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Thermodynamic analysis and mass spectra of heavy mesons
via the generalized fractional Klein-Gordon equation
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By employing the generalized fractional Nikiforov-Uvarov (GF-NU) method, we successfully derive solutions of the generalized fractional
Klein-Gordon (GF-KG) equation for both the screened Kratzer and a specific class of Yukawa potentials. These solutions yield the gener-
alized fractional energy eigenvalues across both the relativistic and non-relativistic domains. Furthermore, the corresponding generalized
fractional eigenfunctions can be obtained. We employed the derived solutions to calculate the heavy-meson masses of Charmonium (cc) and
Bottomonium (bb), along with those of heavy-light mesons (cs, cq, bs, bq). Notably, the Charmonium and Bottomonium masses were plotted
as functions of the orbital and angular quantum numbers, reduced mass, and fractional parameter. Similarly, the heavy-light meson masses
were plotted in relation to their orbital and angular quantum numbers. Additionally, a thermodynamic analysis of the heavy-light mesons
was conducted. The obtained results demonstrate a high degree of concordance with established experimental data and the findings of other
researchers
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1. Introduction

The Dirac and Klein-Gordon equations are key tools used
to describe the motion of particles in the relativistic regime,
with each equation applying to different types of particles
based on their spin. The Klein-Gordon equation is used for
spin-zero particles, like mesons, while the Dirac equation is
applicable to spin-half particles, such as electrons [1,2].

Solving these equations precisely remains a significant
challenge in nuclear and high-energy physics. The study
of exactly solvable potentials, which dates back to the early
days of quantum mechanics, has been of particular interest.
Two notable examples of exact solutions to the Klein-Gordon
equation are for the three-dimensional harmonic oscillator
and the hydrogen atom [3,4].

To solve the Klein-Gordon equation, it’s necessary to in-
troduce a four-vector potentialV (r) and a scalar potential
S(r) that depend on space-time. These potentials, along with
the four-vector linear momentum operator and the rest mass,
allow for a more accurate description of particle behavior.

Research has shown that when the conditionS (r) =
V (r) or S (r) = −V (r) [5], is met, the Klein-Gordon equa-
tion yields the same energy spectrum.

Additionally, settingS (r) = V (r) = 2 V1 (r) re-
sults in non-relativistic energy bounds that align with the
Schr̈odinger equation [6]. Recent studies have focused on
finding solutions to the Klein-Gordon equation for different
potentials [1,4,7].

For example, in one study, the Yukawa potential was used
to solve the Klein-Gordon equation using the NU method,

which provided energy eigenvalues in both relativistic and
non-relativistic domains. The corresponding wave functions
were expressed in terms of Laguerre polynomials.

This work contributed to calculating the masses of char-
monium and bottomonium mesons [7]. In work of Berkdemir
et al. [8], the modified Kratzer potential (MKP) has been
the subject of substantial research in the literature by various
writers [9,10].

Furthermore, by adding the screening parameter to the
traditional Kratzer potential [11], Ikot et al. [12] presented
the screened Kratzer potential (SKP). Edetet al. recently
proposed the screened modified Kratzer potential [13].

Using this potential, the interatomic interactions in two-
atom molecules were investigated. Here is the screened mod-
ified Kratzer potential (SMKP):

V1(r) = d +
f e−2 ρ r

r2
− g e−ρ r

r
. (1)

Another interesting kind of potential model is the class of
Yukawa potential (CYP), which has applications in atomic,
nuclear, and condensed matter physics, among other fields of
physics. The CYP manifests as the following

V1(r) =
−a

r
+

b e−ρ r

r
− c e−2ρ r

r2
. (2)

In order to provide more practical applications, employ-
ing two or more potentials has gained importance recently.

It is well known that potential models with more parame-
ters typically provide a more accurate match to experimental
data [14–16].
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The SMKCYP is of the form

V1(r) = d +
f e−2 ρ r

r2
− g e−ρ r

r

− a

r
+

b e−ρ r

r
− c e−2ρ r

r2
. (3)

Asymptotic freedom and quark confinement are two es-
sential components of strong interaction that these potentials
should include [17]. Yukawa proposed the Yukawa potential
as a useful non-relativistic potential to describe the strong nu-
cleon interactions.

Finding solution of the KG and Schrödinger equations’
approximate or exact solutions with a usual potential has
been one of the most extensively researched issues in quan-
tum mechanics during the past few decades [18,19].

The last several decades of the 20th and 21st centuries
have seen a considerable increase in the interest in fractional
calculus (FC), among researchers. In Ref. [20], for the frac-
tional Klein-Fock-Gordon (KFG) structure, which is exten-
sively utilized in the particle and condensed matter physics,
this work offers new waveforms and bifurcation analysis.

The one-dimensional KG equation for the generalized
Hulthen potential was obtained using the CF-NU tech-
nique [21].

Abu-Shady and Kaabar recently presented a new defini-
tion for the fractional derivative known as the generalized
fractional derivative (GFD) [22]. It can be said that the GFD
definition is a more comprehensive type for the fractional
derivative because it has greater characteristics than the pre-
vious definitions [23–26], from which the CFD can be con-
structed as a special case.

In Ref. [27], the researchers used a generalized fractional
parametric NU method to solve the Schrödinger equation
and calculate the mass of heavy quarkonium, specifically for
Charmonium and Bottomonium.

In Ref. [28], Ikotet al., studied generalized Yukawa po-
tentials and examined both relativistic and non-relativistic
thermal properties, including the limit and scattering states
of the Klein-Gordon equation for the Mobius square poten-
tial.

In Ref. [29], Inyang and colleagues investigated the
masses and thermal characteristics of bottomonium and char-
monium mesons.

In Ref. [30], the mass of charmonium was calculated us-
ing the asymptotic iteration method to solve the Schrödinger
equation for quark-antiquark interactions.

Ref. [31] also applied the asymptotic iteration method
to analytically solve the non-relativistic radial Schrödinger
equation for a general interaction potential, using the Cornell
potential and the Cornell plus harmonic potential as exam-
ples.

They obtained energy eigenvalues in three dimensions
and used them to calculate charmonium mass spectra.

In Ref. [32], a relativistic potential model was used in
momentum space to study the bottomonium spectrum. This
model accounts for virtual pair production effects near decay

thresholds, based on a one-gluon exchange interaction with a
momentum-dependent screening factor. The model does not
rely on non-relativistic approximations.

Ref. [33] discusses new theoretical findings on charmo-
nium, focusing on “higher charmonium” states above the
open-charm threshold, including the spectrum of these states,
strong decays with open flavors, and the important effects of
virtual decay loops in charmed meson pairs.

Research on thermodynamic properties is important in
many areas of physics and chemistry. Quantum mechani-
cal solutions, which provide the necessary information to de-
scribe quantum systems, are essential for understanding these
properties.

Thermodynamic characteristics are especially useful in
studying quark-gluon plasma and can provide valuable in-
sights into the composition of strange quark matter, as dis-
cussed in Refs. [27,34–36].

The aim of the paper is to obtain the generalized frac-
tional energy eigenvalue and the generalized fractional wave
function in two cases the relativistic and nonrelativistic do-
main by using the generalized fractional parametric NU
method to solve the generalized fractional Kelin-Gordon
equation which previous efforts did not take into account.

In nonrelativistic case, we evaluate the mass of heavy and
heavy-light meson and thermodynamics properties of heavy-
light mesoncs under effect the angular quantum number and
fractional factor which are compared with previous works.

The paper has the following structure: Section 2 reviews
the (GF-NU) technique. The generalized fractional Kelin-
Gordon equation is found in Sec. 3. Section 4 discusses the
results. Section 5 presents the conclusion.

2. The generalized fractional Nikiforov-
Uvarov (GF-NU) method

The parametric generalized fractional Nikiforov-Uvarov
(NU) approach is presented using a generalized fractional
derivative. Reference [37] provides an exact fractional form
solution to the second-order parametric generalized differen-
tial equation.

Dα[Dαψ(s)] +
τ (s)
σ(s)

Dαψ(s) +
σ(s)
σ2

ψ(s) = 0, (4)

where the polynomialsσ(s), σ(s) andτ (s) have degrees of
2α, 2α, andα.

By using GFD [22], we can write,

Dα[ψ(s)] =
Γ(β)

Γ(β − α− 1)
s1−α ´ψ(s), (5)

where,κ = Γ(β)/Γ(β − α− 1)

Dα[Dα[ψ(s)]] =
(

Γ (β)
Γ (β − α− 1)

)2

× [(1− α) s1−2α ´ψ(s) + s2−2α ψ
′′
(s)], (6)
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where,

π (s) =
Dασ (s)− τ(s)

2

±
√(

Dασ (s)− τ (s)
2

)2

−σ (s) +K σ(s) , (7)

and

λ = K + Dαπ (s) . (8)

The polynomial of degreeα is represented byπ (s) ,while
λ remains constant. It is possible to find out whether the
formula under the square root is square of the equation by
looking at the values ofK in the square-root of Eq. (7). By
substitutingK into Eq. (7), we establish

τ(s) = τ(s) + 2π(s). (9)

Given thatρ(s) > 0 andσ(s) > 0, the derivative ofτ
needs to be negative [38]. This indicates that the solution is
found. Shouldλ in Eq. (8) be

λ = λn = −nDα τ − n(n− 1)
2

Dα[Dασ(s)]. (10)

The hypergeometric type equation has a particular solu-
tion with degreeα. Equation (11) has a solution which is the
product of two independent parts

ψ(s) = φ(s)y (s) , (11)

where,

yn(s) =
Bn

ρ(s)
(Dα)n( σ (s))n ρn(s), (12)

Dα[σ(s)ρ(s)] = τ(s)σ (s) , (13)

Dαφ(s)
φ(s)

=
π(s)
σ(s)

. (14)

2.1. Second order parametric (GD) equation

The KG equation can be transformed into a second-order
parametric generalized differential equation to provide the
following general form. [30].

Dα[Dαψ(s)] +
α1 − α2 sα

sα(1− α3 sα)
Dαψ(s)

+
− ξ1 s2α + ξ2 sα − ξ3

(sα (1− α3 sα))2
ψ(s) = 0, (15)

τ (s) = α1 − α2 sα, (16)

σ(s) = sα (1− α3 sα) , (17)

σ̄ (s) = − ξ1 s2α + ξ2 sα − ξ3. (18)

Substituting these into Eq. (7), we obtain

π = α4 + α5s
α

±
√

(α6 − K α3) s2α +(α7+ K) sα+α8, (19)

where,

α4 =
1
2
(κ α− α1), (20)

α5 =
1
2

(α2 −−2α3κ α), (21)

α6 = α5
2 + ξ1 , (22)

α7 = 2α4α5 − ξ2, (23)

α8 = α4
2 + ξ3. (24)

In Eq. (19), the NU approach requires that the function
under the square root be the square of a polynomial for reason

K = −(α7 + 2 α3α8)± 2
√

α8α9, (25)

where,

α9 = α3α7 + α3
2α8 + α6. (26)

If K in the form is negative

K = −(α7 + 2 α3α8)− 2
√

α8α9, (27)

for π to take shape

π = α4 + α5s
α − [(

√
α9 + α3

√
α8) sα −√α8]. (28)

From Eqs. (16), (19) and (28), we get

τ = α1 + 2α4 − (α2 −−2α5)sα

− [(
√

α9 + α3
√

α8) sα −√α8]. (29)

From Eqs. (2) and (26), we obtain,

Dα τ = κ [− α (α2 − 2α5)− 2 α(
√

α9 + α3
√

α8) ]

= κ [−2 α2α3 − 2 α(
√

α9 + α3
√

α8)] < 0. (30)

From Eqs. (8), and (10), we obtain the generalized frac-
tional energy eigenvalue equation.

nκαα2 − (2n + 1)κα α5 + (2n + 1)κα(
√

α9 + α3
√

α8)

+ n(n− 1)κ2α2α3 + α7

+ 2α3α8 + 2
√

α8α9 = 0. (31)

whenα = 1 = β, implying thatκ = 1, we obtain The energy
eigenvalue’s classical equation as Ref. [40]

nα2 − (2n + 1) α5 + (2n + 1)(
√

α9 + α3
√

α8)

+ n(n− 1)α3 + α7 + 2α3α8 + 2
√

α8α9 = 0. (32)

from Eq. (10), we obtain

ρ(s) = s
α10−α

κ (1− α3 sα)
α11

α κ α3
− α10

α κ − 1
κ . (33)
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From Eq. (13), we get

yn = Pn
(

α10−α
κ ,

α11
α κ α3

− α10
α κ − 1

κ )(1− 2 α3 sα), (34)

where,

α10 = α1 + 2α4 + 2
√

α8, (35)

α11 = α2 −−2α5 + 2 (
√

α9 + α3
√

α8). (36)

The generalized fractional solution of the eigenfunction
is obtained from Eq. (11)

ψ(s) = s
α12

κ (1− α3s
α)

−α13
α κ α3

− α12
α κ

× P

(
α10−α

κ ,
α11

α κ α3
−α10

ακ − 1
κ

)

n (1− 2α3 sα) , (37)

where,Pn
(γ,δ) are Jacobi polynomials.

α12 = α4 +
√

α8, (38)

α13 = α5 − (
√

α9 + α3
√

α8). (39)

Some problems, in caseα3 = 0.

lim
α3→0

Pn
(

α10−α
κ ,

α11
ακα3

−α10
ακ − 1

κ )(1− α3s
α)

= Ln

α10−α
κ

(α11

α κ
sα

)
, (40)

lim
α3→0

(1−α3 sα)
−α13
ακα3

−α12
ακ = e

α13
ακ sα

, (41)

Eq. (37), becomes

ψ(s) = s
α12

κ e
α13
α k sα

Ln

α10−α
κ

( α11

α κ
sα

)
. (42)

Associated Laguerre Polynomials are represented byLn.
The second application of Eq. (27) in the subsequent sce-

nario

K = −(α7 + 2 α3α8) + 2
√

α8α9, (43)

then, the generalized fractional eigenfunction becomes,

ψ(s) = s
α12

∗
κ (1− α3 sα)

−α13
∗

α κ α3
− α12

∗
α κ

× Pn

(
α10

∗−α
κ ,

α11
∗

α κ α3
− α10

∗
α k − 1

κ

)

× (1− 2 α3 sα) . (44)

The generalized fractional solution of the energy eigen-
value becomes,

nκαα2 − 2nκα α5 + (2n + 1)κα(
√

α9 − α3
√

α8)

+ n(n− 1)κ2α2α3 + α7 + 2α3α8

− 2
√

α8α9 + κα α5 = 0, (45)

where,

α10
∗ = α1 + 2α4 − 2

√
α8,

α11
∗ = α2 − 2α5 + 2 (

√
α9 − α3

√
α8),

α12
∗ = α4 −√α8,

α13
∗ = α5 − (

√
α9 − α3

√
α8). (46)

3. Solving generalized fractional Kelin-
Gordon with the screened modified Kratzer
and a class of Yukawa potential model

The KG equation for a spinless particle for} = c = 1 in
N-dimensional space is as [41]

[
−∇2 + (M + S (r))2 +

(N + 2l − 1)(N + 2l − 3)
4 r2

]

× ψ(r, θ, ϕ) = [Enl − V (r)]2 ψ (r, θ, ϕ) , (47)

where∇2 is laplacian,M is the reduce mass,Enl is the
energy spectrumn, l are the radial and orbital angular mo-
mentum quantum number, or vibrational-rotational quantum
number, respectively in quantum chemistry.

It is customary to write the wave function as follows in
order for it to meet the boundary conditions:

ψ(r, θ, ϕ) =
Rnl

r
Ylm(θ, ϕ). (48)

The wavefunction’s radial component would remain in-
tact if the angular component were separated, as illustrated
below.

d2R(r)
dr2

+
[
(Enl

2 −M2) + V 2(r)− S2(r)

− 2(EnlV (r) + M S(r))

− (N + 2l − 1) (N + 2l − 3)
4 r2

]
R (r) = 0. (49)

As a result, Eq. (49) becomes for equal vector and scalar
potentialsV (r) = S (r) = 2V1 (r).

d2R(r)
dr2

+
[
(Enl

2 −M2)− 2 V1(r)(Enl + M)

− (N + 2l − 1) (N + 2l − 3)
4 r2

]
R (r) = 0. (50)

From Eq. (3) and Eq. (50), we get

d2R(r)
dr2

+
(

(Enl
2 −M2)− 2(Enl + M)

[
d− f e−2ρ r

r2

− g e−ρ r

r
− a

r
+

be−ρ r

r
− c e−2ρ r

r2

]

× (N + 2l − 1) (N + 2l − 3)
4 r2

)
R (r) = 0. (51)
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We provide the Greene-Aldrich approximation strategy (GAAS) [42] to address the centrifugal barrier in order to solve
Eq. (51). Forρ ¿ 1, this GAAS is a reliable approximation to the centrifugal term, and it becomes

1
r2
≈ ρ2

(1− e−ρ r)2
. (52)

Let

s = e−ρ r, (53)

d2R (s)
ds2

+
1− s

s (1− s)
dR (s)

ds
+

1
[s (1− s)]2

[−γ1s
2 + γ2s− γ3

]
R (s) = 0, (54)

γ1 = −ε + t1, γ2 = −2 ε + t2, γ3 = −ε + t3, (55)

ε =
Enl

2 −M2

ρ2
,

t1 =
2 (Enl + M) d

ρ2
+ 2 (Enl + M) f +

2 (Enl + M) g

ρ
− 2 (Enl + M) c− 2 (Enl + M) b

ρ
,

t2 =
4 (Enl + M) d

ρ2
+

2 (Enl + M) g

ρ
− 2 (Enl + M) a

ρ
− 2 (Enl + M) b

ρ
,

t3 =
2 (Enl + M) d

ρ2
− 2 (Enl + M) a

ρ
+

l (l + 1)
4

.

We get the generalized fractional Kelin-Gordon equation

Dα[DαR(s)] +
1− sα

sα(1− sα)
DαR(s) +

−γ1 s2α + γ2s
α − γ3

(sα(1− sα))2
R(s) = 0. (56)

With the following parameters, we can obtain

α1 = 1, α2 = 1, α3 = 1, α4 =
1
2
(κ α− 1), α5 =

1
2
(1− 2 κ α),

α6 =
1
4

(1− 2κ α)2 − ε + t1, α7 =
1
2
(κ α− 1)(1− 2κ α) + 2ε − t2, α8 =

1
4
(κ α− 1)2 − ε + t3,

α9 =
1
4
κ2 α2 + t1 − t2 + t3, α10 = κ α + 2

√
1
4
(κ α− 1)2 − ε+ t3,

α11 = 2κ α + 2

(√
1
4
κ2 α2 + t1 − t2 + t3 +

√
1
4
(κ α− 1)2 − ε + t3

)
,

α12 =
1
2
(κ α− 1) +

√
1
4
(κ α− 1)2 − ε+ t3,

α13 =
1
2
(1− 2κ α)−

(√
1
4
κ2 α2 + t1 − t2 + t3 +

√
1
4
(κ α− 1)2 − ε+ t3

)
, (57)

the generalized fractional of the energy eigenvalue is obtained

ε =
(

t3 +
1
4
(κ α− 1)2

)
−




t1 − t3 −
((

n + 1
2

)
κ α +

√
1
4κ2 α2 + t1 − t2 + t3

)2

2
((

n + 1
2

)
κ α +

√
1
4κ2 α2 + t1 − t2 + t3

)




2

. (58)

The generalized fractional wave function

ψ(s)=As
1
2 (kα−1)+

√
1
4 (κα−1)2−ε+t3
κ (1+sα)

1
2 κα+

√
1
4 κ2α2+t

κα Pn

(
−α+κα+2

√
1
4 (κα−1)2−ε+t3
κα ,

κα+2
√

1
4 κ2α2+t

κα − 1
κ

)

(1+2sα), (59)
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wheret = t1 − t2 + t3.
We obtain on the generalized fractional of the energy eigenvalue and eigenfunction in the non-relativistic case,M + Enl

→ (2µ/}) andM − Enl → −Enl whereµ is reduced mass

Enl =
ρ2

2µ
(t3 +

1
4
(κα− 1)2)− ρ2

2µ




t1 − t3 −
((

n + 1
2

)
κα +

√
1
4κ2α2 + t1 − t2 + t3

)2

2
((

n + 1
2

)
κα +

√
1
4κ2α2 + t1 − t2 + t3

)




2

, (60)

R(s) = Ns

1
2 (kα−1)+

√
1
4 (kα−1)2− 2µE

ρ2 +t3

κ (1 + sα)
1
2 κα+

√
1
4 κ2α2+t

κα

× Pn



−α+κα+2

√
1
4 (κα−1)2− 2µE

ρ2 +t3

κα ,
κα+2

√
1
4 κ2α2+t

kα − 1
κ




(1 + 2sα), (61)

where,

t1 =
4 µd

ρ2
+ 4µf +

4µg

ρ
− 4µc− 4µb

ρ
, t2 =

8 µd

ρ2
+

4µ g

ρ
− 4µ a

ρ
− 4µb

ρ
, t3 =

4µd

ρ2
− 4µ a

ρ
+

l (l + 1)
4

. (62)

4. Results and discussion

4.1. Special case

The special case is obtained by taking (α = β = 1) andκ = 1, we obtain the energy and the eigenfunction in the non-relativistic
case

E =
ρ2

2 µ
t3 − ρ2

2 µ




t1 − t3 −
((

n + 1
2

)
+

√
1
4 + t1 − t2 + t3

)2

2
((

n + 1
2

)
+

√
1
4 + t1 − t2 + t3

)




2

, (63)

R(s) = Ns

√
− 2µ E

ρ2 + t3(1+s)
1
2+
√

1
4+t

Pn

(√
− 2µ E

ρ2 +t3,2
√

1
4+t

)
(1 + 2s). (64)

4.2. Mass of heavy and heavy-light mesons

To calculate the mass of heavy and heavy light mesons, the following the equation is used

M = m1 + m2 + Enl, (65)

M = m1 + m2 +
ρ2

2µ

(
t3 +

1
4
(κα− 1)2

)
− ρ2

2µ




t1 − t3 −
[(

n + 1
2

)
κα +

√
1
4κ2 α2 + t1 − t2 + t3

]2

2
[(

n + 1
2

)
κα +

√
1
4κ2α2 + t1 − t2 + t3

]




2

. (66)

In Table I, we determined the mass ofcc is for 1S, 2S, 3S, 4S, 1P, 2P, 1D, and 2D. Ref. [7] provides the charm quark mass
in numerical form.

By adding experimental data to algebraic equations, the parameters of Eq. (66) were determined where (charm mass
mc = 1.209 GeV, the parameters of the potentiald = 1 GeV,c = −10 GeV−1, b = −0.5, a = 0.947, g = 0.02, f = −9.838,
the fractional parametersα = 0.3, β = 0.6, ρ = 0.04 GeV).

Compared to previous studies, we achieved successful results. Additionally, the 1S and 1P states are close in comparison
with the experimental results. Our calculation resulted in a total error of 0.017475%. In Ref. [7], the researchers used the
Nikiforov–Uvarov method to solve the Klein-Gordon equation for the Yukawa potential.

They found the energy eigenvalues in both relativistic and non-relativistic domains, using the Laguerre polynomial to
calculate the associated eigenfunction. Their findings were used to determine the mass of the charmonium heavy meson. Their
total error was 0.2681%. In Ref. [30], the mass of charmonium was calculated using the asymptotic iteration method to solve
the Schr̈odinger equation for the quark-antiquark potential.

The total error for this calculation was 0.13268%. Reference [31] used the same method to solve the non-relativistic radial
Schr̈odinger equation with the Cornell and Cornell plus harmonic potentials. The energy eigenvalues were calculated in three
dimensions, and they applied these results to determine the mass spectra of charmonium. The error from our calculation was
0.0478%.
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TABLE I. Mass spectra ofcc in (GeV) (charm massmc = 1.209 GeV, the parameters of the potentiald = 1 GeV, c = −10 GeV−1,
b = −0.5, a = 0.947, g = 0.02, f = −9.838, fractional parametersα = 0.3, β = 0.6, ρ = 0.04 GeV).

State P.W [7] [30] [31] Exp. [43] Total error

of each state

1S 3.096 3.096 3.078 3.096 3.096 0

2S 3.685 3.686 4.187 3.686 3.686 0.0002

1P 3.525 3.527 3.514 3.214 3.525 0

2P 3.872 3.687 4.143 2.773 3.773 0.0262

3S 3.949 4.040 5.297 4.275 4.040 0.0225

4S 4.089 4.360 6.407 4.865 4.263 0.0408

1D 3.848 3.098 3.752 3.412 3.770 0.0295

2D 4.036 3.976 - - 4.159 0.0295

Total error 0.017475 0.2681 0.13268 0.0478 - -

TABLE II. Mass spectra ofbb in (GeV) (bottom massmb = 4.623 GeV, the parameters of potentiald = 1 GeV, c = −10 GeV−1,
b = −0.5, a = 0.4118, g = 0.02, f = −9.894, the fractional parametersα = 0.2, β = 0.6, ρ = 0.1 GeV).

Total error

State P.W [44] [31] [45] [46] [30] [47] Exp. [48] of each state

1S 9.444 9.515 9.460 9.461 9.460 9.510 9.510 9.444 0

2S 10.044 10.018 10.023 10.023 10.023 10.627 10.038 10.023 0.0020

1P 9.900 - 9.492 9.608 9.619 9.862 9.862 9.900 0

2P 10.304 10.09 10.038 10.110 10.114 10.944 10.396 10.260 0.0042

3S 10.388 10.441 10.585 10.365 10.355 11.726 10.566 10.355 0.0031

4S 10.604 10.858 11.148 10.588 10.567 12.834 11.094 10.579 0.0023

1D 10.345 - 9.551 9.841 9.864 10.214 10.214 10.161 0.0181

Total error 0.0042 0.0083 0.0286 0.0112 0.0106 0.0835 0.0142

The mass ofbb for the following states: 1S, 2S, 3S, 4S,
1P, 2P, and 1D is found in Table II. We take the numerical
value of 4.623 GeV for bottom massmb, respectively, from
Ref. [30].

Then, by combining the solution of algebraic equations
with experimental data, the free parameters of Eq. (66) were
found where the parameters of the potentiald = 1 GeV,
c = −10 GeV−1,b = −0.5, a = 0.4118, g = 0.02,
f = −9.894, the fractional parametersα = 0.2, β = 0.6,
ρ = 0.1 GeV.

Our results show a good agreement with previous stud-
ies, and there is a close match with experimental data. Our
total error was 0.0042%. In Refs. [30, 31], the errors were
0.0835% and 0.0286%, respectively.

In Ref. [44], an analytical solution to the radial
Schr̈odinger equation was obtained using a series expansion
approach with a generalized anharmonic Cornell potential.
The mass spectra for bottomonium were calculated with an
error of 0.0083%.

Reference [45] solved the Schrödinger equation with the
Killingbeck potential and an inversely quadratic potential,
obtaining energy eigenvalues and mass spectra for heavy-
light mesons. The error in this calculation was 0.0112%.

Reference [46] used the NU method to solve the
N-dimensional Schr̈odinger equation with a temperature-
dependent Cornell potential. The energy eigenvalues and
wave functions were determined at zero temperature, and
the bottomonium mass at higher temperatures was examined.
The error for this study was 0.0106%.

Reference [47] calculated the energy eigenvalues and
eigenfunctions for the quark-antiquark interaction poten-
tial using the power series method. Their total error was
0.0142%.

Table III, by using Eq. (66), we were able to determine
the mass ofcs where charm massmc = 1.209 GeV, strange
massms = 0.419 GeV, the parameters of the potentiald = 1
GeV, c = −10 GeV−1, b = −0.5, a = 2.019, g = 0.02,
f = −9.996, the fractional parametersα = β = 0.6,
ρ = 0.18 GeV.

Our results were better than those in recent studies,
[31, 45, 49–52], and the total error was 0.0028%. In com-
parison, the errors in Refs. [31, 45] were 0.06757% and
0.020925%.

Reference [49] used the Rosen-Morse potential to study
the thermodynamic properties of heavy mesons. The total
error was 0.128725%.
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TABLE III. Mass spectra ofcs in (GeV) (charm massmc = 1.209 GeV, strange massms = 0.419 GeV, the parameters of the potential
d = 1 GeV,c = −10 GeV−1, b = −0.5, a = 2.019, g = 0.02, f = −9.996, the fractional parametersα = β = 0.6, ρ = 0.18 GeV).

State P.W [45] [31] [49] [50] [51] [52] Exp. [48]

1S 2.067 1.969 2.512 1.969 2.075 2.067 2.076 2.067

2S 2.708 2.709 2.709 2.318 2.720 2.708 2.636 2.708

1P 2.512 2.601 2.649 2.126 2.537 2.512 2.515 2.512

2P 2.847 2.876 2.860 - 3.119 2.857 3.019 -

3S 2.878 2.913 2.906 2.667 3.236 2.935 3.061 -

4S 2.897 2.998 3.102 - 3.664 3.041 3.244 -

1D 2.827 2.862 2.859 2.374 2.950 2.812 2.831 2.860

Total error 0.0028 0.020925 0.06757 0.128725 0.01237 0.0041 0.0104

TABLE IV. Mass spectra ofbs in (GeV) (bottom massmb = 4.623 GeV, strange massms = 0.419 GeV, the parameters of the potential
d = 1 GeV,c = −10 GeV−1, b = −0.5, a = 1.660, g = 0.02, f = −9.590, the fractional parametersα = 0.3, β = 0.6, ρ = 0.1 GeV).

State P.W [51] [31] [52] [50] [53] [54] ExP. [48]

1S 5.403 5.403 5.415 5.401 5.404 5.370 5.403 5.403

2S 6.039 5.942 6.819 6.168 5.988 5.971 5.952 -

1P 5.836 5.836 5.830 5.850 5.844 5.838 5.838 5.836

2P 6.243 6.066 6.786 6.380 6.343 6.254 6.233 -

3S 6.339 6.104 8.225 6.544 6.473 - 6.425 -

4S 6.500 6.174 9.629 6.756 6.878 - 6.863 -

1D 6.227 6.059 6.264 6.179 6.200 6.117 6.181 -

2D 6.451 - - 6.604 6.635 6.450 6.626 -

Total error - - 0.0016 0.0013 0.0007 0.0032 0.00015 -

In Ref. [50], the quasipotential technique was used to cal-
culate the masses of heavy-light mesons, with an error of
0.01237%. Ref. [51] applied the generalized Cornell poten-
tial model to solve the Dirac equation, and their error was
0.0041%.

Reference [52] solved the Klein-Gordon equation analyt-
ically using a combination of linear and modified Yukawa
potentials. Their total error was 0.0104%.

In Table IV, we were able to calculate the mass ofbs by
using Eq. (66), where bottom massmb = 4.623 GeV, strange
massms = 0.419 GeV, the parameters of the potentiald = 1
GeV, c = −10 GeV−1, b = −0.5, a = 1.660, g = 0.02,
f = −9.590, the fractional parametersα = 0.3, β = 0.6,
ρ = 0.1 GeV.

These results were better than the latest studies (Refs. [31,
50–54]), and the error was 0.0016%. The errors in Refs. [31,
50,52] were 0.0007%, 0.0013%, and 0.0032%, respectively.

In Ref. [53], a relativistic quark model was used to deter-
mine the mass spectra of heavy-light mesons, and the error
was 0.0032%. Reference [54] used the relativistic indepen-
dent quark model to study theB and Bs mesons, with an
error of 0.00015%.

The mass ofcq was found in Table V and by using
Eq. (66), where charm massmc = 1.209 GeV, mq=u,d =
0.46 GeV, the parameters of the potentiald = 1 GeV,

c = −10 GeV−1, b = −0.5, a = 1.773, g = 0.02,
f = −9.556, the fractional parametersα = 0.3, β = 0.6,
ρ = 0.13, GeV.

The current results surpass those in Refs. [52, 55–57],
with a total error of 0.00583%. The results are in good agree-
ment with the experimental data. We found the total error in
Ref. [52] was 0.00583%.

Reference [55], the authors presents a detailed analysis of
the masses of the ground, orbitally, and radially excited states
of the D-meson within the context of the screened potential
model with the Gaussian wave-function.

The Hamiltonian includes relativistic adjustment to the
kinetic energy termO(p10) ando(1/m) correction to the po-
tential energy term. The spin-hyperfine, spin-orbit and ten-
sor interactions integrating the effect of mixing are applied
to derive the pseudoscalar, vector and radially and orbitally
excited meson masses. Total error in Ref. [55] was 0.026%.

In Ref. [56], the authors compute the excited charm and
charm-strange meson characteristics. They compute their
masses and wave functions, which are required to compute
radiative transition partial widths, by using the relativized
quark model. Total error in Ref. [56] was 0.139%.

In Ref. [57], a comparison study of the decay prop-
erties and spectroscopy of the D-meson is carried out be-
tween the Gaussian and hydrogenic wave functions, in the
framework of the phenomenological quark-antiquark poten-
tial (Coulomb plus power) model.
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TABLE V. Mass spectra ofcq in (GeV) (charm massmc = 1.209 GeV, mq = 0.46 GeV, the parameters of the potentiald = 1 GeV,
c = −10 GeV−1, b = −0.5, a = 1.773, g = 0.02, f = −9.556, the fractional parametersα = 0.3, β = 0.6, ρ = 0.13 GeV).

State P.W [52] [55] [56] [57] Exp. [58]

1S 1.975 1.978 1.975 2.000 1.973 1.975

2S 2.613 2.665 2.424 3.628 2.586 2.613

1P 2.434 2.434 2.448 2.473 2.448 2.434

2P 2.829 2.953 2.977 2.948 2.949 -

3S 2.907 3.074 3.118 3.100 3.104 -

4S 3.059 3.341 3.512 3.490 3.510 -

1D 2.841 2.783 2.777 2.830 2.768 -

2D 3.046 3.132 3.242 3.229 3.207 -

1F 3.108 3.009 3.048 - - -

Total error - 0.00583 0.026 0.139 0.00566

TABLE VI. Mass spectra ofbq in (GeV) (bottom massmb = 4.623 GeV, mq = 0.46 GeV, the parameters of the potentiald = 1 GeV,
c = −10 GeV−1, b = −0.5, a = 1.754, g = 0.02, f = −9.532, fractional parametersα = 0.3, β = 0.6, ρ = 0.11 GeV).

State P.W [31] [52] [59] [60] Exp. [48]

1S 5.313 5.325 5.314 5.314 5.371 5.313

2S 5.970 6.413 5.924 5.951 5.933 5.971

1P 5.734 5.723 5.747 5.779 5.777 5.734

2P 6.175 6.486 6.100 6.307 6.197 -

3S 6.289 7.501 6.214 6.425 6.355 -

4S 6.464 8.589 6.474 6.846 6.703 -

1D 6.146 6.131 6.035 6.104 6.110 -

2D 6.398 - 6.273 6.571 - -

Total error 0.000055 0.026033 0.0033 0.0037 0.0082 -

The spin-hyperfine, spin-orbit, and tensor interactions are
used to obtain the pseudoscalar and vector meson masses
with a mixing effect. Total error in Ref. [57] was 0.00566%.

The mass ofbq was found in Table VI and by using
Eq. (66), where bottom massmb = 4.623 GeV, mq=u,d =
0.46 GeV, the parameters of the potentiald = 1 GeV, c =
−10 GeV−1, b = −0.5, a = 1.754, g = 0.02, f = −9.532,
the fractional parametersα = 0.3, β = 0.6, ρ = 0.11 GeV.

The current results show a significant improvement over
the latest Refs. [31,52,59,60], and there is a close match with
experimental data. In our paper total error was 0.000055%.

In Refs. [31, 52], the total error were 0.02633% and
0.0033%. The masses of the ground, orbitally, and radially
excited states are computed in Ref. [59], driven by the recent
LHCb observations of theB andBs meson states.

The Hamiltonian now includesO(1/m) andO(p10) rela-
tivistic corrections to the potential and kinetic energy terms.
The employed screening potential is solved using the Gaus-
sian wave function.

We are able to correlate some recently discovered states
with B andBs mesons by constructing the Regge trajecto-
ries using the predicted masses. We evaluated total error of
Ref. [59] was 0.0037%.

In Ref. [60], inspired by the latest studies of the me-
son states ofB and Bs properties of bottom and bottom-
strange mesons are calculated in two relativized quark mod-
els. Model masses and wavefunctions are used to predict
the rates of radiation transition. We found that total error of
Ref. [60] was 0.0082%.

In this study, we analyzed the mass spectra of charmo-
nium and bottomonium systems by plotting them with the
reduced mass for different fractional parametersα andβ. As
shown in Figs. 1-5, for the orbital angular momentum quan-
tum numbers a)l = 0 and b)l = 1, the mass spectra decrease
with reduced mass, consistent with Ref. [52].

We also observed that the mass spectra increase as the
orbital angular momentum quantum numberl increases.

Furthermore, the mass spectra increase with higher val-
ues of the fractional parametersα andβ. In Figs. 2-6, for a)
l = 0 and b)l = 1, we plotted the charmonium and bottomo-
nium mass spectra with the principal quantum numbern for
various values ofα andβ.

The results show that the mass spectra grow withn,
which is consistent with Ref. [52].

Additionally, the mass spectra increase with both the or-
bital angular momentum quantum numberl and the fractional
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FIGURE 1. The mass spectra of Charmonium with reduced mass at different values of the fractional parametersα, β at the orbital angular
momentum quantum number a)l = 0, b) l = 1.

FIGURE 2. The mass spectra of Charmonium with n at different values of the fractional parametersα, β at the orbital angular quantum
number a)l = 0, b) l = 1.

FIGURE 3. The mass spectra of Charmonium with the orbital angular momentum quantum numberl at different of the fractional paramteres
α, β at the principle quantum number a)n = 1, b) n = 2.

parametersα andβ. In Figs. 3 and 7, for a)n = 1 and b)
n = 2, we plotted the mass spectra of charmonium and bot-
tomonium withl for differentα andβ values.

The results confirm that the mass spectra increase withl,
and they also grow asα andβ increase. When plotting char-
monium and bottomonium mass spectra withα for different
l values in Figs. 4, 8, we found that the mass spectra increase
with α and rise further with higherl values.

In Fig. 9, for a)α = β = 1 and b)α = β = 0.4, we plot-
ted the mass spectra ofcs−, cq−, bs−, andbq− with n. We
observed that the mass of the heavy-light mesons increases
with n, and the mass spectra grow asα andβ increase.

Finally, in Fig. 10, for a)α = β = 1 and b)α = β = 0.4,
we plotted the mass spectra ofcs−, cq−, bs−, andbq− against
l. The results indicate that the mass of the heavy-light mesons

increases withl, and the mass spectra also increase asα and
β grow.

FIGURE 4. The mass spectra of Charmonium with factor parame-
ter α at different of orbital angular momentum quantum numberl.

Rev. Mex. Fis.71030801



THERMODYNAMIC ANALYSIS AND MASS SPECTRA OF HEAVY MESONS VIA THE GENERALIZED FRACTIONAL. . . 11

FIGURE 5. The mass spectra of Bottomonium with reduced mass at different values of the fractional parametersα, β at the orbital angular
momentum quantum number a)l = 0, b) l = 1.

FIGURE 6. The mass spectra of Bottomonium with the principle quantum number n at different values of the fractional parametersα, β at
the orbital angular momentum quantum number a)l = 0, b) l = 1.

FIGURE 7. The mass spectra of Bottomonium with the orbital angular momentum quantum numberl at different of the fractional parameters
α, β at the principle quantum number a)n = 1, b) n = 2.

FIGURE 8. The mass spectra of Bottomonium with factor parame-
ter α at different of the orbital angular momentum quantum num-
berl.

4.3. Thermodynamics properties of heavy light meson

Using the resultant Eq. (66), the thermodynamic properties
for the potential model are computed. The partition function
can yield the thermodynamic characteristics of a quantum
mechanical system, asZ(βs) =

∑λ
n=0 e−βsEn whereT is the

system’s absolute temperature,K is the Boltzmann constant,
andβs = 1/K T and whereλ is the quantum number with
the highest upper bound obtained from the numerical solu-
tion of dEn/dn = 0, It is possible to substitute the integral
in Eq. (67) for the summation in the classical limit.
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FIGURE 9. The mass spectra ofcs, cq, bs, andbq with the principle quantum numbern at a)α = β = 1. b) α = β = 0.4.

FIGURE 10. The mass spectra ofcs, cq, bs, andbq with the orbital angular momentum quantum numberl at a)α = β = 1. b)α = β = 0.4.

4.3.1. Partition function

Z(βs) =
∫ λ

0

e−βsEndλ, (67)

Z(βs) =
1

κ α
eβs(−A1− 1

2 A2A3)

( −1
2 α κ

√−A2 βs

e
−1
2

√−A2 βs

√
−A2A3

2 βs
√

π

)

×
(

e
√−A2 βs

√
−A2A3

2 βsD − e
√−A2 βs

√
−A2A3

2 βsB + F −M

)
, (68)

D = Erfi

(
4 A4

2√−A2 βs + α2 κ2
√−A2 βs + 4

√
−A2A3

2 βs + 4 A4 α κ
√−A2 βs

8 A4 + 4 α κ

)
,

B = Erfi

(
4 A4

2√−A2 βs + α2 (κ + 2 λκ)2
√−A2 βs + 4

√
−A2A3

2 βs + 4 A4(1 + 2 λ) α κ
√−A2 βs

8 A4 + 4(1 + 2 λ) α κ

)
, (69)

F = Erfi

(
1
4
(2 A4

√
−A2 βs + α κ

√
−A2 βs − 4

√
−A2A3

2 βs

2 A4 + α κ
)

)
, (70)

M = Erfi

(
1
4
(2 A4

√
−A2 βs + (1 + 2 λ) α κ

√
−A2 βs − 4

√
−A2A3

2 βs

2 A4 + α κλ
)

)
,

A1 =
ρ2

2 µ

(
t3 +

1
4
(kα− 1)2

)
, A2 =

ρ2

2 µ
, A3 = (t1 − t3), A4 =

√
1
4
k2 α2 + t1 − t2 + t3. (71)
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FIGURE 11. The partition function (Z) forcs is presented as a function ofβs, for various values of the fractional parametersα andβ at (the
orbital angular momentum quantum number a)l = 0, b) l = 1).

FIGURE 12. The free energy (F ) for cs is presented as a function ofβs, for various values of the fractional parametersα andβ at (the orbital
angular momentum quantum number c)l = 0, d) l = 1).

FIGURE 13. The mean energy (U ) for cs is presented as a function ofβs, for various values of the fractional parametersα andβ at (the
orbital angular momentum quantum number a)l = 0, b) l = 1).

4.3.2. Free energyF

F (βs) = − 1
βs

ln Z (βs) . (72)

4.3.3. Mean energy U

U(βs) = − ∂

∂(βs)
ln Z (βs) . (73)

4.3.4. Specific heat C

C(βs) =
∂(U)
∂T

= −K βs
2 ∂(U)
∂(βs)

. (74)

4.3.5. The entropy

S(βs) = KlnZ(βs )−K βs
∂lnZ(βs)

∂βs
. (75)

In Fig. 11, we plot the partition functionZ(βs) of cs−

as a function ofβs for various values of the fractional pa-
rametersα andβ, under the influence of the orbital angular
momentum quantum numberl ((a) l = 0, (b) l = 1).

We observe that the partition function increases with ris-
ing values ofα and β but decreases asl increases. Addi-
tionally, asβs increases,Z(βs) decreases, consistent with
Refs. [27,61–63].
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FIGURE 14. The specific heat forcs is presented as a function ofβs, for various values of the fractional parametersα andβ at [the orbital
angular momentum quantum number a)l = 0, b) l = 1].

FIGURE 15. The entropy forcs is shown as a function ofβs, for different values of the fractional parametersα andβ at [the orbital angular
momentum quantum number a)l = 0, b) l = 1].

In Ref. [27], the authors used the generalized fractional
extended NU method to solve the fractional Schrödinger
equation (SE) with a harmonic oscillator potential. They
found that asβs increases,Z (βs) decreases, while higher
values ofα andβ causeZ (βs) to increase.

Reference [61] analyzed the SE with a harmonic oscilla-
tor potential using the generalized Dunkl derivative in quan-
tum mechanics, deriving energy eigenvalues and showing
that the partition function decreases withβs.

Similarly, Ref. [60] employed the DFDEP method with
the NU approach to solve the Klein-Gordon equation and
found thatZ (βs) decreases asβs increases. Ref. [63] studied
the thermodynamic properties of heavy mesons using the N-
dimensional SE with an expanded Cornell potential and also
reported thatZ(βs) decreases withβs.

In Fig. 12, the free energyF of cs− is plotted as a func-
tion of βs [a) l = 0, b) l = 1] for various values ofα and
β.

The results show thatF increases with higherα andβ
values, while it decreases with increasingl.

Additionally, asβs increases,F increases, butF de-
creases as temperature rises, consistent with Refs. [27, 62–
65].

Reference [64] computed the phase diagram and thermo-
dynamic properties of quark-gluon plasma (QGP) as func-
tions of temperature and baryon density, considering weakly
interacting light quarks and gluons.

Reference [65] used a density- and temperature-
dependent potential model to calculate the thermodynamic
parameters of quark matter, showing similar trends in free
energy behavior.

In Fig. 13, we plot the mean energyU of cs− as a func-
tion of βs [a) l = 0, b) l = 1] for different α andβ values.
We observe thatU decreases with increasingα andβ. As βs

increases,Ualso declines.
Furthermore,U increases with higherl, consistent with

Refs. [27,61–63].
In Fig. 14, the specific heatC of cs− is plotted as a func-

tion of βs [a) l = 0, b) l = 1] for variousα andβ values. The
specific heat increases withβs, consistent with Ref. [27,66].

However,C decreases with higher values ofl. In Fig.
15, the entropyS of cs− is displayed as a function ofβs [a)
l = 0, b) l = 1] for variousα andβ values.

We find that S decreases asα andβ increase. Moreover,
S declines withβs and decreases further with higherl. These
results are consistent with Refs. [27,61,63,66].

5. Conclusion

In this study, we applied the Yukawa potential model and the
screened modified Kratzer potential to solve the generalized
fractional Klein-Gordon equation using the generalized frac-
tional parametric NU method.

For both relativistic and non-relativistic cases, we derived
the generalized fractional energy eigenvalues and wave func-
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tions, comparing the results with previous studies. For the
non-relativistic case, we calculated the masses of heavy and
heavy-light mesons.

The use of the generalized fractional derivative proved
essential, as it reduced the total error in calculating these
masses. This novel approach provides a highly accurate
method for determining the masses of charmonium and bot-
tomonium mesons in various excited states, achieving excel-
lent agreement with experimental data and significantly re-
ducing error rates compared to earlier methods [7,30,31,44–
47,49–57,59,60].

We also analyzed the thermodynamic properties of the
heavy-light mesoncs− graphically. The partition function
Z (βs) was found to increase with rising values ofα andβ but
decreases asl increases. As(βs) grows,Z (βs) decreases,
aligning with results from previous studies [27,61–63].

The free energyF increases with(βs) but decreases as

temperature rises, contrasting with results in Refs. [27, 62–
65].

Additionally, increasingl leads to a decrease in free en-
ergy. For the mean energyU of cs−, as a function of(βs),
the results show that increasingα andβ lowers the curve.
Similarly, as(βs) increases,U decreases, which agrees with
Refs. [27,61–63].

Increasingl also reduces the mean energy. The specific
heat ofcs− was plotted as a function of(βs)for different val-
ues ofα andβ.

The results indicate that higherα andβ values lead to
higher specific heat, which also increases with(βs), consis-
tent with Ref. [27,66].

However, increasingl decreases the specific heat. Finally,
the entropy was observed to decrease with(βs) , aligning
with Ref. [27,59,61,64], and it also decreases asl increases.
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