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Thermodynamic analysis and mass spectra of heavy mesons
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By employing the generalized fractional Nikiforov-Uvarov (GF-NU) method, we successfully derive solutions of the generalized fractional
Klein-Gordon (GF-KG) equation for both the screened Kratzer and a specific class of Yukawa potentials. These solutions yield the gener-

alized fractional energy eigenvalues across both the relativistic and non-relativistic domains. Furthermore, the corresponding generalizec

fractional eigenfunctions can be obtained. We employed the derived solutions to calculate the heavy-meson masses of Charnaoium (
Bottomonium pb), along with those of heavy-light mesons(cg, b3, bg). Notably, the Charmonium and Bottomonium masses were plotted

as functions of the orbital and angular quantum numbers, reduced mass, and fractional parameter. Similarly, the heavy-light meson masse

were plotted in relation to their orbital and angular quantum numbers. Additionally, a thermodynamic analysis of the heavy-light mesons

was conducted. The obtained results demonstrate a high degree of concordance with established experimental data and the findings of oth

researchers
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1. Introduction which provided energy eigenvalues in both relativistic and
non-relativistic domains. The corresponding wave functions
The Dirac and Klein-Gordon equations are key tools usegyere expressed in terms of Laguerre polynomials.
to describe the motion of particles in the relativistic regime,  Thjs work contributed to calculating the masses of char-
with each equation applying to different types of particlesmonjum and bottomonium mesons [7]. In work of Berkdemir
based on their spin. The Klein-Gordon equation is used fogt g, [8], the modified Kratzer potential (MKP) has been
spin-zero particles, like mesons, while the Dirac equation ishe subject of substantial research in the literature by various
applicable to spin-half particles, such as electrons [1,2].  yriters [9, 10].

Solving these equations precisely remains a significant  Fyrthermore, by adding the screening parameter to the
challenge in nuclear and high-energy physics. The studyraditional Kratzer potential [11], Ikot et al. [12] presented
of exactly solvable potentials, which dates back to the earlyne screened Kratzer potential (SKP). Eeétal recently
days of quantum mechanics, has been of particular interestroposed the screened modified Kratzer potential [13].

Two notable examples of exact solutions to the Klein-Gordon  sing this potential, the interatomic interactions in two-

equation are for the three-dimensional harmonic OSCillatobtom molecules were investigated_ Here is the screened mod-

and the hydrogen atom [3, 4]. ified Kratzer potential (SMKP):

To solve the Klein-Gordon equation, it's necessary to in- o .
troduce a four-vector potentidl'(r) and a scalar potential Vi(r) = d+ fe?rr ge® . )
S(r) that depend on space-time. These potentials, along with 72 r

the four-vector linear momentum operator and the rest mass, Another interesting kind of potential model is the class of
allow for a more accurate description of particle behavior. Yukawa potential (CYP), which has applications in atomic,

Research has shown that when the condittofr) =  nuclear, and condensed matter physics, among other fields of
V (r)orS(r) = =V(r) [5], is met, the Klein-Gordon equa- physics. The CYP manifests as the following
tion yields the same energy spectrum. _ _

» ; —a be T ce?PT

Additionally, settingS (r) = V(r) = 2 Vi(r) re- Vi(r) = — + _ — 2)
sults in non-relativistic energy bounds that align with the r r r
Schiddinger equation [6]. Recent studies have focused on In order to provide more practical applications, employ-
finding solutions to the Klein-Gordon equation for different ing two or more potentials has gained importance recently.
potentials [1, 4, 7]. Itis well known that potential models with more parame-

For example, in one study, the Yukawa potential was usedkers typically provide a more accurate match to experimental
to solve the Klein-Gordon equation using the NU method,data [14-16].
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The SMKCYP is of the form thresholds, based on a one-gluon exchange interaction with a
—2pr —pr momentum-dependent screening factor. The model does not
fe ge s 9
Vilr)=d+ T — rely on non-relativistic approximations.
" ; Ref. [33] discusses new theoretical findings on charmo-
_e. be™?" ce” f””- 3) nium, focusing on “higher charmonium” states above the
T r 2 open-charm threshold, including the spectrum of these states,

Asymptotic freedom and quark confinement are two esstrong decays with open flavors, and the important effects of
sential components of strong interaction that these potentiafgtual decay loops in charmed meson pairs.
should include [17]. Yukawa proposed the Yukawa potential ~Research on thermodynamic properties is important in
as a useful non-relativistic potential to describe the strong numany areas of physics and chemistry. Quantum mechani-
cleon interactions. cal solutions, which provide the necessary information to de-
Finding solution of the KG and Scbalinger equations’ scribe quantum systems, are essential for understanding these
approximate or exact solutions with a usual potential hagroperties.
been one of the most extensively researched issues in quan- Thermodynamic characteristics are especially useful in
tum mechanics during the past few decades [18,19]. studying quark-gluon plasma and can provide valuable in-
The last several decades of the 20th and 21st centurigdghts into the composition of strange quark matter, as dis-
have seen a considerable increase in the interest in fractiong#issed in Refs. [27, 34-36].
calculus (FC), among researchers. In Ref. [20], for the frac- The aim of the paper is to obtain the generalized frac-
tional Klein-Fock-Gordon (KFG) structure, which is exten- tional energy eigenvalue and the generalized fractional wave
sively utilized in the particle and condensed matter physicsfunction in two cases the relativistic and nonrelativistic do-
this work offers new waveforms and bifurcation analysis. ~Main by using the generalized fractional parametric NU
The one-dimensional KG equation for the generanzednethod to solve the generalized fractional Kelin-Gordon
Hulthen potential was obtained using the CF-NU tech-equation which previous efforts did not take into account.
nique [21]. In nonrelativistic case, we evaluate the mass of heavy and
Abu-Shady and Kaabar recently presented a new definibeavy-light meson and thermodynamics properties of heavy-
tion for the fractional derivative known as the generalizedlight mesoncs under effect the angular quantum number and
fractional derivative (GFD) [22]. It can be said that the GFD fractional factor which are compared with previous works.
definition is a more comprehensive type for the fractional ~ The paper has the following structure: Section 2 reviews
derivative because it has greater characteristics than the préie (GF-NU) technique. The generalized fractional Kelin-
vious definitions [23-26], from which the CFD can be con- Gordon equation is found in Sec. 3. Section 4 discusses the
structed as a special case. results. Section 5 presents the conclusion.
In Ref. [27], the researchers used a generalized fractional
parametric NU method to solve the S'Ot;inger qugtion 2. The generalized fractional Nikiforov-
and calcu.late the mass of hgavy guarkonium, specifically for Uvarov (GF-NU) method
Charmonium and Bottomonium.

In Ref. [28], Ikotet al, studied generalized Yukawa po- The parametric generalized fractional Nikiforov-Uvarov
thermal properties, including the limit and scattering stategjerivative. Reference [37] provides an exact fractional form
of the Klein-Gordon equation for the Mobius square poten-gp|ytion to the second-order parametric generalized differen-

tial. _ _ tial equation.
In Ref. [29], Inyang and colleagues investigated the

masses and thermal characteristics of bottomonium and char- a e 7(8) o a(s)
monium mesons. DeD™(s)] + o(s) Dopls) + 57 vls) =0, ()
In Ref. [30], the mass of charmonium was calculated us- ) B
ing the asymptotic iteration method to solve the Scfimger ~ Where the polynomials(s), o(s) and (s) have degrees of
equation for quark-antiquark interactions. 20, 20, apda. ,
Ref. [31] also applied the asymptotic iteration method ~ BY Using GFD [22], we can write,

to analytically solve the non-relativistic radial Sodmger I'(3) o

equation for a general interaction potential, using the Cornell D*[y(s)] = TG-a-1" “Y(s), (5)
potential and the Cornell plus harmonic potential as exam-

ples. where,x =T'(8)/T(8 —a—1)

They obtained energy eigenvalues in three dimensions )
and used them to calculate charmonium mass spectra. D[y (s)]] = < Q) )
In Ref. [32], a relativistic potential model was used in rg—-—a-1)
momentum space to study the bottomonium spectrum. This Lo/ o9
model accounts for virtual pair production effects near decay x[1-a)s P(s) +s ¥ (s)], (6)
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where, where,
D« —
W(S):M oy :%(na—al), (20)
" \/(Daa (8)2— 7 (s) ) 2_6 (1Kol . () a5 = 21(042 — —2a3kK a), (21)
and ag = a5+ &, (22)
A=K+ D% (s). ®) o = 20005 = &, 23)
ag = Q4 24 &s. (24)

The polynomial of degree is represented by (s) ,while
A remains constant. It is possible to find out whether the In Eq. (19), the NU approach requires that the function

form'ula under the square root is square of the equation bMnderthe square root be the square of a polynomial for reason
looking at the values oK in the square-root of Eq\7). By

substitutingK’ into Eq. [7), we establish K = —(or + 2 azas) + 2\/agag (25)
=T 2 . 9
7(s) =7(s) + 27 (s) 9) where.
Given thatp(s) > 0 ando(s) > 0, the derivative ofr
needs to be negative [38]. This indicates that the solution is ag = agar + as’as + ag. (26)
found. Should\ in Eq. (8) be

( 3 If K inthe form is negative

B = DD (s)].  (10)
2 K= —(07 +2 0130ég) - 2\/0180[9, (27)
The hypergeometric type equation has a particular solu-

tion with degreer. Equation/.1) has a solution which is the for 7 to take shape

product of two independent parts
T =g+ 58 — [({ag + az/ag) s — Jas]. (28)

A=)\, =-—nD%7 —

Y(s) = d(s)y (s), (11)
where, From Egs.16), (19) and 28), we get
pals) = S5 (D) (0 ()" pu(s), - (12) 7 =01+ 204 — (02 — —205)s”
— [(Vag + azy/ag) s* — Vas]. (29)
D%[o(s)p(s)] = 7(s)o (s), (13)
D%(s) _ ﬂ(s). 1) From Egs. 2) and £6), we obtain,
o(s) a(s) D7 =k [— a(ag — 205) — 2 a/ag + agy/as) |
2.1. Second order parametric (GD) equation =K [-2 o’as — 2 (/a5 + az/as)] < 0. (30)

The KG equation can be transformed into a second-order
parametric generalized differential equation to provide the[ion
following general form. [30].

From Egs. 8), and (L0), we obtain the generalized frac-
al energy eigenvalue equation.

a1 — ag s nkaag — (2n + ko as + (2n + 1)ka(y/ag + ag/as)

e

SG RO 6 g o, as) + 20305 + 2y/asas = 0. (31)
(52 (1 — a3 s%))

7(s) = a1 — g 5%, (16) Whena =1=7, implying the_ltn = 1, we obtain The energy
eigenvalue’s classical equation as Ref. [40]

D [D%p(s)] +
+n(n—1)k%a’as + ar

o(s) =s*(1—azs%), a7
T(s)=—& $** +& s — &, (18)
Substituting these into Eg7), we obtain

nag — (2n+ 1) as + (2n + 1)(y/ag + az/as)
+n(n — Dag + ar + 2azas + 2¢/agag = 0. (32)

7= oy + ass® from Eq. (10), we obtain

ajg—a g @10 _

+/(as — K as) s2@ +(ar+ K) s®+as, (29) p(s)=s"+ (1— ags¥)aras ~ ax = (33)
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From Eq. [L3), we get 3. Solving generalized fractional Kelin-
(f0=e _euy _ eq0 1y N Gordon with the screened modified Kratzer
Yn =FPp " ameay T aw T w1 — 2a3sY), (34) .
and a class of Yukawa potential model
where,
19 = a1 + 204 + 2/, (35)  The KG equation for a spinless particle for= ¢ = 1 in

a1 = az — —2a5 + 2 (/g + az/as)- (36) N-dimensional space is as [41]

The generalized fractional solution of the eigenfunction (N +20— 1)(N +2—3)

is obtained from Eq/4(1) V2 (M+5(r)+ 3
r
12 _—«13 212
S) =8 r ]__afso‘awoeg o K
Plo)=s e (1~ ass%) X (r0,0) = (B = V)P ¥ (r.0,), @7)
(Wmﬁ—@’ o1 ,Ll}),i)
x Py " tTt (1205 8%),  (37)
(.8) . . where V2 is laplacian, M is the reduce massy,, is the
where,P,,"*’ are Jacobi polynomials. energy spectrum, [ are the radial and orbital angular mo-
a1z = ay + \/as, (38)  mentum quantum number, or vibrational-rotational quantum
number, respectively in quantum chemistry.
o = a5 = (Vag + as/ag). (39) It is customary to write the wave function as follows in
Some problems, in caseg; = 0. order for it to meet the boundary conditions:

Q10— @11 10 1

limPn( K arag  ar x(1,a35ﬂ)

az—0 Rnl
o10-a Q1] U(r0,9) = = =Yim(0, ¢). (48)
=L, (—sa) , (40)
oK
lim (1-as sa);:fig*% = 6%8‘1, (41) The wavefunction’s radial component would remain in-
a3—=0 tact if the angular component were separated, as illustrated
Eq. (37), becomes below.
LI () w
r 2 2 2 2
Associated Laguerre Polynomials are representef, by dr2 + [ (Bu™ = M) + VZ(r) = 5°(r)
The second application of Ec27) in the subsequent sce-
nario = 2(EnV (1) + M S(r))
K = (a7 +2 azas) + 2\/asas, (43) _A2- ? WA= piy =0, (a9)
T

then, the generalized fractional eigenfunction becomes,

*

P(s) = 5" (1 g 5) TR0~

As a result, Eq.49) becomes for equal vector and scalar

y Pn( SITRE g T “TL %) potentialsV’ (r) = S (r) = 2V; ().
X (1— 2as3s%). (44) d?R(r
oo . . ) (B = M2) = 2 Vi) (Bt + 1)
The generalized fractional solution of the energy eigen-  dr
value becomes, - (N +20—1)(N +20—3) R} =0. (50
nkaas — 2nka as + (2n + 1)ka(y/ag — asy/ag) 4 r2 e

+n(n — 1)k?a’as + a7 + 20304
From Eqg. [8) and Eq. 60), we get

— 2y/agag + ko as =0, (45)
where 2 —2pr
' d*R(r) 9 9 fe
E “—M*)—-2(E, +M)|d—
10" = a1 + 204 — 24/ag, dr? + <( nl ) ( 1+ ) 2
a1t = o — 205 + 2 (VVog — azy/as), _ge’" a be?T c e 27
. r r r r2
Q12 = (4 — 4/Qg,
N+2l—-1)(N+20-3
a13” = as — (Vag — azy/ag). (46) X ( 4)£2 )>R(T) =0. (51)
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We provide the Greene-Aldrich approximation strategy (GAAS) [42] to address the centrifugal barrier in order to solve
Eq. B1). Forp <« 1, this GAAS is a reliable approximation to the centrifugal term, and it becomes

1 p?
SN 52
r2 (1- 6—pr)2 (52)
Let
s=¢e"", (53)
d*R (s) 1—s dR(s) 1 9
- —v3] R(s) =0 54
ds? s(l—s) ds +[8(1_5)]2[ 718" + 728 — 3] R(s) =0, (54)
7= —€+t, Yo =—2¢€+t, Y3 = —€ + t3, (55)
_ EBp® - M?
p?
2(Ep + M)d 2(Ep + M 2(Ep + M)b
t1:%—FZ(EM—FM)JC—FM—2(E”[+M)C—M,
P P p
p ABut M)d  2(Bu+M)g 2(Ew+M)a  2(Eu+M)b
2 - - )
p? P P P
2(Bu+M)d 2(Eq+M)a 1(1+1)
t3 = e — p + Y

We get the generalized fractional Kelin-Gordon equation

1 — g™ _ 2a a
i DR(s) + e e it

DO[DR(s)] + (1 =) (o1 — 52))’

R(s) =0. (56)
With the following parameters, we can obtain
1 1
a; =1, o =1, ag =1, 044:5(,%(1—1), a5:—2(1—2/<;a),

1 1 1
a6:Z(1—2ma)Q—e+t1, 04725(1%05—1)(1—2&05)—1—26—7,‘2, 04821(%&—1)2—€+t3,

1oy B 1 2
ag = 7K a +t1 —tg +t3, alp=kKoa+2 Z(Ha—l) — e+ t3,

1 1
a1 = 2/{04—1—2(\/452@2 +t1—t2—|—t3+\/4(5&—1)2—5+t3>,

1 1
a12:2(ma—1)+\/ E(fﬁa—l)Q — e+ ta,

1 1 1
0113:5(1—2:“60[)— <\/4:‘€20[2 +t1—t2+t3+\/4(:‘€04—1)2 _E+t3>, (57)

the generalized fractional of the energy eigenvalue is obtained

2

2
1 , tl—tg—((n+§)ma+\/im2a2+t1—t2+t3)
5:(t3+(f<aa—1))— : (58)
2((71—!—%)/@044—\/&/{2042 +t1—t2—|—t3>

The generalized fractional wave function

—atrat2y/L(ka—1)2—ctty ra+2q/ir2a2+4t
%(ka71)+‘/%(ma71)275+t3 %Na+1/%m2a2+t < \/ia s \/’:;
- T —

W(s)=As z (1) 7> (1+25%), (59)
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wheret = t1 — t9 + 3.
We obtain on the generalized fractional of the energy eigenvalue and eigenfunction in the non-relativisfi¢ ¢agg,
— (2u/h) andM — E,; — —E,; wherep is reduced mass

2

2
1 1,22
2 1 2 1—t3—((n+§)ma+\/1/ﬁa +t1—t2+t3)
Enl - %(t?o + Z(HOZ - 1)2) - 57 ) (60)
I H 2((n+§)m+\/in2a2+t1—t2+t3)
%(ka—l)+v4(m 12— L“Ewg Lrat+y/Tr2a24
R(s) = Ns " (145 m
(a+ma+2\//4(ma 12— 2i§+t3 wat2y/Tn2a2is 1)
Ra ’ lm Tk
x P, (1+2s%), (61)
where,
d 4ub Sud 4u dpa  4ub dpud  4dpa  1(1+1
t = u p _/+/g_u_u’3/7_/7+(). (62)

+4 f+ —dpc— ——, ta=—3 5
p p p p p p p p 4

4. Results and discussion
4.1. Special case

The special case is obtained by taking£ 5 = 1) andx = 1, we obtain the energy and the eigenfunction in the non-relativistic

case
2
02 2 tl—tg—((n+§)+,/i +t1—t2+t3>
E=

2

Sty - - : (63)
p p 2((n+%)+\/% +t17t2+t3)
—2p E 1 T —2uE o 1
R(s) = NsV 57 = 5 (1) iV EF p (V=25 0002VEH0) (4 oy, (64)
4.2. Mass of heavy and heavy-light mesons
To calculate the mass of heavy and heavy light mesons, the following the equation is used
M =my +mo + Eyy, (65)
2 2
1 1,2 2
2 1 2 t17t37|:(n+§)l€a+ Zli a +t17t2+t31|
M_m1+m2+2p'u<t3+4(nozl)2)p \/ (66)

2p 2|:(TL+%)I€O[+\/i/€20[2+t1—t2+t3:|

In Table I, we determined the massdaafis for 1S, 2S, 3S, 4S, 1P, 2P, 1D, and 2D. Ref. [7] provides the charm quark mass
in numerical form.

By adding experimental data to algebraic equations, the parameters oB@iqvdre determined where (charm mass
m. = 1.209 GeV, the parameters of the potentiak 1 GeV,c = —10 GeV~ !, b = —0.5,a = 0.947, g = 0.02, f = —9.838,
the fractional parameters= 0.3, 5 = 0.6, p = 0.04 GeV).

Compared to previous studies, we achieved successful results. Additionally, the 1S and 1P states are close in comparison
with the experimental results. Our calculation resulted in a total error of 0.017475%. In Ref. [7], the researchers used the
Nikiforov—Uvarov method to solve the Klein-Gordon equation for the Yukawa potential.

They found the energy eigenvalues in both relativistic and non-relativistic domains, using the Laguerre polynomial to
calculate the associated eigenfunction. Their findings were used to determine the mass of the charmonium heavy meson. Their
total error was 0.2681%. In Ref. [30], the mass of charmonium was calculated using the asymptotic iteration method to solve
the Schodinger equation for the quark-antiquark potential.

The total error for this calculation was 0.13268%. Reference [31] used the same method to solve the non-relativistic radial
Schibdinger equation with the Cornell and Cornell plus harmonic potentials. The energy eigenvalues were calculated in three
dimensions, and they applied these results to determine the mass spectra of charmonium. The error from our calculation was
0.0478%.
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TABLE |. Mass spectra ofc in (GeV) (charm mass:. = 1.209 GeV, the parameters of the potentidl = 1 GeV,c = —10 GeV !,
b= —-0.5,a=0.947, g = 0.02, f = —9.838, fractional parameters = 0.3, 3 = 0.6, p = 0.04 GeV).

State P.W [7] [30] [31] Exp. [43] Total error
of each state
1S 3.096 3.096 3.078 3.096 3.096 0
2S 3.685 3.686 4.187 3.686 3.686 0.0002
1P 3.525 3.527 3.514 3.214 3.525 0
2P 3.872 3.687 4.143 2.773 3.773 0.0262
3s 3.949 4.040 5.297 4.275 4.040 0.0225
4S 4.089 4.360 6.407 4.865 4.263 0.0408
1D 3.848 3.098 3.752 3.412 3.770 0.0295
2D 4.036 3.976 - - 4.159 0.0295
Total error 0.017475 0.2681 0.13268 0.0478 - -
TABLE Il. Mass spectra ofb in (GeV) (bottom massn, = 4.623 GeV, the parameters of potential = 1 GeV,c = —10 GeV !,
b= —0.5,a = 0.4118, g = 0.02, f = —9.894, the fractional parameters= 0.2, 5 = 0.6, p = 0.1 GeV).
Total error
State P.W [44] [31] [45] [46] [30] [47] Exp. [48] of each state
1S 9.444 9.515 9.460 9.461 9.460 9.510 9.510 9.444 0
2S 10.044 10.018 10.023 10.023 10.023 10.627 10.038 10.023 0.0020
1P 9.900 - 9.492 9.608 9.619 9.862 9.862 9.900 0
2P 10.304 10.09 10.038 10.110 10.114 10.944 10.396 10.260 0.0042
3Ss 10.388 10.441 10.585 10.365 10.355 11.726 10.566 10.355 0.0031
4s 10.604 10.858 11.148 10.588 10.567 12.834 11.094 10.579 0.0023
1D 10.345 - 9.551 9.841 9.864 10.214 10.214 10.161 0.0181

Total error 0.0042 0.0083 0.0286 0.0112 0.0106 0.0835 0.0142

The mass obb for the following states: 1S, 2S, 3S, 4S, Reference [46] used the NU method to solve the
1P, 2P, and 1D is found in Table Il. We take the numericalN-dimensional Sclirdinger equation with a temperature-
value of 4.623 GeV for bottom mass,, respectively, from dependent Cornell potential. The energy eigenvalues and
Ref. [30]. wave functions were determined at zero temperature, and

Then, by combining the solution of algebraic equationsthe bottomonium mass at higher temperatures was examined.
with experimental data, the free parameters of B@) (vere  The error for this study was 0.0106%.

found where the parameters of the potentak 1 GeV, Reference [47] calculated the energy eigenvalues and
c = —10 GeV'1pb = —0.5, a = 0.4118, g = 0.02, eigenfunctions for the quark-antiquark interaction poten-
f = —9.894, the fractional parameters = 0.2, 3 = 0.6, tial using the power series method. Their total error was
p=0.1GeV. 0.0142%.

Our results show a good agreement with previous stud- Table Ill, by using Eq. [66), we were able to determine
ies, and there is a close match with experimental data. Ouhe mass ofs where charm mass,. = 1.209 GeV, strange
total error was 0.0042%. In Refs. [30, 31], the errors weremassnz = 0.419 GeV, the parameters of the potentiak 1
0.0835% and 0.0286%, respectively. GeV,c = —10GeV!, b = —0.5, a = 2.019, g = 0.02,

In Ref. [44], an analytical solution to the radial f = —9.996, the fractional parameters = g = 0.6,
Schibdinger equation was obtained using a series expansion= 0.18 GeV.
approach with a generalized anharmonic Cornell potential. Our results were better than those in recent studies,
The mass spectra for bottomonium were calculated with af31, 45, 49-52], and the total error was 0.0028%. In com-
error of 0.0083%. parison, the errors in Refs. [31, 45] were 0.06757% and

Reference [45] solved the Sduinger equation with the 0.020925%.

Killingbeck potential and an inversely quadratic potential,  Reference [49] used the Rosen-Morse potential to study
obtaining energy eigenvalues and mass spectra for heavihe thermodynamic properties of heavy mesons. The total
light mesons. The error in this calculation was 0.0112%.  error was 0.128725%.
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TaBLE Ill. Mass spectra ofs in (GeV) (charm mass:. = 1.209 GeV, strange massis = 0.419 GeV, the parameters of the potential
d=1GeV,c=—-10GeV !, b= —0.5,a = 2.019, g = 0.02, f = —9.996, the fractional parametets= 3 = 0.6, p = 0.18 GeV).

State P.W [45] [31] [49] [50] [51] [52] Exp. [48]
1S 2.067 1.969 2.512 1.969 2.075 2.067 2.076 2.067
2S 2.708 2.709 2.709 2.318 2.720 2.708 2.636 2.708
1P 2.512 2.601 2.649 2.126 2.537 2.512 2.515 2.512
2P 2.847 2.876 2.860 - 3.119 2.857 3.019 -
3s 2.878 2.913 2.906 2.667 3.236 2.935 3.061 -
43 2.897 2.998 3.102 - 3.664 3.041 3.244 -
1D 2.827 2.862 2.859 2.374 2.950 2.812 2.831 2.860

Total error 0.0028 0.020925 0.06757 0.128725 0.01237 0.0041 0.0104

TABLE IV. Mass spectra dfs in (GeV) (bottom massn, = 4.623 GeV, strange massis = 0.419 GeV, the parameters of the potential
d=1GeV,e=—-10GeV !, b= —0.5a = 1.660, g = 0.02, f = —9.590, the fractional parameters= 0.3, 8 = 0.6, p = 0.1 GeV).

State P.W [51] [31] [52] [50] [53] [54] ExP. [48]
1S 5.403 5.403 5.415 5.401 5.404 5.370 5.403 5.403
2S 6.039 5.942 6.819 6.168 5.988 5.971 5.952 -
1P 5.836 5.836 5.830 5.850 5.844 5.838 5.838 5.836
2P 6.243 6.066 6.786 6.380 6.343 6.254 6.233 -
3S 6.339 6.104 8.225 6.544 6.473 - 6.425 -
4S 6.500 6.174 9.629 6.756 6.878 - 6.863 -
1D 6.227 6.059 6.264 6.179 6.200 6.117 6.181 -
2D 6.451 - - 6.604 6.635 6.450 6.626 -

Total error - - 0.0016 0.0013 0.0007 0.0032 0.00015 -
In Ref. [50], the quasipotential technique was usedtocale = —10 GeV™!, b = —0.5, a = 1.773, ¢ = 0.02,
culate the masses of heavy-light mesons, with an error of = —9.556, the fractional parameters = 0.3, 3 = 0.6,

0.01237%. Ref. [51] applied the generalized Cornell potenp = 0.13, GeV.
tial model to solve the Dirac equation, and their error was The current results surpass those in Refs. [52, 55-57],
0.0041%. with a total error of 0.00583%. The results are in good agree-

Reference [52] solved the Klein-Gordon equation analyt-ment with the experimental data. We found the total error in

ically using a combination of linear and modified Yukawa Ref. [52] was 0.00583.
potentials. Their total error was 0.0104%. Reference [55], the authors presents a detailed analysis of

the masses of the ground, orbitally, and radially excited states
of the D-meson within the context of the screened potential
model with the Gaussian wave-function.

The Hamiltonian includes relativistic adjustment to the
f = —9.590, the fractional parameters = 0.3, 3 = 0.6, kine_tic energy termnd(p') an(_jo(l/m) gorrection to _the Po-
p=0.1GeV. tent|.al energy term. Th(_a spin-hyperfine, spm—orbn and tgn-

. sor interactions integrating the effect of mixing are applied

These results were better than the latest StUd".aS (Refs. [390 derive the pseudoscalar, vector and radially and orbitally
50-54]), and the error was 0.0016%. The errors in Refs. [31excited meson masses. Total error in Ref. [55] was 0026
50,52] were 0.0007%, 0.0013%, and 0.0032%, respectively. Ref. [56], the authors compute the excited charm and

In Ref. [53], a relativistic quark model was used to deter-charm-strange meson characteristics. They compute their
mine the mass spectra of heavy-light mesons, and the errghasses and wave functions, which are required to compute
was 0.0032%. Reference [54] used the relativistic indepenradiative transition partial widths, by using the relativized
dent quark model to StUdy thB and Bs mesons, with an quark model. Total error in Ref. [56] was O]%g

In Table IV, we were able to calculate the masdoby
using Eq. 66), where bottom mass,;, = 4.623 GeV, strange
massnz = 0.419 GeV, the parameters of the potentia 1
GeV,c = —10 GeV!, b = —0.5, a = 1.660, g = 0.02,

error of 0.00015%. In Ref. [57], a comparison study of the decay prop-
The mass ofcg was found in Table V and by using erties and spectroscopy of the D-meson is carried out be-
Eq. 66), where charm mass,. = 1.209 GeV, Mo mq = tween the Gaussian and hydrogenic wave functions, in the

0.46 GeV, the parameters of the potentidl= 1 GeV, framework of the phenomenological quark-antiquark poten-
tial (Coulomb plus power) model.
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TABLE V. Mass spectra ofg in (GeV) (charm massn. = 1.209 GeV, mg = 0.46 GeV, the parameters of the potential= 1 GeV,
c=-10GeV !, b= —0.5,a = 1.773, g = 0.02, f = —9.556, the fractional parameters = 0.3, 3 = 0.6, p = 0.13 GeV).

State P.W [52] [55] [56] [57] Exp. [58]
1S 1.975 1.978 1.975 2.000 1.973 1.975
2S 2.613 2.665 2.424 3.628 2.586 2.613
1P 2.434 2.434 2.448 2.473 2.448 2.434
2P 2.829 2.953 2.977 2.948 2.949 -
3S 2.907 3.074 3.118 3.100 3.104 -
4S 3.059 3.341 3.512 3.490 3.510 -
1D 2.841 2.783 2.777 2.830 2.768 -
2D 3.046 3.132 3.242 3.229 3.207 -
1F 3.108 3.009 3.048 - - -

Total error - 0.00583 0.026 0.139 0.00566

TABLE VI. Mass spectra 0fg in (GeV) (bottom massn, = 4.623 GeV, mg = 0.46 GeV, the parameters of the potential= 1 GeV,
c=-10GeV !, b= —-0.5,a = 1.754, g = 0.02, f = —9.532, fractional parameters = 0.3, 5 = 0.6, p = 0.11 GeV).

State P.W [31] [52] [59] [60] Exp. [48]
1S 5.313 5.325 5.314 5.314 5.371 5.313
2S 5.970 6.413 5.924 5.951 5.933 5.971
1P 5.734 5.723 5.747 5.779 5.777 5.734
2P 6.175 6.486 6.100 6.307 6.197 -
3s 6.289 7.501 6.214 6.425 6.355 -
4s 6.464 8.589 6.474 6.846 6.703 -
1D 6.146 6.131 6.035 6.104 6.110 -
2D 6.398 - 6.273 6.571 - -

Total error 0.000055 0.026033 0.0033 0.0037 0.0082 -

The spin-hyperfine, spin-orbit, and tensor interactions are  In Ref. [60], inspired by the latest studies of the me-
used to obtain the pseudoscalar and vector meson mass&sn states of3 and B, properties of bottom and bottom-
with a mixing effect. Total error in Ref. [57] was 0.00866  strange mesons are calculated in two relativized quark mod-

The mass oftg was found in Table VI and by using els. Model masses and wavefunctions are used to predict

Eq. (66), where bottom mass, = 4.623 GeV,m,_, ;7 =  the rates of radiation transition. We found that total error of
0.46 GeV, the parameters of the potentia= 1 GeV c = Ref. [60] was 0.008%.

—-10GeV ', b= —-0.5,a = 1.754, g = 0.02, f = —9.532, In this study, we analyzed the mass spectra of charmo-
the fractional parameters= 0.3, 3 = 0.6, p = 0.11 GeV. nium and bottomonium systems by plotting them with the

The current results show a significant improvement overeduced mass for different fractional parameteends. As
the latest Refs. [31,52,59,60], and there is a close match witehown in Figs. 1-5, for the orbital angular momentum quan-
experimental data. In our paper total error was 0.0000Q55 tum numbers a) = 0 and b)l = 1, the mass spectra decrease
In Refs. [31, 52], the total error were 0.02683and  with reduced mass, consistent with Ref. [52].
0.0033%. The masses of the ground, orbitally, and radially =~ We also observed that the mass spectra increase as the
excited states are computed in Ref. [59], driven by the recerdrbital angular momentum quantum numbeércreases.
LHCb observations of th& and B, meson states. Furthermore, the mass spectra increase with higher val-
The Hamiltonian now include®(1/m) andO(p*°) rela-  ues of the fractional parametessand 3. In Figs. 2-6, for a)
tivistic corrections to the potential and kinetic energy terms.] = 0 and b)l = 1, we plotted the charmonium and bottomo-
The employed screening potential is solved using the Gaustium mass spectra with the principal quantum numbésr
sian wave function. various values ofv and .
We are able to correlate some recently discovered states The results show that the mass spectra grow with
with B and B, mesons by constructing the Regge trajecto-which is consistent with Ref. [52].
ries using the predicted masses. We evaluated total error of Additionally, the mass spectra increase with both the or-
Ref. [59] was 0.003%. bital angular momentum quantum numband the fractional
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FIGURE 1. The mass spectra of Charmonium with reduced mass at different values of the fractional paramgtatshe orbital angular
momentum quantum numberia)= 0, b) I = 1.
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FIGURE 2. The mass spectra of Charmonium with n at different values of the fractional parameteet the orbital angular quantum
numbera) =0, b)l = 1.
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FIGURE 3. The mass spectra of Charmonium with the orbital angular momentum quantum nuabéferent of the fractional paramteres
«, (3 at the principle quantum numbera)= 1, b) n = 2.

parametergy and3. In Figs. 3 and 7, for ap = 1 and b) increases withi, and the mass spectra also increase asd
n = 2, we plotted the mass spectra of charmonium and bot#g grow.
tomonium with! for differenta. and3 values.

The results confirm that the mass spectra increaselwith
and they also grow as and /3 increase. When plotting char-
monium and bottomonium mass spectra witfor different
I values in Figs. 4, 8, we found that the mass spectra increase
with « and rise further with highdrvalues.

In Fig. 9, for a)a = 8 = 1 and b)a = 5 = 0.4, we plot-
ted the mass spectra o, ¢g—, bs~, andbg~ with n. We ]
observed that the mass of the heavy-light mesons increases 5o 02 04 06 08 10
with n, and the mass spectra grow@aandg increase. .

- B=1,1=0
— B=1,1=1
f— p=1,1=2

N W

Mass(GeV)

|
-

|
N
T

Finally, in Fig. 10, forapy = 3 = land b)a = g = 0_-4, FIGURE 4. The mass spectra of Charmonium with factor parame-
we plotted the mass spectra®f™, cq~, bs™, andbg™ against  ter« at different of orbital angular momentum quantum number
l. The results indicate that the mass of the heavy-light mesons
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FIGURE 8. The mass spectra of Bottomonium with factor parame-
ter « at different of the orbital angular momentum quantum num-

berl.

4.3. Thermodynamics properties of heavy light meson

Using the resultant Eq.66), the thermodynamic properties
for the potential model are computed. The partition function
can yield the thermodynamic characteristics of a quantum
mechanical system, & 3;)
system’s absolute temperatuf€,is the Boltzmann constant,
andj3; = 1/K T and where\ is the quantum number with
the highest upper bound obtained from the numerical solu-
tion of dE,, /dn = 0, It is possible to substitute the integral
in Eq. (67) for the summation in the classical limit.

—P<En whereT is the

A
Zn:O €
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FIGURE 9. The mass spectra 0§, cq, bs, andbg with the principle quantum numberata)a = 8 =1. b)a = 5 =0.4.
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FIGURE 10. The mass spectra of, cg, bs, andbg with the orbital angular momentum quantum numbatra)a = 5= 1. b)a = § = 0.4.

4.3.1. Partition function

Z(Bs) = /0 ’ e PeEn g\, (67)

1 1 —1 -1 2
Z(8,) = Bs(—A1—5A2A3) 5 V—Az Bs\/—A2A3% Bs
(B) ¢ QQH\/—AQﬂse v

X (em\/—AzAsz Bop — V=42 P/ =A24* e p L | M>, (68)

D = Erfi <4A42V‘A2 Bt 02 K2 V=5 o+ 4/ A0 A7 s + 4A4am/m>
- 8As+4ak )

B Brfi <4 ACVEA T, + 0P (54 2 00)° VoA B AV Aa A By + A AL 42N a /=M B oo
B 8A,+4(1+2N) ak ’

F = Erfi E(QA — Ay Bs + /=4, B _%) (70)
= orf 1 4 2 Dg a R 2 Ps 2A4-‘r(1/€ ’

- (1 4y/—Ax A5® Bs
M—Erfz<1(2A4 _A2ﬁ3+(1+2)‘)aHV_AQﬁS_m) ’

2

s

2
A1:2'0—<t3+;1(ka—1)2>, A= Ay=(t1—ty), A4:\/}1k2a2+t1—t2+t3. (71)
I

[\V]

I
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FIGURE 12. The free energyK) for cs is presented as a function g8f, for various values of the fractional parameterandg at (the orbital
angular momentum quantum numbei e} 0, d) [ = 1).
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FIGURE 13. The mean energyl{) for ¢s is presented as a function 6f, for various values of the fractional parameterand 3 at (the
orbital angular momentum quantum numbet & 0, b) I = 1).

4.3.2.

4.3.3.

Free energy’

F(Bs)

Mean energy U

(72)

(73)

(74)

4.3.5. The entropy

olnZ(Bs)

S 1

S(Bs) = KInZ(8s ) — K Bs

In Fig. 11, we plot the partition functio (3;) of c¢s~
as a function ofg, for various values of the fractional pa-
rametersy and 3, under the influence of the orbital angular
momentum quantum numbéf(a)l = 0, (b) ! = 1).

We observe that the partition function increases with ris-
ing values ofa and 8 but decreases dsincreases. Addi-
tionally, as(, increasesZ(3;) decreases, consistent with
Refs. [27,61-63].
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FIGURE 14. The specific heat fors is presented as a function 6f, for various values of the fractional parametarand at [the orbital
angular momentum quantum numbei & 0, b) [ = 1].
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FIGURE 15. The entropy fores is shown as a function @i, for different values of the fractional parameterendg at [the orbital angular
momentum gquantum numberia)= 0, b) [ = 1].

In Ref. [27], the authors used the generalized fractional Reference [65] used a density- and temperature-
extended NU method to solve the fractional Stinger dependent potential model to calculate the thermodynamic
equation (SE) with a harmonic oscillator potential. Theyparameters of quark matter, showing similar trends in free
found that as3, increases/Z (8s) decreases, while higher energy behavior.
values ofe andg causeZ (;) to increase. In Fig. 13, we plot the mean ener@y of cs— as a func-

Reference [61] analyzed the SE with a harmonic oscillafion of 5. [a) I = 0, b) I = 1] for differenta and 3 values.
tor potential using the generalized Dunkl derivative in quan-Ve observe thal/ decreases with increasingand3. As (3

tum mechanics, deriving energy eigenvalues and showinfficreasesi/also declines. o _ _
that the partition function decreases with Furthermore[V increases with highdr, consistent with

- .. Refs. [27,61-63].
Similarly, Ref. [60] employed the DFDEP method with . . .
the NU approach to solve the Klein-Gordon equation andt. Ianlg. 14l’ t_hg sg)im_ﬁcl hfeaﬂ’ Of.cs IS plgtted las af#‘C_
found that”Z (,) decreases as increases. Ref. [63] studied lon Qflﬁsh[a)t o )= .] or var|9LiSatan_tr]ﬁ%/afuezs% 66e
the thermodynamic properties of heavy mesons using the specific heat increases with, consistent wi ef. [27,66].

dimensional SE with an expanded Cornell potential and aISC_)LS I:howev;ar,c de;:reail;esdyvitlk] higdher ve}luest_bf In Fig.
reported thatZ (3, ) decreases witfs,. » the entropy§ of cs™ is displayed as a function d; [a)

l =0, b)I = 1] for variousa. and 3 values.

~ InFig. 12, the free energj of cs™ is plotted as a func- We find that S decreases asand 3 increase. Moreover,
tion of 5 [a) I = 0, b) I = 1] for various values otvand g yeclines with3, and decreases further with highieThese
s results are consistent with Refs. [27,61, 63, 66].

The results show thak' increases with highes and 5
values, while it decreases with increasing

Additionally, as g, increases,F' increases, buf' de-
creases as temperature rises, consistent with Refs. [27, 62 this study, we applied the Yukawa potential model and the
65]. screened modified Kratzer potential to solve the generalized
Reference [64] computed the phase diagram and thermdractional Klein-Gordon equation using the generalized frac-
dynamic properties of quark-gluon plasma (QGP) as functional parametric NU method.
tions of temperature and baryon density, considering weakly  For both relativistic and non-relativistic cases, we derived
interacting light quarks and gluons. the generalized fractional energy eigenvalues and wave func-

5. Conclusion
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tions, comparing the results with previous studies. For theemperature rises, contrasting with results in Refs. [27, 62—
non-relativistic case, we calculated the masses of heavy ar@b].

heavy-light mesons. . _ o Additionally, increasing leads to a decrease in free en-
The use of the generalized fractional derivative provedergy. For the mean enerdy of cs—, as a function of 3,),
essential, as it reduced the total error in calculating thesghe results show that mcreasmgandﬂ lowers the curve.

masses. This novel approach provides a highly accuratgimilarly, as(3,) increasesl/ decreases, which agrees with
method for determining the masses of charmonium and botgefs. [27,61-63].

tomonium mesons in various excited states, achieving excel- Increasingl also reduces the mean energy. The specific
lent agreement with experimental data and significantly "L eat ofcs— was plotted as a function 68, for different val-
ducing error rates compared to earlier methods [7, 30, 31, 44505 ofa andg. ®
47,49-57,59, 60]. o ,
We also analyzed the thermodynamic properties of the The results indicate that higher and 5 values lead to
heavy-light mesores— graphically. The partition function Nigher specific heat, which also increases with), consis-
Z (8.) was found to increase with rising valuesoandsbut €Nt with Ref. [27, 66].
decreases asincreases. Ag(,) grows, Z ((,) decreases, However, increasingdecreases the specific heat. Finally,
aligning with results from previous studies [27,61-63]. the entropy was observed to decrease with) , aligning
The free energyF increases with(3,) but decreases as with Ref. [27,59, 61, 64], and it also decrease$ iasreases.

1. L.-Z.Yi etal, Bound states of the Klein—Gordon equation with 10.
vector and scalar Rosen—Morse-type potentiBlsysics Let-
ters A333(2004) 212/https://dol.org/10.1016/].
physleta.2004.10.054

2. X.-C. Zhang et al, Bound states of the Dirac equation
with vector and scalar Scarf-type potentiaBhysics Let-
ters A 340 (2005) 59.nhttps://doi.org/10.1016/|.
physleta.2005.04.011

E. P. Inyang et al, Quark-antiquark study with in-
versely quadratic yukawa potential using the nikiforov-
uvarov-functional-analysis methodast European Journal
of Physics2 (2022) 43 https://doi.org/10.26565/
2312-4334-2022-2-05

A. Kratzer, Die ultraroten rotationsspektren der halogenwasser-
stoffe. Zeitschrift f ur Physilk3 (1920) 289 https://doi.
org/10.1007/pf01327754

A. N. Ikot et al, Eigensolution, expectation values and ther-
modynamic properties of the screened Kratzer poteriTiae
European Physical Journal Plu34 (2019) 386, /https:

11.

3. K. K. Likharev, Quantum Mechanics: Lecture notes: Lecture 12-
notes (IOP Publishing, 2019).

4. S. Dong, and M. Lozada-Cassou. Exact solutions of the Klein-

Gordon equation with scalar and vector ring-shaped potentlals
Physica Scripta74 (2006) 285, https://doi.org/10.
1088/0031-8949//4/2/024

. P. Alberto, A. S. de Castro, and M. Malheiro. Spin and pseu-
dospin symmetries and the equivalent spectra of relativis-
tic spin-1/2 and spin-0 particle®hysical Review C-Nuclear
Physics75(2007) 047303https://doi.org/10.1103/
PhysRevC. /5.04 /303

. E. S. William, E. P. Inyang, and E. A. ThompsdRev. 15
Mex. Fis.66 (2020) 730https://doi.org/10.31349/
revmextis.66.730

. E. P. Inyanget al,
Klein-Gordon equation
Nikiforov—Uvarov method.
95 (2021) 2733,
s12648-020-01933-X

Approximate solutions of D-dimensional
with  Yukawa potential via
Indian Journal of Physics
https://doi.org/10.1007/

. C. Berkdemir, A. Berkdemir, and J. Han, Bound state solutionsj 7.

of the Schr odinger equation for modified Kratzer's molecular
potential.Chemical Physics Lette#17 (2006) 326 https:
/ldoi.org/10.1016/j.cplett.2005.10.039

. E. Inyang, and E. Obisung, The study of electronic states of NI
and Scl molecules with screened Kratzer PotenHakt Euro-
pean Journal of Physic8 (2022) 32 https://doi.org/
10.26565/2312-4334-2022-3-04

13. C. O. Edetet al,

14.

. E. P. Inyanget al,

16.

18.

Jidoi.org/10.1140/epjp/i2019-12783-x
Eigenfunctions, uncertainties and ther-

mal properties of diatomic molecules under screened
modified Kratzer potential.Indian Journal of Physics
96 (2022) 3429, |https://doi.org/10.1007/

$12648-022-02292-5

E. P. Inyanget al., Masses and thermodynamic properties of a
Quarkonium systemCanadian Journal of Physic89 (2021)
982, https://doi.org/10.1139/cjp-2020-0578

Energy spectra and expectation val-
ues of selected diatomic molecules through the solutions
of Klein—Gordon equation with Eckart-Hellmann potential
model.Molecular Physicsl19 (2021) e1956615https://
doi.org/10.1080/00268976.2021.1956615

E. P. Inyanget al., Masses and thermal properties of a charmo-
nium and Bottomonium mesondournal of the Nigerian Soci-
ety of Physical Sciencg¢2022) 884.

E. P. Inyanget al, Investigation of quantum information
theory with the screened modified Kratzer and a class of
Yukawa potential modelThe European Physical Journal Plus
138 (2023) 969, |https://doi.org/10.1140/epjp/
S13360-023-0461/-/

A. D. Antia, I. Okon Akpan, and A. Okon Akankpo, Rela-
tivistic treatment of spinless particles subject to modified Scarf
Il potential. International Journal of High Energy Physics

Rev. Mex. Fis71030801


https://doi.org/10.1016/j.physleta.2004.10.054�
https://doi.org/10.1016/j.physleta.2004.10.054�
https://doi.org/ 10.1016/j.physleta.2005.04.011�
https://doi.org/ 10.1016/j.physleta.2005.04.011�
https://doi.org/10.1088/0031-8949/74/2/024�
https://doi.org/10.1088/0031-8949/74/2/024�
https://doi.org/10.1103/PhysRevC.75.047303�
https://doi.org/10.1103/PhysRevC.75.047303�
https://doi.org/10.31349/revmexfis.66.730�
https://doi.org/10.31349/revmexfis.66.730�
https://doi.org/10.1007/s12648-020-01933-x�
https://doi.org/10.1007/s12648-020-01933-x�
https://doi.org/10.1016/j.cplett.2005.10.039�
https://doi.org/10.1016/j.cplett.2005.10.039�
https://doi.org/10.26565/2312-4334-2022-3-04�
https://doi.org/10.26565/2312-4334-2022-3-04�
https://doi.org/10.26565/2312-4334-2022-2-05�
https://doi.org/10.26565/2312-4334-2022-2-05�
https://doi.org/10.1007/bf01327754�
https://doi.org/10.1007/bf01327754�
https://doi.org/10.1140/epjp/i2019-12783-x�
https://doi.org/10.1140/epjp/i2019-12783-x�
https://doi.org/10.1007/s12648-022-02292-5�
https://doi.org/10.1007/s12648-022-02292-5�
https://doi.org/10.1139/cjp-2020-0578�
https://doi.org/10.1080/00268976.2021.1956615�
https://doi.org/10.1080/00268976.2021.1956615�
https://doi.org/10.1140/epjp/s13360-023-04617-7�
https://doi.org/10.1140/epjp/s13360-023-04617-7�

16

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

M. ABU-SHADY AND H. M. FATH-ALLAH

2 (2015) 50/https://doi.org/10.11648l/|.ijhep.
20150204.12

H. Hassanabadi, S. Zarrinkamar, and A. A. Rajabi, Exact so-
lutions of D-dimensional Schr odinger equation for an energy-
dependent potential by NU metho@ommunications in The-
oretical Physics55 (2011) 541 |https://doi.org/10.
1088/0253-6102/55/4/01

M. Safi Ullah, and M. Zulfikar Ali, Bifurcation anal-

ysis and new waveforms to the fractional KFG equa-34.

tion. Partial Differential Equations in Applied Mathemat-
ics 10 (2024) 100716https://doi.org/10.1016/].
padiff.2024.100716

H. H. Karayer, A.D. Demirhan, F. @/ukkel:, Turk. J.
Phys. 41 (2017) 551, |https://doi.org/10.3906/

fiz-1707-9

M. Abu-Shady, and M. K. A. Kaabar, A generalized defini-
tion of the fractional derivative with applicationsathemat-
ical problems in engineerin@021 (2021) 9444803https:
//doi.org/10.1155/2021/9444803

G. Jumarie, Modified Riemann-Liouville derivative and frac-
tional Taylor series of nondifferentiable functions further re-
sults.Computers & Mathematics with Applicatiosd (2006)
1367, |https://doi.org/10.1016/].camwa.2006.

02.001 .

M. Abu-Shady, and Sh Y. Ezz-Alarab. Conformable fractional
of the analytical exact iteration method for heavy quarkonium
masses spectreew-Body System62 (2021) 1-8.

M. Caputo, Linear Models of Dissipation whose Q is almost 39

Frequency Independent- [Eeophysical. J. Int13 (1967) 529,
https://dol.org/10.1111/].1365-246X.1967.
tb02303.X

R. Khalil et al., A new definition of fractional derivativelour-
nal of computational and applied mathemati&4 (2014) 65,
https://doi.org/10.1016/j.cam.2014.01.002 !

M. Abu-shady, and H. M. Fath-Allah, Properties and behav-

iors of heavy quarkonia: insights through fractional model and41.

topological defectsAdvances in High Energy Physi&024
(2024) 2730568, https://doi.org/10.1155/2024/

2/30568 |

A. N. Ikot et al., Relativistic and non-relativistic thermal prop-
erties with bound and scattering states of the Klein-Gordon
equation for Mobius square plus generalized Yukawa poten-
tials. Indian Journal of Physic®7 (2023) 2871 https://
doi.org/10.1007/s12648-023-02654-7

E. P. Inyanget al, Masses and thermal properties of a char- 44.

monium and Bottomonium mesonslournal of the Nigerian
Society of Physical Sciencgx022) 884.

R. Kumar and F. Chand, Asymptotic study to the N-
dimensional radial Schr odinger equation for the quark-

antiquark system,Communications in Theoretical Physics 45.

59 (2013) 528,
0253-6102/59/5/02

R. Rani, S. B. Bhardwaj, and Fakir Chand, Mass spectra of

https://doi.org/10.1088/

heavy and light mesons using asymptotic iteration method46.

Communications in Theoretical Physicg0 (2018) 179,
https://doi.org/10.1088/0253-6102/70/2/
1/9.

32.

33.

35.

36.

37.

40.

42.

D. Molina et al., Bottomonium spectrum with a Dirac potential
model in the momentum spackhe European Physical Journal
C 80 (2020) 526,https://doi.org/10.1140/epjc/
$10052-020-8099-z

T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia.
Physical Review D—Particles, Fields, Gravitation, and Cos-
mology72 (2005) 05402€https://doi.org/10.1103/
PhysRevD.72.054026

M. Schleif and R. W unsch, Thermodynamic properties of the
SU(2) f chiral quark—loop solitoriThe European Physic Jour-
nal A-Hadrons and Nucleil (1998) 171,https://dol.
org/10.100//s100500050046

M. Abu-Shady, Meson properties at finite temperature in
the linear sigma modelnternational Journal of Theoretical
Physics 49 (2010) 2425 https://doi.org/10.1007/
S10//3-010-0428-9

M. Abu-Shady, The effect of finite temperature on the nucleon
properties in the extended linear sigma modeternational
Journal of Modern Physics R1 (2012) 1250061https:
//dol.org/10.1142/S0218301312500619

M. Abu-Shady, E. M. Khokha, and T. A. Abdel-Karim. The
generalized fractional NU method for the diatomic molecules
in the Deng-Fan modelhe European Physical Journal D6
(2022) 159.

38. A. F. Nikiforov, V. B. Uvarov, Special Functions of Mathemat-

ical Physics. Birkh auser, (Basel 1988).

M. Abu-shady, and H. M. Fath-Allah. The Parametric General-
ized Fractional Nikiforov-Uvarov Method and Its Applications.
East European Journal of Physic8 (2023) 248, https:
/ldoi.org/10.26565/2312-4334-2023-3-22

C. Tezcan, and R. Sever, A general approach for the exact solu-
tion of the Schiddinger equationinternational Journal of The-
oretical Physics48 (2009) 337, https://doi.org/10.
100//s10//3-008-9806-y

W. Greiner, Relativistic quantum mechanics. Vol. 2. (springer,
Berlin, 2000).

R. L. Greene, and C. Aldrich. Variational wave functions
for a screened Coulomb potentidPhysical Review Al4
(1976) 2363nttps://doi.org/10.1103/PhysRevA.

14.2363 .

43. M. Tanabashi, C. D. Carone, T. G. Trippe and C. G. W\Weiys.

Rev. D98 (2018) 548.

E. E. Ibekweet al, Bound state solution of radial schrodinger
equation for the quark—antiquark interaction potentied-
nian Journal of Science and Technology, Transactions A:
Science44 (2020) 1191, https://doi.org/10.1007/
S40995-020-00913-4

E. Omugbe, E. Omosede Osafile, and M. C. Onyeaju, Mass
spectrum of mesons via the WKB approximation methédk
vances in High Energy Physi2920(2020) 5901464https:
/ldoi.org/10.1155/2020/5901464

M. Abu-Shady, N-dimensional Sdbdinger equation at finite
temperature using the Nikiforov-Uvarov methddurnal of the
Egyptian mathematical socie®p (2017) 86 https://doi.
0rg/10.1016/).joems.2016.06.006

Rev. Mex. Fis71030801


https://doi.org/10.11648/j.ijhep.20150204.12�
https://doi.org/10.11648/j.ijhep.20150204.12�
https://doi.org/10.1088/0253-6102/55/4/01�
https://doi.org/10.1088/0253-6102/55/4/01�
https://doi.org/10.1016/j.padiff.2024.100716�
https://doi.org/10.1016/j.padiff.2024.100716�
https://doi.org/10.3906/fiz-1707-9�
https://doi.org/10.3906/fiz-1707-9�
https://doi.org/10.1155/2021/9444803�
https://doi.org/10.1155/2021/9444803�
https://doi.org/10.1016/j.camwa.2006.02.001�
https://doi.org/10.1016/j.camwa.2006.02.001�
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x�
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x�
https://doi.org/10.1016/j.cam.2014.01.002�
https://doi.org/10.1155/2024/2730568�
https://doi.org/10.1155/2024/2730568�
https://doi.org/10.1007/s12648-023-02654-7�
https://doi.org/10.1007/s12648-023-02654-7�
https://doi.org/10.1088/0253-6102/59/5/02�
https://doi.org/10.1088/0253-6102/59/5/02�
https://doi.org/10.1088/0253-6102/70/2/179�
https://doi.org/10.1088/0253-6102/70/2/179�
https://doi.org/10.1140/epjc/s10052-020-8099-z�
https://doi.org/10.1140/epjc/s10052-020-8099-z�
https://doi.org/10.1103/PhysRevD.72.054026�
https://doi.org/10.1103/PhysRevD.72.054026�
https://doi.org/10.1007/s100500050046�
https://doi.org/10.1007/s100500050046�
https://doi.org/10.1007/s10773-010-0428-9�
https://doi.org/10.1007/s10773-010-0428-9�
https://doi.org/10.1142/S0218301312500619�
https://doi.org/10.1142/S0218301312500619�
https://doi.org/10.26565/2312-4334-2023-3-22�
https://doi.org/10.26565/2312-4334-2023-3-22�
https://doi.org/10.1007/s10773-008-9806-y�
https://doi.org/10.1007/s10773-008-9806-y�
https://doi.org/10.1103/PhysRevA.14.2363�
https://doi.org/10.1103/PhysRevA.14.2363�
https://doi.org/10.1007/s40995-020-00913-4�
https://doi.org/10.1007/s40995-020-00913-4�
https://doi.org/10.1155/2020/5901464�
https://doi.org/10.1155/2020/5901464�
https://doi.org/10.1016/j.joems.2016.06.006�
https://doi.org/10.1016/j.joems.2016.06.006�

47.

48.

49.

51.

53.

55.

56.

57.

THERMODYNAMIC ANALYSIS AND MASS SPECTRA OF HEAVY MESONS VIA THE GENERALIZED FRACTIONAL...

R. Kumar, and F. Chand, Series solutions to the N-dimensionab8
radial Schodinger equation for the quark—antiquark interac-
tion potential. Physica Scripta85 (2012) 055008 https:
//doi.org/10.1088/0031-8949/85/05/055008

M. Tanabashet al, Review of particle physic?hysical Re-
view D98 (2018).

M. Abu-Shady, and Sh. Y. Ezz-Alarab, Trigonometric Rosen—
Morse potential as a quark—antiquark interaction potential for

meson properties in the non-relativistic quark model using60.

EAIM. Few-body system$0 (2019) 66, https://doi.
0rg/10.100//s00601-019-1531-y

. D. Ebert, R. N. Faustov, and V. O. Galkin. Heavy-light

meson spectroscopy and Regge trajectories in the relag;
tivistic quark model. The European Physical Journal C
66 (2010) 197, https://doi.org/10.1140/epjc/
s10052-010-1233-6

M. Abu-Shady, and E. M. Khokha. Bound state solutions of the
Dirac equation for the generalized Cornell potential moltel.
ternational Journal of Modern Physics 26 (2021) 2150195,
https://doi.org/10.1142/S0217751X21501955

. K. R. Purohit, A. Kumar Rai, and R. H. Parmar, Spectroscopy

of heavy-light mesons (Cs cq~, bs™, bg™) for the linear plus
modified Yukawa potential using Nikiforov-Uvarov method.
Indian Journal of Physic®8 (2024) 1109 https://doi.
0rg/10.100//s12648-023-02852-3

J.-B. Liu, and C.-D. li, Spectra of heavy-light mesons
in a relativistic model. The European Physical Journal
C 77 (2017) 312,nttps://doi.org/10.1140/epjc/
s10052-01/-486/-9

. M. Shah, B. Patel, and P. C. Vinodkumar, Spectroscopy and

flavor changing decays of B, B s mesons in a Dirac formalism.64
Physical Review @3 (2016) 094028&https://doi.org/
10.1103/PhysRevD.93.094028

V. Patel, R. Chaturvedi, and A. K. Rai, Spectroscopic proper-
ties of D-meson using screened potenfidle European Phys-
ical Journal Plus136 (2021) 42 https://doi.org/10.
1140/epjp/s13360-020-01039-7

S. Godfrey, and K. Moats, Properties of excited charm
and charm-strange mesons. Physical Reviewd® (2016)
034035 https://doi.org/10.1103/PhysRevD.93.

034035 .

N. Devlani, and A. Kumar Rai, Mass spectrum and decay66.

properties of D mesoninternational Journal of Theoretical
Physics52 (2013) 2196,https://doi.org/10.1007/
s10//3-013-1494-6

62.

63.

65.

17

. C. Patrignani, Review of particle physic€hinese Physics
C 40 (2016) 100001. https://doi.org/10.1088/
16/4-113//40/10/100001

9. V. Patel, R. Chaturvedi, and A. Kumar Rai, Spectroscopic

properties ofB and B_s meson using screened potentiku-
dian Journal of Physic$2024) 1 https://doi.org/10.
100//s12648-023-03048-5

S. Godfrey, Kenneth Moats, and E. S. Swanson. B and
B s meson spectroscopyhysical Review D94 (2016)
054025 https://doi.org/10.1103/PhysRevD.94.

054025 .

. S. H. Dong, W. H. Huang, W. S. Chung, P. Sedaghatnia,
and H. Hassanabadi, Exact solutions to generalized Dunkl os-
cillator and its thermodynamic propertieBuro physics Let-
ters 135 (2021) 30006, https://doi.org/10.1209/
0295-50/75/ac2453

A. N. lkot, B. C. Lutfuoglu, M. I. Ngwueke, M. E. Udoh,

S. Zare, and H. Hassanabadi, Klein-Gordon equation particles
in exponential-type molecule potentials and their thermody-
namic properties in D dimensionghe European Physic Jour-
nal Plus 131 (2016) 419 https://doi.org/10.1140/
epjp/i2016-16419-5

M. Abu-Shady, T. A. Abdel-Karim, and Sh Y. Ezz-Alarab.
Masses and thermodynamic properties of heavy mesons
in the non-relativistic quark model using the Nikiforov—
Uvarov method. Journal of the Egyptian Mathematical
Society 27 (2019) 14, https://doi.org/10.1186/
s42/87-019-0014-0

. M. Modarres and A. Mohamadnejad, The thermodynamic
properties of weakly interacting quark-gluon plasma via the
one-gluon exchange interactioRhysics of Particles and Nu-
clei Letters 10 (2013) 99|https://doi.org/10.1134/
S154/4//113020106 |

M. Modarres and H. Gholizade, Strange quark matter in the
framework of one gluon exchange and density and temperature
dependent particle mass modéigernational Journal of Mod-

ern Physics E17 (2008) 1335 https://doi.org/10.
1142/50218301308010453

C. O. Edetet al, Magneto-transport and thermal properties
of the Yukawa potential in cosmic string space-tinRgsults

in Physics 39 (2022) 105749 |nttps://doi.org/10.
1016/].rinp.2022.105749

Rev. Mex. Fis71030801


https://doi.org/10.1088/0031-8949/85/05/055008�
https://doi.org/10.1088/0031-8949/85/05/055008�
https://doi.org/10.1007/s00601-019-1531-y�
https://doi.org/10.1007/s00601-019-1531-y�
https://doi.org/10.1140/epjc/s10052-010-1233-6�
https://doi.org/10.1140/epjc/s10052-010-1233-6�
https://doi.org/10.1142/S0217751X21501955�
https://doi.org/10.1007/s12648-023-02852-3�
https://doi.org/10.1007/s12648-023-02852-3�
https://doi.org/10.1140/epjc/s10052- 017-4867-9�
https://doi.org/10.1140/epjc/s10052- 017-4867-9�
https://doi.org/10.1103/PhysRevD.93.094028�
https://doi.org/10.1103/PhysRevD.93.094028�
https://doi.org/10.1140/epjp/s13360-020-01039-7�
https://doi.org/10.1140/epjp/s13360-020-01039-7�
https://doi.org/10.1103/PhysRevD.93.034035�
https://doi.org/10.1103/PhysRevD.93.034035�
https://doi.org/10.1007/s10773-013-1494-6�
https://doi.org/10.1007/s10773-013-1494-6�
https://doi.org/10.1088/1674-1137/40/10/100001�
https://doi.org/10.1088/1674-1137/40/10/100001�
https://doi.org/10.1007/s12648-023-03048-5�
https://doi.org/10.1007/s12648-023-03048-5�
https://doi.org/10.1103/PhysRevD.94.054025�
https://doi.org/10.1103/PhysRevD.94.054025�
https://doi.org/10.1209/0295-5075/ac2453�
https://doi.org/10.1209/0295-5075/ac2453�
https://doi.org/10.1140/epjp/i2016-16419-5�
https://doi.org/10.1140/epjp/i2016-16419-5�
https://doi.org/10.1186/s42787-019-0014-0�
https://doi.org/10.1186/s42787-019-0014-0�
https://doi.org/10.1134/S1547477113020106�
https://doi.org/10.1134/S1547477113020106�
https://doi.org/10.1142/S0218301308010453�
https://doi.org/10.1142/S0218301308010453�
https://doi.org/10.1016/j.rinp.2022.105749�
https://doi.org/10.1016/j.rinp.2022.105749�

