPH sim-
ulation of pipe flows, we consider numerical calculations of
time-dependent plane Poiseuille flow at different Reynolds
regimes using different approaches. In the present numer-
ical experiments a measurement of how the different ap-
proaches may affect the overall convergence is studied in
the case when: (i) two different kernels (a Gaussian ker-
nel and a Wendland function) are used for two different
Reynolds regimes, (ii) the value of the artificial sound speed
in the equation of state is varied for three different Reynolds
regimes, and (iii) the artificial versus laminar viscosity are
used. The plan of the paper is as follows: The SPH method
employed and the details of the pipe flow model calculation
are briefly described in Sec. 2. The consistency relations
aimed at measuring the quality of the SPH convergence are
given in Sec. 3. Section 4 present the results of the numerical
simulations and Sec. 5 contains the conclusions.

2. Numerical scheme and pipe flow model

2.1. The SPH method

SPH is a particle-based, Lagrangian computational method
used for simulating the mechanics of continuous media. The
method reconstructs a continuous field at any point in space
and time from a cloud of discrete particles which are the
property carriers. This is accomplished by employing a three-
dimensional (3D) interpolation of the scattered data using the
following approximation [2,23]

〈f(r)〉 =
∫

V

f(r ′)W (r − r ′, h)dr ′ + O(h2), (1)

wheref(r) is any scalar function defined over a volumeV ,
W (r − r′, h) is the interpolation kernel,h is its characteris-
tic width (known as the smoothing length), anddr′ is a dif-
ferential volume element. The function〈f(r)〉 is commonly
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referred to as the kernel approximation of the exact function
f(r). This expression comes from the well-known sampling
property of the Dirac-δ distribution by simply replacing the
Dirac-δ distribution by the interpolation kernel. The second-
order accuracy of the kernel approximation arises from the
vanishing of the kernel gradient atr = r′ , [24,25], for any
finite densityρ(r).

From Eq. (1), it is possible to derive the discretized form
of any functionfi, in terms of the kernelWij

fi =
N∑

j=1

mj

ρj
fjWij , (2)

wherefi = f(r i) is the particle approximation of the func-
tion at the position of the observation particlei, Wij =
W (r i− r j , h), whilemj , ρj = ρ(r j) andfj = f(r j) denote,
respectively, the values of the mass, density, and position of
neighboring particlej.

Almost all modern applications of SPH assume thatW
has a compact support, that is,W (r−r ′, h) = 0 for |r−r ′| ≥
kh, where usuallyk ≤ 3. This way the total number of par-
ticles N in the summation (3) is replaced by the numbern
of nearest neighbors of particlei within the kernel support.
Equation (2) represents the basis of all SPH formulations.
For the SPH discretization of a field, it would be necessary
to have a suitable approximation for the spatial derivatives of
any given quantity. In SPH, a number of estimators can be
constructed for the gradient of a scalar field. For instance, a
commonly used estimator has the pairwise symmetric form:

(∇f)i = ρi

n∑

j=1

mj

(
fi

ρ2
i

+
fj

ρ2
j

)
∇iWij . (3)

However, this representation is not exact for a constant
function. It is particularly convenient for approximating the
pressure gradient(∇p)/ρ in the Navier-Stokes equations be-
cause it improves the angular momentum conservation [19].
This is also the form of the gradient that arises naturally from
a Lagrangian formulation of the fluid equations.

Although SPH has been successfully applied to a wide
range of problems in science and engineering [18,23,26-
29,30,31] there are still pending issues to solve associated
with its convergence. A longstanding problem has been the
loss of consistency due to the kernel truncation at and near
physical boundaries as well as particle disorder and the use
of spatially and varying smoothing lengths. The inconsis-
tency persists even when the join limitN → ∞ andh → 0
is achieved with a finite number of neighbors within the ker-
nel support. The inconsistency arises because of zeroth-order
errors are inherent in the SPH discretization [9]. The errors
carried by the SPH approximation (2) encompass both the
O(h2) errors carried by the kernel approximation and those
carried by the particle discretization, which is due to incom-
plete sampling of the smoothing kernel. These errors come
into evidence when using the above approximations for a
constant function,f(r) = 1, and its gradient,∇f(r) = 0,
i.e.,

n∑

j=1

mj

ρj
Wij 6= 1, (4)

and

1
ρi

n∑

j=1

mj

(
1 +

ρ2
i

ρ2
j

)
∇iWij 6= 0. (5)

The errors associated with the kernel approximation are
minimized by reducing the smoothing length, while the
zeroth-order errors carried by the particle approximation are
reduced by increasing the number of neighbors within the
kernel support [10,8]. A fully consistent scheme is there-
fore obtained in the joint limith → 0 andn → ∞, when
the total number of particles filling the computational do-
main also tends to infinity. In this limit, the zeroth-order
sampling errors vanish, and the particle discretization error
tends to the second-order kernel approximation. This means
that in this limit, the particle approximations for the constant
function and zero gradients in Eqs. (4) and (5) will tend to
one and zero, respectively. Thus, for a finite number of par-
ticles, the most accurate SPH scheme results from working
with large numbers of neighbors and small smoothing lengths
[11]. However, this makes the simulations expensive from the
computational point of view, thereby requiring efficiency im-
provements [32]. While these two requirements seem most
important for simulating compressible fluids, other problems
within the method itself and the implementation of mathe-
matical improvements require attention. Here, we test how
the kernel function, pressure value, and viscosity formulation
can affect the error, and consistency properties of SPH for
weakly compressible flows; in applications of SPH to incom-
pressible fluids, the equation to be discretized is the Navier-
Stokes equation for the temporal rate of change of fluid ve-
locity.

dv
dt

= −1
ρ
∇p +

η

ρ
∇2v + g, (6)

whereη is the dynamic viscosity,v the velocity, andg the
gravity

Moreover, in SPH there are two traditional forms to ac-
count for viscous dissipation. The first form is given by the
so-called artificial viscosity introduced by Monaghan [24]
and the second one, which is mostly used in applications to
pipe flow, is the laminar viscosity of Lo and Shao [22]. The
SPH approximation of Eq. (6) with the viscous term repre-
sented by the laminar viscosity is given by [22]

dvi

dt
=

N∑

j=1

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
∇iWij

+ 4ν

N∑

j=1

mj
vi − vj

ρi + ρj

r ij · ∇iWij

|r ij |2 + ε2
. (7)
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Here, the termv refers to the velocity of the particles,r to
their position, and the termε is a factor that prevents the right-
hand side of the equation from becoming infinite, which, for
the purposes of this work, was defined asε = 0.001.

To close the system of discrete equations it is necessary
to define a pressure-density relation, which for weakly com-
pressible flows is given by the relation [16]

p = p0

[(
ρ

ρ0

)γ

− 1
]

, (8)

whereγ = 7, p0 = c2
0ρ0/γ, ρ0 is a reference density, for this

work, it was defined as that of water at ambient temperature,
andc0 is the speed of sound in the medium. Settingf → ρ in
the summation interpolant (3), the following equation is the
alternative SPH form of the mass conservation equation.

ρi =
n∑

j=1

mjWij . (9)

The fluid acceleration in Eq. (7) can be evaluated once
the pressure and density are calculated according to Eqs. (8)
and (9), respectively. A direct evaluation of second-order
derivates is not required, and the Wendland function (10) will
be used as the interpolation kernel [33,34]:

W (q, h) =
7

4πh2

(
1− q

2

)4

(2q + 1) , (10)

wereq = —r— ij/h if |r − r ′| ≤ h and 0 otherwise.

2.2. Poiseuille flow model

For time-dependent Poiseiulle flow in a plane, the Navier-
Stokes equation (6) admits the analytical solution

vx(y, t) =
F

2ν

(
y2 − d2

)
+

∞∑

k=0

16(−1)kd2F

νπ3(2k + 1)3

× cos
(

(2k + 1)πy

2d

)

× exp
(−(2k + 1)2π2νt

4d2

)
, (11)

whered is half distance between the parallel plates of the
channel and theν = η/ρ is the kinematic viscosity. The fluid
is moved by applying a force proportional to the pressure dif-
ference∆p, which is equal toF = −2νv0/d2 in terms of the
flow velocityv0 at the center of the pipe.

This solution is valid for laminar flows. In our case, it
will be employed to compare against numerical results for
Reynolds numbers below or equal to 100, ensuring we re-
main within the laminar flow regime [35]. For the purposes
of this work, all codes were executed using Matlab on an i7
computer with 16GB of RAM. A Verlet integration scheme
was employed for all the simulations.

A reference calculation of Poiseuille flow using
the scheme of previous section is presented for a density

FIGURE 1. Schematic drawing showing the initial particle distri-
bution. The blue particles represent the fluid domain, while the red
ones are ghost particles.

ρ = 1000 kgm−3, a pipe diameterd = 0.001 m, and pipe
length of twice its width,i.e., L = 0.002 m. The inter-particle
spacing was set tods = 3.3 × 10−5 m and the smoothing
length toh = 1.8ds = 6 × 10−5 m. Equation (8) was used
as the pressure density relation withγ = 7 as it is suitable for
water. Steady flow is achieved after6000 time steps, using a
time stepping ofδt = 0.0001 s, which amounts to 0.6 s. A
total number ofN = 1891 initially uniformly distributed par-
ticles is used to represent the fluid and the boundaries were
modeled using360 ghost particles as shown in Fig. 1. This
amounts to three rows of particles above the upper plate and
below the lower plate.

In order to limit the relative density fluctuations to ap-
proximately 1% and mimic a weakly compressible fluid,
a sound speed large enough to control density fluctuations
but small enough to avoid a stiff stability restriction on the
time step is imposed. This approach has been also used
in grid-based methods to model incompressible fluids [36].
For the present test the speed of sound was defined to be
c0 = 0.1vmax, wherevmax is the estimated maximum ve-
locity defined as a function ofRe, i.e., vmax = Reη/L =
2.51 × 10−5 ms−1 for this particular case. Therefore,c0

is made to depend upon the initial velocity [18]. In this
particular case a Reynolds regime of0.025 was set. Inlet-
outlet boundary conditions appropriate for laminar flow were
imposed at the entrance and exit of the pipe, following the
method outlined in Alvarado’s work [37]. At the pipe outlet,
there is a region outside the computational domain that al-
lows for the calculation of the kernel to reduce the truncation
effect of the kernel at the pipe exit and the associated error.

The left panel of Fig. 2 shows the numerically obtained
velocity profiles at three different times (symbols) as com-
pared with the analytical solution (solid line) as given by
Eq. (11). The right panel shows the corresponding percent
error between the numerical and analytical solution.

The error varies from a maximum value of≈ 6.25% close
to the pipe boundaries to a minimum value of about 0.08% in
the center of the pipe, where the flow is fully developed. In
order to gain insight into the convergence and therefore the
particle consistency for this model calculation, we shall ex-
plore the effects of changing several conditions. Although
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FIGURE 2. a) Numerically obtained Poiseuille velocity profile at three different times until steady-state is achieved after 0.6 s (symbols)
as compared with the analytical solution (solid line). b) Percent error between the numerical and analytical solutions for the same times
displayed in the left panel.

the test model under consideration is a very simple one, the
improvements are applicable to more complex flows and pipe
geometries.

3. Particle consistency relations

Estimation of the error carried by a numerical simulation re-
quires comparing the exact solution with the numerical one.
Although it is possible to measure this error theoretically [11-
13], comparing the exact and numerical solutions may be use-
ful to estimate the influence of other aspects involved in the
numerical solution. In particular, the consistency is related to
how closely the exact equations are approximated by the dis-
crete equations. Therefore, consistency is a measure of the
local truncation error. This work is concerned with testing
the influence of different approaches on the local truncation
error carried by the numerical solution. One way to check
whether a numerical solution is converging to the exact solu-
tion is by monitoring during the evolution the behavior of the
so-called SPH consistency relations, which can be derived
by means of Taylor series expansions [8,11]. In order to see
if C1-consistency (or second-order accuracy) is achieved, it
suffices to calculate the temporal evolution of the zeroth- and
first-order moments of the kernel and its gradient, which in
discrete form read as follows

M0,a =
n∑

b=1

Wab∆Vb, (12)

M1,a =
n∑

b=1

r baWab∆Vb, (13)

M ′
0,a =

n∑

b=1

∇aWab∆Vb, (14)

M ′
1,a =

n∑

b=1

r ba∇aWab∆Vb, (15)

wherer ba = r b − ra, ∆Vb = mb/ρb is the volume of par-
ticle b, mb is its mass, andρb is its density. Equation (12)
is the normalization condition (or zeroth-order moment) of
the kernel, while Eq. (13) is the first-order moment of the
kernel. Equations (14) and (15) are, respectively, the zeroth-
and first-order moments of the kernel gradient.C0-particle
consistency of the kernel demands thatM0,a = 1, while C1-
particle consistency is always guaranteed becauseM1,a = 0
owing to the symmetry of the kernel, where0 = (0, 0, 0) is
the null vector. On the other hand,C0-particle consistency
for the gradient estimate requires thatM′

0,a = 0, while C1-
particle consistency is achieved whenM′

1,a = , where is the
identity tensor. These quantities measure the quality of par-
ticle consistency during the evolution for most practical SPH
applications. This approach was first tested in SPH simula-
tions of astrophysical flows in the absence of physical bound-
aries [8].
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FIGURE 3. Percent error and error evolution as a function of time for Poiseuille flow at 0.3 s for Re= 0.025 a) and 1.0 b). The red and
black curves correspond to the model simulation with the Gaussian kernel and the Wendland function, respectively. Figure c) depicts the
time evolution of the root-mean-square error (RMSE) for the same calculations of Figs. a) and b).

4. Numerical results

4.1. The kernel function

In SPH the properties of an observation particle are deter-
mined from the properties of its neighbors by means of the in-
terpolating kernel. The influence of the kernel on the overall
error of the numerical solution is here explored by comparing
the performance of the consistency relations when using the
Gaussian kernel

W (r − r ′, h) = α exp
(−|r − r ′|

h

)2

, (16)

whereα = 1/(πh2) in two dimensions, and the Wendland
function, defined previously in Eq. (10) [33,34].

In particular, Wendland functions have become quite pop-
ular because of its ability to support a large number of neigh-
bors without suffering from tensile instabilities, which occur
when particles are in a state of tensile stress, causing their
motion to become unstable. This can lead to particle clump-
ing or even a complete blowup in the computation [23].

On the other hand, the choice of the Gaussian kernel is
due to the fact that it is known to be stable and sufficiently
smooth even for higher order derivatives.

Two model calculations with Re= 0.025 and 1.0 were
employed for the present numerical experiments, starting
with a fluid densityρ = 1000 kgm−3, as is adequate for
water at ambient temperature. The pipe diameter was set to
d = 0.001 m and its total length toL = 0.002 m. The fluid
domain was filled with, 11000 uniformly distributed particles
with spacingds = 2× 10−5 m along thex- andy-directions,
while a total number of 1500 ghost particles were used to
model the pipe wall boundaries. The value of the smoothing
length was chosen to beh = 1.8ds = 3.6 × 10−5 m. The

evolution was calculated with a time steppingδt = 5× 10−5

s and the errors were measured after 6000 time steps (i.e., af-
ter 0.3 s) when the flow reached steady-state conditions. As
in the reference calculation of Fig. 1, the sound speed was
set toc0 = 0.1vmax, wherevmax is the estimated maximum
velocity. In this particular case,vmax = 2.51 × 10−5 ms−1

(for Re = 0.025) and 0.001004 ms−1 (for Re = 1.0). In-
let and outlet boundary conditions were employed at the en-
trance and exit of the pipe, where particles leaving the com-
putational domain on the right side are forced to enter on the
left side at the same height and with the same velocity.

Figure 3 shows the percent errors of the steady-state solu-
tion for the velocity at 0.3 s. The results for Re= 0.025 and
1.0 are displayed in Figs. 3a) and b), respectively. A maxi-
mum error of≈ 147.07% occurs near the wall boundary for
Re= 0.025 when working with the Gaussian kernel. A sim-
ilar behavior is found for Re= 1.0 with maximum errors of
about 150% close to the wall boundaries. The same calcu-
lations with the Wendland function resulted in considerably
much lower errors everywhere. The lowest errors for both the
Gaussian kernel and the Wendland function occur at the pipe
center, where the maximum error is less than about 5.3% for
both Re = 0.025 and 1.0 in the Wendland case. The maximum
error for the Gaussian kernel is close to 150% at the bound-
aries in both cases Re= 0.025 and 1.0. Evidently, the Wend-
land function provides a superior performance compared to
the Gaussian kernel. Figure 3c) depicts the time evolution
of the root-mean-square error (RMSE) for all four models.
There is actually little difference when increasing Re from
0.025 to 1.0 in both cases. However, the RMSEs are seen
to grow almost linearly in the calculations with the Gaussian
kernel, reaching values close to 130% by 0.3 s. In contrast,
when working with the Wendland function, the RMSEs grow
at a faster rate during the first 0.05 s when they become close
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FIGURE 4. Figures a), e) and b), f) show the zeroth- and first-order moments of the kernel, respectively, while Figs. c), g) and d), h) show the
zeroth- and first-order moments of the gradient, respectively, as a function of time for Poiseuille flow at 0.3 s for Re= 0.025 (top figures) and
1.0 (bottom figures). The black curves depict the moments for the simulation with the Wendland function, while the red ones do the same
for the Gaussian kernel.

TABLE I. Maximum errors and maximum spread values of the zeroth- and first-order moments of the kernel and its gradient for the Gaussian
and Wendland kernels for two different values of Re.

Error Max (%) First moments of the kernel (a.u) First moments of the gradient (a.u)

Gaussian Wendland
Gaussian Wendland Gaussian Wendland

〈M0〉 〈M1〉 〈M0〉 〈M1〉 〈M′
0〉 〈M′

1〉 〈M′
0〉 〈M′

1〉
Re= 0.025 147.07 5.46 0.6154 −1.92× 10−9 1.0001 3.2× 10−12 −2.9763 0.2258 −0.0716 0.9917

Re= 1 150.05 5.32 0.6154 −2.14× 10−8 1.0001 2.38× 10−10 33.519 0.2258 0.6347 0.9921

to 2%. Thereafter, the rate decays and approaches an almost
constant trend for the remainder of the evolution, reaching
values slightly above 2.2% att = 0.3 s.

Figure 4 displays the time evolution of the zeroth- and
first-order moments of the kernel and its gradient for both the
Wendland and the Gaussian interpolation functions. The up-
per frames in this figure depict the case when Re= 0.025,
while the lower frames show the evolution for Re= 1. Equa-
tion (12) was used to compute the time evolution ofM0 de-
picted in Figures 4a and e. SinceM1 andM ′

0 are vectors,
the quantities〈M1〉 and〈M ′

0〉 depicted in Figs. 4b), 4f) and
4c), 4g) correspond to mean values between theirx- and
y-components. Similarly,M ′

1, as given by Eq. (15), is a
second-rank tensor and therefore the quantity〈M ′

1〉 displayed
in Figs. 4d), 4h) correspond to mean values of the diagonal
components of the tensor.

The calculation with the Wendland function reproduced
the normalization condition of the kernel,M0 = 1, during
the whole evolution with very good accuracy. In contrast,
the Gaussian kernel deviates substantially from unity, with
M0 ≈ 0.6 for both values of Re. This significant departure
from unity means thatC0-particle consistency of the kernel

is not guaranteed when working with the Gaussian kernel.
Moreover, for Re= 0.025 and Re= 1, the calculation with
the Wendland function also reproduces with a good approx-
imation the conditionM1,a = 0, while the same is not true
for the Gaussian kernel, where significant departures from
zero are evident in Figs. 4b) and 4f). In particular, When
the Reynolds number is raised to unity, the simulation with
the Gaussian function oscillates about zero, exhibiting a saw-
tooth behavior. Figures 4c), 4g) and 4d), 4h) also shows that
〈M′

0〉 ≈ 0 and〈M′
1〉 ≈ 1 when using the Wendland function,

implying thatC0- andC1-particle consistencies are achieved
for the kernel gradient. However, the same is not true for
the Gaussian kernel, where〈M′

0〉 deviates from zero and
〈M′

1〉 ≈ 0.2 for both values of Re. From these figures it is
clear thatC0- andC1-particle consistencies are achieved for
the kernel and its gradient when working with the Wendland
function, while the same calculations using the Gaussian ker-
nel suffer from a loss of consistency. This is a consequence
of the much larger errors achieved by these latter calculations
close to the pipe walls (see Fig. 3). For further comparison
of the errors, Table I lists the maximum errors and maximum
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FIGURE 5. Percent error in the full section of the pipe and its time evolution up to 0.3 s when a steady-state solution is reached. The
dependence of the errors on Re and the choice ofδc is displayed in full.

values achieved by the first two moments of the kernel and its
gradient for both interpolation kernels and varying Re.

4.2. The effects of pressure

Weakly compressible SPH schemes are traditionally based
on the use of Eq. (8) for the calculation of the pressure [16].
However, this equation requires setting the reference value
p0, which in turn depends upon the sound speed,c0, and the
initial reference density,ρ0. In order to keep the fluctuations
in the density field at a low level, the value ofc0 is artificially
set as

c0 = δcvmax, (17)

whereδc is a constant parameter andvmax is the maximum
fluid velocity. In particular, the sound speed must be large
enough to control density fluctuations and avoid too small
time steps. In order to keep fluctuations less than about 1%
it is customary to setδc = 10, [18]. In low Re flows, the
local variations of the pressure gradient can be very small
compared to the hydrostatic pressure gradient, making this
approach suitable for the simulation of pipe flows [17].

In order to evaluate the effects of varying the value ofδc

on the numerical solution, the same test case model as before
was employed. A total of 11000 SPH particles were used to
fill the computational domain. With this choice, the initial
uniform spacing between particles wasds = 2 × 10−5 m
along thex- andy-directions, while a total number of 1500
ghost particles were used to deal with the pipe wall bound-
aries and the smoothing length was set equal toh = 1.8ds =
3.6 × 10−5 m. The effects of varying the magnitude of the
pressure was tested for values ofδc = 0.1, 0.5, 5, and 10
for three different Reynolds regimes (Re= 0.025, 1.0, and
10). The Wendland function (18) was used as the interpolat-
ing kernel for all runs and the numerical solution was com-
pared to the analytical one after about 0.3 s when the flow has
reached a steady-state condition. Similarly to the previous
case, a time steppingδt = 5×10−5 s was used and the errors
were measured after 3000 time steps (i.e., after 0.3 s). In this
particular case,vmax = 2.51×10−5 m s−1 (for Re= 0.025),
vmax = 0.001004 m s−1 for Re= 1, andvmax = 0.01004 m
s−1 for Re= 10.

Figure 5 shows the percent errors for all runs. The left
column of frames shows the resulting percent error of the nu-
merical solution for Re= 0.025, 1.0, and 10 [Figs. 4a), 4c)
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FIGURE 6. Figures a), e), i) and b), f), j) show the time evolution of the zeroth- and first-order moments of the kernel, respectively, while
figures c), g), k) and d), h), i) show the same for the zeroth- and first-order moments of the gradient, respectively, for Poiseuille flow at 0.3 s
for Re= 0.025 (top figures), Re= 1 (middle figures), and Re= 10 (bottom figures) and varied choices of the parameterδc.

and 4e)], when the values ofδc are varied between 0.1 and
10. All curves correspond to values at the end of the simula-
tions. For Re= 0.025 the error is almost independent ofδc

and grows to a maximum value of about 5% close to the pipe
wall. When Re is raised to unity, the error shows a more clear
dependence onδc. For δc ≤ 0.5, the errors behave similarly
to those depicted in Fig. 5a) with maximum values between 4
and 5% near the pipe wall. When the value ofδc is increased
to 5 and 10, the errors magnify everywhere with peaks of 50
and 70% close to the pipe wall, respectively. This behavior
becomes even more pronounced with peak values of about
20% for δc = 0.1 and more than 1000% forδc = 10 when
Re = 10. Independently of Re, the lowest percent errors al-
ways occur whenδc = 0.1.

Figures 5b), 5d), and 5f) show the temporal evolution of
the average error through the pipe section for varyingδc and
Re. When Re= 0.025, the error grows similarly for all val-
ues ofδc, implying that for small Re, the choice ofc0 in the
pressure equation does not affect the numerical solution. In
all cases, the error grows steeply during the first 0.05 s and
then slows down, reaching a value slightly below 2.5% by
the end of the simulation. When Re is increased to unity, the
error forδc ≤ 0.5 behaves almost in the same manner as be-
fore, and becomes larger forδc = 5 and 10. At Re= 10,
the errors amplify and their evolution depends more strongly
on the value ofδc. Evidently the red curves corresponding
to δc = 5 and 10 shows that the errors become exceedingly
larger compared toδc = 0.1 and 0.5. From this last figure it
is clear that the errors are more sensitive toδc when Re is in-
creased. As was already concluded from inspection of Figs.

4a), 4c), and 4e), the errors are kept at a relatively low level
only whenδc = 0.1, regardless of the value of Re.

The time evolution of the first moments of the kernel
function and its gradient are displayed in Fig. 6 for Re=
0.025, 1, and 10 and varying values ofδc between 0.1 and
10. From Figs. 6a), e), and i we may see that the normaliza-
tion condition of the kernel is almost exactly recovered in the
particle approximation forδc = 0.1 [Figs. 6a)] and with a
very good approximation for the other values ofδc [Figs. 6e)
and 6i)] almost independently of the Re-value. On the other
hand, the first moment of the kernel keeps close to zero for
Re= 0.025 regardless of the value ofδc [Fig. 6b)], implying
that C1-consistency is approximately achieved in this case.
However, when Re is raised to unity,C1-consistency is re-
stored only forδc ≤ 0.5, and is completely lost whenδc = 5
and 10 [see Fig. 6f)]. For Re= 10 the situation worsens
as only forδc = 0.1 is C1-consistency restored in an ap-
proximate sense. In this case, the first moment of the ker-
nel oscillates with very small amplitudes about zero. These
small-amplitude oscillations may be the result of using pe-
riodic boundary conditions, which as Re is increased, intro-
duce more noise into the solution in the course of the simula-
tion.

The time evolution of the zeroth-order moment of the
gradient is depicted in Figs. 6c), 6g), and 6k). The rela-
tion M′

0,a = 0 is very well reproduced for Re= 0.025 al-
most independently ofδc [see Fig. 6c)], implying thatC0-
consistency for the gradient at this low Re-values is restored
regardless of the choice of the pressure scaling. However, for
Re= 1, C0-consistency for the gradient is achieved only
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TABLE II. Maximum percent errors and maximum spread values of the zeroth- and first-order moments of the kernel and its gradient for
differentδc values.

δc Error Max (%)
First moments of the kernel (a.u) First moments of the gradient (a.u)

〈M0〉 〈M1〉 〈M′
0〉 〈M′

1〉

Re= 0.025

δc = 0.1 5.461 1.0001 3.20× 10−12 −0.0716 0.9916

δc = 0.5 5.460 1.0001 3.2072× 10−12 −0.0716 0.9916

δc = 5 5.377 1.0001 3.0896× 10−12 −0.0708 0.9916

δc = 10 5.127 1.0001 2.7378× 10−12 −0.0683 0.9916

Re= 1

δc = 0.1 5.327 1.0001 −2.2870× 10−10 0.6347 0.9912

δc = 0.5 4.077 1.0001 −4.5074× 10−10 1.2438 0.9912

δc = 5 50.310 1.0001 −1.2725× 10−8 34.986 0.9820

δc = 10 71.338 1.0003 −9.5240× 10−9 26.4480 0.9776

Re=10

δc = 0.1 2.3178 1.0001 −3.8018× 10−10 −0.7557 0.9914

δc = 0.5 51.433 1.0003 −5.2176× 10−9 14.5610 0.9885

δc = 5 339.799 1.0005 −8.8931× 10−9 24.6420 0.8951

δc = 10 71.338 1.0006 −8.7036× 10−9 23.8870 0.7564

when δc ≤ 0.5 and is lost forδc = 5 and 10 [Fig. 6g)].
When Re is increased to 10,C0-particle consistency for the
gradient is only restored forδc = 0.1, as shown in Fig. 6k).
Finally, the time evolution of the first-order moment of the
gradient is displayed in Figs. 6d), 6h), and 6l). In particular,
Fig. 6d) shows that the consistency relationM′

1,a = I is also
very well reproduced numerically for all values ofδc when
Re= 0.025, implying C1-particle consistency for the gradi-
ent in all cases. The same is true forδc ≤ 0.5 when Re= 1
and 10 [Figs. 6h) and 6l)].

Table II lists the maximum errors and maximum values
of the first two moments of the kernel and its gradient for all
models.C1-consistency for the kernel is always restored in-
dependently ofδc and Re. However, the same is not true for
the gradient where approximateC1-consistency is achieved
only when Re= 0.025 almost independently ofδc and only
for δc = 0.1 at larger values of Re.

4.3. Artificial versus laminar viscosity

In this section, we study how the choice of the viscous term
in the momentum equation can affect convergence. In partic-
ular, we compare the results when working with an artificial
and a laminar viscosity formulation. The artificial viscosity
was introduced in many SPH applications to mediate strong
shocks and discontinuities in the solution [19,21]. Since it
has been built analogously to the real gas viscosity, it has
been used in many applications to model the dynamics of
viscous fluids. On the other hand, the laminar viscosity was
introduced to be more in line with the definition of the vis-
cous stress tensor [22]. This latter form is modeled by the
last term on the left-hand side of Eq. (7). In contrast, the
artificial viscosity,Πij , enters the momentum equation as

dvi

dt
=

N∑

j=1

mj

(
pi

ρ2
i

+
pj

ρ2
j

+ Πij

)
∇iWij + g, (18)

where a widely used form is given by the relation

Πij = −νv

(
vij · r ij

r2
ij + εh2

)
, (19)

whereε = 0.01 to prevent a singularity when the value ofrab

becomes too small,vij = (vi − vj), andr ij = (r i − r j).
The proportionality factorνv is defined according to

νv =
αvisch0c0

ρab
, (20)

where,h0, c0, andαvisc represent the smoothing length, the
sound speed, and a constant used to tune the artificial vis-
cosity, respectively. In the numerical experiments, the value
of αvisc was chosen to minimize the error when varying
the value of the Reynolds number (Re). For example, for
Re = 0.025, the optimal value ofαvisc was found to be
80000, while for Re= 1, 10, 100 the optimal values ofαvisc

were found to be 2200, 200, and 25, respectively. According
to this form of the artificial viscosity, when two particles ap-
proach each other they will feel a repulsive force, while when
they recede from each other the force is attractive. Therefore,
the viscosity term may affect the solution when too much
or too low dissipation is applied to the fluid, thereby intro-
ducing an error. This is particularly important when dealing
with high Reynolds numbers. In pipe flows, this is a con-
cern because of the wall boundaries. Therefore, it is worth to
compare both methods to evaluate their influence on the error
carried by the numerical simulation. The same initial param-
eters of Sec. 4.2 were employed for the simulations. The
sound speed was set by choosingδc = 0.1 and the calcula-
tions were carried out for four different values of Re, namely
Re= 0.025, 1.0, 10, and 100. The fluid domain is filled with
11000 SPH particles and the wall boundary was implemented
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FIGURE 7. Percent error in the full section of the pipe and its time evolution up to 0.3 s for varied Reynolds numbers when working with the
laminar (top figures) and the artificial viscosity (bottom figure).

by setting 1500 ghost particles which were uniformly dis-
tributed in three layers on each side of the pipe walls. The
initial smoothing length was set equal toh0 = 1.8ds =
3.6× 10−5 m.

The results of the simulations are displayed in Figs. 7 and
8. Figures 7a) and 7b) display the percent error across the en-
tire pipe section and its time evolution, respectively, for the
simulations using the laminar viscosity, while Figs. 7c) and
d shows the same when working with the artificial viscosity.
In both cases the black curves correspond to Re= 0.025, 1,
and 10, while the red curve in each plot correspond to the
case when Re= 100. For all Re-values the maximum er-
rors always occur near the pipe wall when working with the
laminar viscosity. These maximum errors are about 5.46%
for Re = 0.025 and 1, 2.3% for Re= 10, and 350% for
Re = 100. When the laminar viscosity is replaced with the
artificial viscosity, the error at the center of the pipe increases
to approximately 21.63% whenRe = 0.025, 13.26% when
Re = 1, 22.40% when Re= 10, and finally, to 265.50%
when Re= 100. In this latter case, however, the maximum
error occurs close to pipe wall and not in the center of the
pipe as for Re≤ 10.

Figures 7b) and d display the time evolution of the ve-
locity errors for the laminar and artificial viscosity, respec-
tively. For Re≤ 10 the error grows steeply during the first
0.05 s and then at a much slower rate until percent errors less
than about 2.5% are achieved by the end of the simulations
when a laminar viscosity is used. When Re is increased to
100, the errors grows steadily towards a much higher percent
level. When the artificial viscosity is employed the errors all

grow steadily to much higher percent values compared to the
laminar case. These trends clearly imply that the use of the
artificial viscosity introduces much larger average errors in
the simulations and therefore it must be used in current flow
applications with caution.

Figure 8 depicts the zeroth- and first-order moments of
the kernel and its gradient as a function of time, as in the pre-
vious cases. The top frames correspond to runs with a lam-
inar viscosity and varying Re, while the bottom frames cor-
respond to identical models using the artificial viscosity. In
both casesC0-particle consistency is approximately achieved
almost independently of the Reynolds number. Even when
Re = 100, the zeroth-order moment of the kernel follows
a ragged behavior with values in the worst case≤ 1.0006
[Fig. 8a)]. A similar behavior is seen in Fig. 8e) when work-
ing with the artificial viscosity, with maximum deviations
from unity being≤ 1.0004 in this case. A close inspection of
Figs. 8b) and 8f) shows thatC1-particle consistency for the
kernel is achieved for Re≤ 10 when using the laminar vis-
cosity. Again, the worst case occurs for Re= 100, where the
first-order moment of the kernel oscillates erratically around
zero. Since the mean value of the oscillations is close to zero,
C1-particle consistency is also approximately achieved at this
high Re. In contrast, when using the artificial viscosityC1-
particle consistency is restored only for Re= 0.025, while it
is evidently lost for higher values of Re.

The evolution of the zeroth- and first-order moments of
the gradient are depicted in Fig. 8c), 8g) and 8d), 8h) for
the laminar and artificial viscosity cases, respectively. From
Figs. 8c) and d is clear thatC1-particle consistency for the
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FIGURE 8. Figures a), e) and b), f) show the zeroth- and first-order moments of the kernel, respectively, while figures c), g) and d), h) show
the zeroth- and first-order moments of the gradient as a function of time for Poiseuille flow up to 0.3 s for varied Re when working with the
laminar (top figures) and the artificial viscosity (bottom figures).

TABLE III. Maximum percent errors and maximum spread values of the zeroth- and first-order moments of the kernel and its gradient for
Poiseuille flow at varying Reynolds numbers using a laminar and artificial viscosity in the momentum equation. Letters B and C in the
Laminar and Artificial columns refer to the locations of the maximum error:B → Boundaries, andC → Center of the pipe.

Error Max (%) First moments of the kernel (a.u) First moments of the gradient (a.u)

Laminar Artificial
Laminar Artificial Laminar Artificial

〈M0〉 〈M1〉 〈M0〉 〈M1〉 〈M′
0〉 〈M′

1〉 〈M′
0〉 〈M′

1〉
Re= 0.025 B 5.46 C 21.63 1.0001 3.20× 10−12 1.0001 7.53× 10−12 −0.0716 0.9917 −0.0905 0.9916

Re= 1 B 5.46 C 13.26 1.0001 3.20× 10−12 1.0001 9.19× 10−10 −0.071 0.9916 −2.4058 0.9913

Re= 10 B 2.31 B 22.40 1.0001 −3.80× 10−10 1.0001 2.49× 10−9 −0.7557 0.9914 −6.99 0.9893

Re= 100 B 47.39 B 265.50 1.0006 1.08× 10−8 1.0004 −3.69× 10−9 −30.13 0.9190 10.33 0.9638

gradient is achieved for Re≤ 10 with a very good approx-
imation. However, when Re is raised to 100, the zeroth-order
moment is seen to oscillate erratically about zero, while the
first-order moment deviates significantly from unity. Thus, at
such high value of Re,C1-particle consistency of the gradient
is lost. In contrast, when working with the artificial viscosity,
C1-particle consistency is guaranteed only for Re= 0.025,
even though the first-order moment seems to be well-behaved
and close to unity for all Re-values. The maximum errors and
the maximum values of the first two moments of the kernel
and its gradient are listed in Table III for both viscosity for-
mulations and varying Re. Evidently, the maximum errors in
both formulations occur for Re= 100, with the artificial vis-
cosity exhibiting larger errors compared to the laminar vis-
cosity at all values of Re.C1-particle consistency for the
kernel is achieved for both viscosity formulations indepen-

dently of Re, while approximateC1-particle consistency for
the gradient is lost when Re= 100 for the laminar case and
when Re≥ 1 for the artificial viscosity.

5. Conclusions

In this work we have explored the effects of the using two dif-
ferent kernel interpolation functions (i.e., a Gaussian kernel
versus a Wendland function), varying the scaling of the refer-
ence pressure in an equation of state which is typically used
in SPH applications of weakly compressible flows, and vary-
ing the viscosity formulation from an artificial to a laminar
one on the convergence properties of SPH. Here convergence
was measured in terms of how accurately the consistency re-
lations for the first two moments of the kernel and gradient
are reproduced, which provides information of the order of
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consistency. As a benchmark test case for this study we have
used the simple case of Poiseuille flow in two-space dimen-
sions. This simulation presents validated results upon which
the changes are introduced.

The results show that the Wendland function performs
in general much better than the Gaussian kernel drastically
reducing the errors and improving the consistency. When
changing the scaling of the reference pressure in the equa-
tion of state, the best results were obtained when the sound
speed value, calculated asc0 = δcvmax, was defined with
δc = 0.1. On the other hand, the use of a laminar viscosity
formulation resulted in more accurate results compared to the
artificial viscosity.

The results also show that the simulations are sensitive to
the value of the Reynolds number (Re) in the sense that, re-
gardless of the method employed, the convergence worsens
as Re is increased. This is possibly attributed to the inter-
action between the fluid and the ghost particles employed to
design the pipe wall boundary. As the velocity difference
between the stationary ghost particles and the moving fluid
ones becomes excessively large, the numerical solution be-
comes correspondingly less accurate. Although the test case

employed here is a simple one, the present results apply to
more complex pipe geometries. Future work in this line will
extend the present study to three-space dimensions and in-
vestigate how the dimensionality may affect the convergence
properties of SPH, the initial particle distribution homogene-
ity and the effect of ghost particles.
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simulations of time-dependent Poiseuille flow at low Reynolds
numbers. Journal of Computational Physics191 (2003)
622, https://doi.org/10.1016/S0021-9991(03)
00343-7 .

28. Y. Meleán, L. Sigalotti, and A. Hasmy, On the SPH tensile
instability in forming viscous liquid drops.Computer Physics
Communications157(2004) 191,https://doi.org/10.
1016/j.comphy.2003.11.002 .

29. F. Jiang M. Oliveira, and A. Sousa, Mesoscale SPH model-
ing of fluid flow in isotropic porous media.Computer Physics
Communications176(2007) 471,https://doi.org/10.
1016/j.cpc.2006.12.003 .

30. P. Kunz et al., Study of multi-phase flow in porous media:
Comparison of SPH simulations with micro-model experi-
ments.Transport in Porous Media114 (2015) 581,https:
//doi.org/10.1007/s11242-015-0599-1 .

31. R. Canelas, A. Crespo, J. Dominguez, R. Ferreira, and
M. Gomez- Gesteira, SPH-DCDEM model for arbitrary ge-
ometries in free surface solid-fluid flows.Computer Physics

Communications202(2016) 131,https://doi.org/10.
1016/j.cpc.2016.01.006 .

32. E. Plaza et al., Efficiency of particle search methods in
smoothed particle hydrodynamics: a comparative study (part
I). Progress in Computational Fluid Dynamics21 (2021) 1,
https://doi.org/10.1504/PCFD.2021.112625 .

33. W. Dehnen and H. Aly, Improving convergence in smoothed
particle hydrodynamics simulations without pairing insta-
bility. Monthly Notices of the Royal Astronomical Soci-
ety, 425 (2012) 1068,https://doi.org/10.1111/j.
1365-2966.2012.21439.x .

34. H. Wendland, Piecewise polynomial, positive definite and
compactly supported radial functions of minimal degree.Ad-
vances in Computational Mathematics4 (1995) 389,https:
//doi.org/10.1007/BF02123482 .

35. K. Urbanowicz, A. Bergant, M. Stosiak, A. Deptuła, M.
Karpenko, Navier-Stokes Solutions for Accelerating Pipe Flow
- A Review of Analytical Models.Energies, 16 (2023) 1,
https://doi.org/10.3390/en16031407 .

36. A. Chorin, A numerical method for solving incompress-
ible viscous flow problems.Journal of Computational
Physics, 2 (1967) 12, https://doi.org/10.1016/
0021-9991(67)90037-X .
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