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On the split Voigt profile and its use in the analysis of X-ray diffraction patterns
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The main properties (integral breadth, FWHM, Fourier transform) of the split Voigt function have been analysed. These are important in the
study of the X-ray diffraction peaks. In this way, some X-ray diffraction lines of a sample of quartz and zirconia have been analysed by using
single line methods, describing the instrumental-spectral asymmetric peaks by means of split Voigt functions.
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1. Introduction Although the aforementioned functions are symmetric
(for example, Voigt function is a convolution of two symmet-
The Voigt function has been extensively employed in severafic functions), however, in certain cases, the X-ray diffraction
fields related to the Physics, from the Astrophysics [1] topell-shape distributions are not symmetric. This behaviour
the Materials Science and Crystallography [2—4], to describ%ppearS, for examp|e1 in the X_ray diffraction peaks (espe_
Symmetric be”'Shape distributions. This function is the Con-cia”y at low ang|es), due to the presence of instrumental fea-
volution of a Gaussian and a Cauchy functions and it can bg,res as the axial divergence of the X-ray incident beam [13]
expressed as or microstructural details, as planar defects [14]. These ef-
2 fects limit the use of symmetric approximations to bell-shape
I,Gc Foo GXP(—W%%) functions, as the Voigt or its aforementioned approximations.
Viz) = exp(k?) erfe(k) /_OO mdy’ (1) By this reason, different approaches has been employed to
describe asymmetric lines, as the substitution of the symmet-
beingxr = u — u,, I, the maximum of the peakic andfg,  ric function by the product of an asymmetric and a symmetric
the corresponding Cauchy and Gauss integral breadths, r@unctions. In the case of the Voigt function, asymmetries have
spectively, antk = B¢ /+/7B¢. In the definition ofr, u rep-  been taken into account by means of power series expansion
resents the independent variable, beipghe position of the  [15], but a simplest analytic way is the use of split functions,
maximum. In the case of a stellar spectral line, for examplewhere the left and right halves of the profile are modelled
u is a wavelength, whereas in a neutron or X-ray diffractionby using different shape parameters. This approach has been
patterns, is an angular unit (usually degrees). A summary aéxtensively used with the approximations of the Voigt func-
the main properties of the Voigt function can be found else+tions, and, in the particular case of the Voigt function, pro-
where [5]. Note that, in many situations, simplest approxi-gram Fityk [16] include the split Voigt function among the
mations of the Voigt function, as the pseudo-Voigt [6] or theshape functions for the analysis of X-ray diffraction peaks,
Pearson VIl [7] functions can be used. although no explicit details about the analytic expression are
These functions have been widely used in the analysigontained in the manual

of individual or group X-ray diffraction peaks as well as . L . .
in programs that analyse the whole diffractogram, as Full- Asymmetric nature of the split Voigt function makes it an

Prof [8], GSAS-II [9] or TOPAS, within the framework adequate alternative to model X-ray diffraction peaks in the

of the Rietveld method [10]. Thus, function shape andcases where these show departures from symmetric shapes.

breadth parameters can be used to evaluate microstructur-!':lrl1IS modelling can be performed within programs that anal-

: : S : . : yse the whole diffraction pattern or individual or group peaks.
information (domain size and micro-strains, etc) in polycrys-

talline samples. Similar programs, as MAUD [11] or MargX Due to the lack of information about the mathemati-
[12] -based on the Whole Powder Pattern Fitting (WPPF)cal properties of the split Voigt function (relevant in the
technique-, also can provide microstructural data, but usingnalysis of the X-ray diffraction peaks -or other bell-shape
physical models instead of empirical (although based usualldistributions-), in this work | have analysed the most interest-
in a physical background, as is the case of the Voigt function)ng ones. In regard to this, the next section is devoted to the
peak shapes. Note that, although the use of these programsthematical characteristics of the split Voigt function (with
have been proposed especially from the Crystallography, ispecial emphasis in the width measures and their approxi-
many cases, within the more specific Material Science topmations). Subsequently, a simple application to the X-ray
ics, traditional techniques based on the use of a limited set dfiffraction analysis will be showed, and then the main con-
peaks continue being employed with success. clusions shall be presented. Owing to the extension of the
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' ' ' ' ' ‘ Substituting Eqs/2) in (3) one can obtain (Supplemen-
tary material section B)
1000

+ Or
p=tl @
ig whereg; and g, are the corresponding left-handed and right-
S handed integral breadths.
2 500 Note that, according to Ec3)
o
- / sV (z)dx = BI,. (5)

By dividing Eq. 2) by the producisi,, we have the nor-
malized split Voigt function of area unit.

x (degrees) 2.3.1. Approximations to the integral breadth

FIGURE 1. Graphic of a split Voigt simulated X-ray diffraction
peak. Note that the simulation has been performed to generate
peak clearly asymmetric to the left, as it is sometimes usual in low-
angle X-ray powder diffraction data.

gquation 4) can be approximated in several forms, from the
starting point of the integral breadth of the Voigt function.
One possibility is the use of the Halder and Wagner [17]
equation
mathematical background, a significant part of that has been

2 o 2
included in a final supplementary section. §7~ Peb+ ba )
that leads to
H 2 4 2
2. Mathematical core 5= Bec + \/20 +466 _ %c(ﬁ,H VAT k), (7)
2.1. Definition or
The split Voigt function can be defined as ﬁﬂ — % (\/Ek +/4+ ﬂkz) _ (8)
G
2
I8¢ +o0 e"p(‘“syg) <0 According to this result, the integral breadth of the split
V(z) = exp(k?) exfe(ky) J—oo BZFn2(—y)? Y - @) Voigt function could be expressed as
s . exp(_wg ) BTl ATk ) +Bar (VT ke ++/A+ k)
exp(k'g) ;;c(kr) —o00 ﬂér_;,_ﬂ-Z(rgTy)zdy x 20, B 1 . (9

Other approximation uses the Raapproximant of order

where the subindicesandr correspond, respectively, to the ‘ . -
g P b Y [M/N], defined as a rational function in the form [18]

left and right halves of the profile. As example, Fig. 1 dis-

plays the graphic of a split Voigt function simulating a X- Z?}zé” a;xt
ray diffraction profile withl, = 1000 counts,3¢c; = 0.5°, R(z) = lej—:ij
Ber = 0.3°, Ber = 0.4° and B, = 0.2°. =1 %%

(10)

In this case, the P&dapproximant of order [3/4] o8/ 3¢

2.2. Continuity for a Voigt function is
Note that the split Voigt function must fulfill the requirement B Sy aik! 1)
of continuity in all the points. This condition implies, in par- Bea 1+ Z?j‘f bki’

ticular, that the function must be continuousrat= 0. The )
definition of the preceding subsection implies that the splitWlth a1 = 1.435323, a; = 0.732884, a3 = 0.134554,
\oigt function is continuous ift (details in Supplementary 01 = 0-306943, by = 0.113296, b; = —0.00934741 and

material section A). by = 0.00133085. o .
In this way, the corresponding integral breadth of the split

2.3. Integral breadth Voigt function is

=3 i
Integral breadth is defined as the quotient of the area under B~ 1 <ﬁle
the distribution and the maximum of the peak, that is 2 1+ 32521 biky
=3 i
[ sV (@)de 3 4 Bon—2ziz0 ks ) (12)
b= ®) L+ Y1k
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Finally, the integral breadth of the Voigt function can be

approximated by using the rational expression [19]
1 —erf(z) = (c1t + cot?

+ 5t 4 eqtt + C5t5) eXP(—l”Q), (13)

with ¢ (1/1+ pz), where p 0.3275911, ¢;
0.254829592, ¢ = —0.284496736, c3 = 1.421413741,
cy = —1.453152027 andcs = 1.061405429.

Now, the Eq./L3) leads to

6] 1

ﬁG - Clt + 62t2 + C3t3 + C4t4 + C5t5 ’

According to the Eq/X4), the approximation of the cor-
responding split Voigt function can be expressed as

(14)

1 s
I - L R
2 D att Yt

Relative error (%)

FIGURE 2. Relative error of3/3¢ (in %) as function ofk for the
approximation done by the E)(

6

Relative error (%)

FIGURE 3. Relative error of3/3¢ (in %) as function ofk for the
approximation done by the EdL1).
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FIGURE 4. Relative error of3/8¢ (in %) as function ofk for the
approximation done by the Edl4).

Figures 2, 3 and 4 display the relative error in the de-
termination of3/(¢ by using the Eqs/8), (11) and (14) as
function of k. Note that, for the sake of simplicity (due to
the similarity between the left and rigth-handed parts of the
approximations to the integral breadth of the split Voigt func-
tion), these figures are referred to the Voigt function.

In this way, the Y-scale in Fig. 4 is different from Figs. 2
and 3, indicating that the rational approximation done by
Eq. (13) is the best. In regard to this, the X-scale is limited
to k = 5.0 because this value is very close to the Lorentzian
or Cauchy limit of the Voigt function. This assures that the
above figures are representative of the most cases.

2.4. Full width at half maximum

Other well-known measure of the width of a bell-shape type
function is the Full Width at Half Maximum (FWHM), or
range of the independent variablevhere the function value
is greater or equal that the maximum value divided by two.
In the case of the Voigt function (and, obviously, of the split
Voigt function), no simple equation exists to describe the
FWHM (designed agw), that is defined as the solution of

the equation [5]
+ zk}) =23

VTw
Rlw|—5—
< { Ba
whereR(w[z]) is the real part of the complex error func-
tion andw is the Half Width at Half Maximum (HWHM),
or (FWHM/2), for symmetric profiles.
Equation|lL6) can be approximated by [20]

~ 26Gv1+k2.

~

_ Ba

= erfe(k)exp(k?), (16)

T

From [17) it is easy to obtain the corresponding approx-
imation for a split Voigt function, taking into account that,
now, that the FWHM2w, can be expressed 2& = w; +w,.,

w; andw,. being, respectively, the corresponding left-handed

2w (17)
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20

Relative error (%)

FIGURE 5. 2w/ values as function of: Voigt function (solid
line), Posener approximation (dashed line) and parabolic approxi
mation (dashed-dotted line).

FIGURE 6. Relative error oRw/ B¢ (in %) as function ofk for the
"Posener (solid line) and parabolic (dashed line) approximations.

and right-handed HWHM of the profile. Thus, the Posenen 5 nMoments
split Voigt approximation for the FWHM can be written as
In X-ray diffractometry, moments as the centroid or the vari-
N0 = wy 4 w, ~ Ber /14 K2+ Bar \/m (18) anceare of the maximum interest in the analysis of the peaks
VT VS " (for example, in the well-known variance method). However,

, i L in the case of the split Voigt function, the centroid is not well
A simple (and better) parabolic approximation of the defined (Supplementary material section C) and the classic

FWHM for a Voigt function can be derived as definition of the variance in X-ray diffractometry is compro-
o mised. Nevertheless, the variance method of the X-ray line
e ~ 0.86479 + 0.80459k + 0.03853%>. (19)  broadening analysis can still be applied by using the split
¢ Voigt function [21] because the variance coefficients are ob-
Using Eq. 19) in the case of the split Voigt function, the tained from the variance-range function and are independent

following equation is obtained of the centroid value.
2w ~ %(0.86479 +0.80459k; + 0.03853%7) 2.6 Fourier transform
3 The Fourier transform of the split Voigt function can be de-
+ g’” (0.86479 4 0.80459k, + 0.03853k2).  (20) fined as
+oo
Figures 5 and 6 show the valuesf /3¢ and the rela- F(t) = / sV (z) exp(2mizt)dx. (21)
tive error, respectively, for the Posener and parabolic approx- -
imations (for the Voigt function, for the shake of simplicity). After some mathematical manipulation (Supplementary
| material section D), Eq2(l) leads to
I,8c1 Beu TN /+°° exp(2miyt) Nz ,
Ft)= ——— "= - t —2Bcit)— ————— erf ti| d
(t) oxp(k?) erfe(l) 2 exp(—mBet”) | Bey exp(—2Bcit) B B + VTBaiti| dy

IoﬁC'T ﬁGr 2 ,2 —1 Feo eXp(27TZyt) ﬁ X
+exp(k72.) erfe(k,) 2 exp(=mfig, ) (ﬁcr exp(=2fcrt)+ /—oo B%T-HTQyQ ert [ﬁGr y+ﬁﬂGm} dy) - (22)

The above equation is different from 1tat 0. In regard to this, putting = 0 and taking into account the odd character
of the error function, Eq/22) leads to

F(0)

Bai Bar } .

I,
T2 |:exp(kl2)erfc(kl) + oxp(2) erfo(ky) (23)

Rev. Mex. Fis71021004
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Thus, the normalized Fourier transform (= 1tat 0) is its second derivative at= 0. In regard to the point b) it has
F(t)/F(0). It can be easily demonstrated that, fo; =  been an usual practice in X-ray diffractometry to assume that
Bcr andBg; = Bar the Fourier transform of the split Voigt  crystallite or domain size effects are associated to a Cauchy
function reduces to the corresponding expression of the Voigtomponent whereas r.m.s. strain is related to a Gaussian de-

function. pendence. Thus, this leads to a expressiafi(of in the form
3. Application example F(#) = exp(—at — bt?), 27)
3.1. Mathematical core wherea = 1/<t>, andb = 27T2dhkz < ¢* >, being

F3(t) = exp(—at). Note that Eq.27) is clearly consistent

In this section, | apply simple line broadening approachedvith Egs. £4) and 25).

that can be used with asymmetric profiles, as the described On the other hand, the term associated with the sec-
by split Voigt functions. Note that, although more sophisti-ond derivative of"*(¢) can be dropped assuming that the
cated procedures has been developed recently, as the Wh@ea-weighted column length distribution fulfills the condi-
Powder Pattern Modelling or WPPM [22], classic simpli- tion ps(0) =0 [26]. ThUS Egs.24) and 26) can be used to
fied single or multiple line methods -as the Williamson-Hall 0btain< ¢ >, and< e* > from the first and second deriva-
[23] or Warren-Averbach [24] procedures- are widely usedtives of the “pure” profile Fourier transform at= 0. Also,

to study the microstructure of materials by X-ray diffractom- it this possible, by considering the exponential dependence of
etry. In the case of single line techniques, the main advantagg” (t), to obtain the equation

associated to the simplicity of the collection and analysis of
the experimental data, contrasts with the need of additional
hypotheses about the dependence of the shape parameters or

related quantities on the microstructural features. In this way, we must be cautious with the above hypothe-
In this way, a simple procedure to evaluate mean valueses. Note, for example, that the r.m.s. strain must be positive.

of some microstructural parameters was developed by [25]This implies that, if we assumgs”’ (t)¢—o = 0, the second

using as starting point the basic equations of the kinematicalerivative " (¢),_., must be negative. Or, if we assume the

F3 () =< t >;2. (28)

diffraction theory. That equations are exponential dependence 615 (¢), F" (t),—o — F5" (t)i—0o
must also be negative, in order to provide a r.m.s. strain pos-
dFS(t) dF (1) 1 itiye. The;e constraints hgs peen an.alyzed, in .the case of the
( 7 ) . = (dt) . =10 (24)  \oigt function, by [25]. This is the price to pay in the single
t— t— a

line approaches with analytical models.

and Note that above equations assume that the only mi-
crostructural effects are those associated with the crystallite
size and micro-strains. In this case, the Fourier transform

InF(t) = In F5(t) — 2m%d, 12 < e >, (25)  F(t) in Egs. 24) and 5) is the cosine Fourier transform,

defined as [27]

where F(t) is now the Fourier transform an8?(t) is the

size-component of the Fourier transform, both referred to the

“pure” profile’’. In the above equations; ¢ >, is the area- F.(t) = He(t)Ge(t) + H. (t)GS(t),

weighted average column length perpendicular to the reflect- Ga(t) + G3(t)

ing hkl planes s, the interplanar spacing, arde? >, the  \yharerr, (t) andH,(t) are the cosine and sine Fourier trans-

square of the root-mean-squared (r.m.s.) microstrain. The . of the experimental profile, respectively, wheréast)
equation 25) is strictly valid for a gau55|an strain distribu- 54 G, () are the corresponding cosine and sine Fourier

tion or fort — 0. In these cases; e? > can be expressed yransform of the instrumental-spectral profile. Frd8)( the

(29)

as first derivative can be expressed as
1 p p , H,(t)Ge(t) + H(H)Go(t)
2 — _ S F(: (t) -
A simple inspection of Eqs/2d) and 6) shows that + ( )G;(t) z(t)G (1)
< t >, can be obtained from the analysis of a “pure” single G2 (t) + GE(t)
line Fourier transform. By contrast, the determination of the F.(G N+ G
r.m.s microstrain requires: a) the analysis of multiple lines -2 (0 C(;Q)( )( ) Q(t;( )¢ ( ), (30)

(strictly speaking, belonging to the same family of crystallo-
graphic planes) or b) additional hypotheses albtift) or  whereas the second derivative is

Rev. Mex. Fis71021004
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1"

F () = B(Go(t) He(t) + G5 (t) Hy(1)) (G (1) G () + G5 (1) G (£)? — A(G2(t) + G2 (1)) (Go(t) G, (t)
+ G ()G () (H()GL(t) + Ho(£) G (8) + Ge(t)H, (1) + Go(t) H (1)) — 2(G2(¢) + G2(1))(Ge(t) He(t)
+ G (O Hs (1)) (G2(1) + G2(t) + Go(t)G, () + Gs ()G (1) + (G2(t) + G2(1))2(2G. (1) H, (t)

+2G, (1) H,(t) + Ho ()G, (t) + Hy(t)G, (t) + Go(t) H, (t) + G5 () H, (£)](G2(t) + G2(t)) . (31)

Although Egs.[80) and B1) are simplified in the limit — 0, in this particular analysis we can drawn on the symmetrical
character of the “pure” profile. Thus, the sine Fourier transform of this profile is zero an@9tgeuces to

_H.(t)
In this way, the corresponding first and second derivatives are now
fon _ Ho(D)Ge(t) = Ho()G(t) _ Ho(t)  He(t)Ge(t)
Fel = Gz T @m 33
and
vy He(OGL () 2G()H(t) | 2H(H)G2(t) | H. (1)
RO=""an ~an G0 G 9
respectively.

Note that these last equations, in the limit> 0 and combined with Eqs24) and 26), provide< ¢t >, and< e? >. In
regard to this, analytical shape functions are needed in order to obtain the derivatives included38)Eqsl B4). Moreover,
assuming the normalization of thé.(¢) andG.(¢) functions att = 0 (that is, H.(0) = G.(0) = 1), Egs. 83) and 34) lead
to [25]

Fc (0) = HC(O) - Gc(0)7 (35)

and

1"

F,(0) = ~G, (0) = 2G(0) H,(0) +2G*(0) + H, (0). (36)
Now, assuming split Voigt functions to describe the experimental and instrumental-spectral profiles, the corresponding

normalized cosine Fourier transforms are

Bain exp(—2Bcint — T ;t2)  Barn exp(—2Bcrnt — 7%, 4 t7)
exp(k?, ) erfe(kp) exp(k2, ) erfe(k,p)

He(t) = Bain Barn ’ (37)
exp(k2,) erfolkun) | exp(kZ, ) erfe(Forn)
and
Baig exp(—2Bcigt — w02 ,t°)  Barg exp(—20crgt — 0, 4t%)
Gult) = exp(ki,) erfc(ﬁklg) eﬁxp(kgg) erfc(kyg) ’ 38)
Glg Grg

exp(ki,) erfe(kyy) — exp(k2,) erfe(ky.)

where the subindicefs andg indicate the character of the profile (experimental and instrumental-spectral, respectively). Note
that, as | have previously pointed out, the odd character of the error function implies that the corresponding sine Fourier
transforms at = 0 are null (;(0) = G5(0) = 0).

Thus, from Eqgs.37) and B8), the first derivatives at = 0 of the normalized cosine Fourier transforms are obtained as

BcinBain BcruBarh
3 3
H.(0) = —2 exp(kp,) erfe(kin) — exp(kZ,) erfe(kyn) ’ (39)
Bain Barh

exp(kd, ) erfe(k) — exp(k?,) erfe(kyp)

Rev. Mex. Fis71021004
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and
BcigBaig n BergBarg
GL(0) = —2 exp(ki, ) erfe(kyy) — exp(kZ,) erfe(ky) (40)
¢ N ﬁGlg ﬁG’r'g ’
exp(ki,) erfe(kyy) — exp(k2,) erfe(ky)
and the corresponding second derivatives-at0 can be expressed as
(4824, — 27 B2u) B (482, — 27 B%,4)Barn
" exp(k?, ) erfe(kp) exp(k2,) erfc(kp)
H_(0)= r 41
(0 Bain Barh ’ (1)
exp(k?,) erfe(kyp) — exp(k?,) erfe(k,p)
and
(46%19 B Zﬂﬁélg)ﬁGlg (4ﬁ%rg B 27rﬁ%'rg)ﬁGrg
G (0) = exp(ki, ) erfe(kig) exp(k2,) erfe(k,q) 42)
¢ N ﬂGlg BGrg '

exp(kz, ) erfe(kig) + exp(k2,) erfe(k,)

Substituting Eqs/39), (40), (41), (42) in Egs. B5) and 36) allows to evaluate: ¢t >, and< e? > for the crystallographic
direction corresponding to the profile. Note that, if the integral breadth is expressed in de@jeas {Ris usual, it must be
transformed to reciprocal units (longitud® by using the conversion factor

mcosf,
= 43
¢ 180\ (43)

where) is the radiation wavelength afy is the position of the maximum intensity of the peak.

3.2. Experiments and results

101 (+-Zr0,)

| have applied the procedure depicted in the preceding sectior
to a sample of zirconia (Zr§) and 3-SiO, (quartz), where 300 |
two polytypes of zirconia, tetragonal (t) and monoclinic (m), 11-1 (m-Zr0,)
are present. X-ray diffraction experiments were performed in |
a Philips PW-1800 diffractometer, using Cykadiation @ 2 200 |-
=0.154183 nm) and graphite monochromator in the incident

[}

beam. The generator settings were 40 kV and 35 mA. The ¢
step-scanning technigue was used with a step of 0.05 degree'g 100
(20) and a counting time of 5 s/step. X-ray diffraction data =
were collected over a range of 25-90 degreey.(Eigure 7
displays the 25-33 degrees section of the diffraction pattern,
where the stronger peaks are present. The peaks correspor
to the 101 quartz2f, ~ 26.7°), 11-1 m-ZrQ (26, ~ 28.3°), e,
101 t-Zr0y (260, ~ 30.3°) and 111 m-ZrQ (26, ~ 31.4°) 20 (degrecs)
lines. In this way, | have used these peaks in the single-line
analyses presented here. FIGURE 7. X-ray diffraction pattern of the experimental sample.
Labeled are thék! Miller indices of the peaks, besides the corre-
A sample of a-Al,03 (corundum) was used &S gponging phase. Note that the data are corrected by the Lorentz-
instrumental-spectral standard. Reflections of this sampl@gjarization factor. The reflections include the two components of
were scanned in the same conditions as the experimentgle cuk, doublet.

sample, but with a step of 0.01 degree$)(2due to the
smaller widths of the peaks, and a counting time of 10 s/stepnents. As example, Fig. 8 shows the X-ray diffraction pat-
In particular, 012 6, ~ 25.6°), 104 @6, ~ 35.2°), 110 tern corresponding to the 104 and 110 corundum peaks.
(20, ~ 37.8°), 113 @6, ~ 43.4°), 024 @6, ~ 52.6°), 116 Figure 8 shows clearly the asymmetric character of the
(20, ~ 57.5°), 214 @0, ~ 66.5°) and 300 20, ~ 68.2°) instrumental-spectral peaks, that it is specially noticeable in
lines were selected to perform the X-ray diffraction experi-the low-angle zone of the diffraction pattern. By contrast, the

111 (m-ZrO,)
101 (Quartz)

0
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FIGURE 8. X-ray

instrumental-spectral sample.
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20 (degrees)

diffraction pattern of the 104 and 110 FIGURE 10. Result of the fit of a split Voigt function to the 012

As in the experimental X-ray instrumental-spectral peak. Data points are represented by dark

diffraction pattern, the data have been corrected by the Lorentz-circles and the fit by the solid line. The line at the bottom is the
polarization factor.

300

difference plot (observed minus calculated).

TABLE |. Parameters of the fit to the experimental peaks. Numbers
between parentheses are the standard deviation referred to the last
significant digit. The Goodness-of-Fit (GofF), defined as GofF =
(x3)Y? = /x2/(N — P), whereN is the number of data and

P the number of fitted parameters, was 3.08. A linear empirical
function was used to describe the background, as it is usual in the

% e case of well crystallized samples, and, for the sake of simplicity,
i the background parameters are not included in this table.
g 100 Peak Be(®) Ba(®) 20,(°) I,(counts)
= 101 quartz  0.25(2) 0.121(3) 26.7071(11)  56(2)
11-1 m-ZrG 0.251(7) 0.197(9) 28.3084(8) 168(2)
° 101t-ZrO, 0.483(3) 0.079(7) 30.2428(7) 218(2)
111 m-ZrGQ  0.35(1) 0.186(6) 31.3962(13) 82(2)

20 (degrees)

FIGURE 9. Result of the fit of Voigt functions to the X-ray diffrac-
tion peaks of the experimental sample. Data points are represented
by dark circles and the fit by the solid line. The line at the bottom
is the difference plot (observed minus calculated).

experimental profile shows peaks almost symmetric (the
small asymmetries are due to the peak overlap). By theseg

reasons, on the modelling of the peaks, | have used Voigtg" '
functions for the experimental peaks and split Voigt func- = =
tions for the instrumental-spectral peaks. Thus, Fig. 9 dis-
plays the model fit to the experimental peaks and Fig. 10, the
model fit corresponding to the instrumental-spectral corun-
dum 012 peak. In this way, Table | present the results of the

fits of Voigt functions to the different peaks of the experi- g

mental sample. Similarly, Table Il shows the corresponding
results of the fits of split Voigt functions to the instrumental-
spectral peaks.

30 35 40 45 50 55 60 65 70

20 (degrees)

FIGURE 11. Result of the quadratic¢;) and linear i, Bor

andpfq) fits to the integral breadth parameters of the instrumental-

Asthe positiqns of the eXperimenta| peaks does not correspectral corundum peaks. Data points are represented by dark cir-
spond exactly with those of the instrumental-spectral peakssles and the fit by the solid line (in the same colour for each integral
| have analysed the dependence with the angle of the widthreadth).
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TABLE II. Parameters of the fit to the instrumental-spectral peaks. Numbers between parentheses are the standard deviation referred to tf
last significant digit. As in the case of the experimental peaks, a linear function was used to describe the background, whose parameters ar
not included in this table.

Peak Bei(®) Bei(®) Ber (%) Bar(°) 20,(°) I,(counts) GofF
012 0.073(1) 0.169(2) 0.048(1) 0.090(3) 25.6472(10) 248(2) 2.08
104 0.0781(8) 0.149(1) 0.0477(7) 0.109(1) 35.2006(5) 1286(4) 2.98
110 0.076(2) 0.150(2) 0.042(1) 0.111(2) 37.8266(8) 473(3) 2.98
113 0.087(1) 0.146(1) 0.0518(8) 0.1099(9) 43.4009(4) 1655(5) 2.98
024 0.097(2) 0.145(2) 0.052(1) 0.113(1) 52.5942(5) 1216(5) 2.36
116 0.103(1) 0.144(1) 0.0570(9) 0.1135(7) 57.5367(3) 2771(7) 2.98
214 0.133(2) 0.126(2) 0.055(2) 0.123(1) 66.5499(4) 1529(6) 2.20
300 0.123(2) 0.130(2) 0.066(1) 0.1178(9) 68.2382(3) 2479(8) 2.20
2 T T T T T T
TaBLE Ill. Instrumental-spectral shape parameters at the position of In F (1) |
of the experimental peaks (angle). Numbers between parentheses I ) N Polynomial fit 1

are the standard deviation referred to the last significant digit

Angle () Beoi(°) Bai(?) Ber(®) Bar(°)

267071  0.073(3) 0.160(3) 0.044(2) 0.103(3) - °f
28.3084  0.074(2) 0.159(3) 0.045(2)  0.104(3) E sl
30.2428  0.075(2) 0.158(3) 0.046(2)  0.104(3) qol
31.3962  0.075(2) 0.157(2) 0.046(2) 0.105(2) Bl

parameters of the later. Figure 11 displays the integral ™[

breadths of the instrumental-spectral peaks as functions ol —160- . = . = . o . o
26,,, along with linear and quadratic fits to these data.

Table Il shows the values of the instrumental-spectral
shape parameters at the position of the experimental peaksicure 12. Approximation of the “pure” cosine Fourier transform
according to the fits included in Fig. 11. by the function defined by E027). Note that in the representation

By using equations involving the first and second deriva-it have been used the natural logarithmf(t) because the cor-
tives of the “pure” cosine Fourier transforms in terms of theresponding model reduces to an order two polynomial. Solid and
shape parameters, | have calculatedt >, and < e? > dashed lines represent, respectivalyF.(¢) and the best approxi-
from Egs. 24) and 26). Note that, in this case, the results Mating polynomial in the formt + bt*.

lead to positiveF,, (0) values. By this reason, the condition _ _ _
s (t);—o = 0 can not be assumed. In regard to this | The use of a particular model to describe the “pure” cosine

also have used the E@8). Moreover, | have evaluated mi- Fourier transform as a function of the microstructural param-
crostructural parameters by approximating the “pure” cosiné&€rs is more robust but, in the case of the 101 g)eak of tetrag-
Fourier transform using the model defined by E2)( As  ©nal zirconia, leads to a meaningless result<foaf” >. This )
example, Fig. 12 shows this approximation for the case of th@€haviour is possibly related to the well-known "hook effect

101 quartz peak. Table IV displays the obtained microstrucl??, 28], where a concave upward pIotEf(t) versust is
tural parameters. expected and not downward. This effect is traditionally asso-

Results of Table IV shows the limitations of the approx- ciaFed to an incorrect est_imaFion of the background or trun-
imations of the function?!’ (¢) in the case of a single line cation effects. Although, in this example, the peaks are mod-
approach, particularly in the evaluation of the r.m.s. micros-£/l€d by analytical functions (and, for this reason, the results
train. Note that this drawback is not related with the use ofi€ less affected by the latter issues), it can not be excluded
symmetric or asymmetric profiles in the description of thethat the fit of the 101 peak be slightly deficient.
peaks, because it can be also appear in classic analyses with It must be taken into account that area-weighted average
symmetric lines. Note that, according E86), the condition ~ column length values obtained by the two procedures are dif-
s’ (t)—o > F’ (t)¢—o must be fulfilled. Moreover, as the ferent because the initial-slope method [E24)[ leads to an
second derivative of the Fourier size transform is proportionatinderestimation ok ¢ >, [29] with respect to the curve
to the column length distribution [27], also must be positive_fitting method. In fact, this behaviour is showed in Table IV.

t (nm)
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TABLE IV. Microstructural parameters obtained in this study{ >, and< e*> >). The r.m.s. microstrain was presented instead of its
square, according to the traditional rule followed in Crystallography. Symbol - indicates that the vatue?of was negative, providing

a result without physical meaning. Numbers between parentheses are the standard deviation referred to the last significant digit. In some
cases, uncertainties (derived from error propagation) were unacceptably high -of the order of the value- and it have been omitted. Note that
these uncertainties are statistical and don't include possible systematic effects derived from inaccuracies of the models.

Equations24) and 26) Equation27)
Line <t >q(nm) <e? >1? <t >q(nm) <e? >1/2
101 quartz 24(2) - 33.29(6) 7.767(6)10
11-1 m-ZrQ, 23.3(9) 1.9103 32.96(6) 1.6760(2) 10°
101 t-ZrQ, 10.91(9) - 12.353(7) -
111 m-ZrQ 16.0(5) 1.510° 19.25(2) 1.3832(2) 10°

Reader must consider that these values are area-weighted agdes by using the split Voigt function, the main topic in this
there is a volume-weighted average column length (based istudy.

the integral breadth instead of the Fourier analysis), that leads
to higher values [4]. Note, moreover, that a correct evalua—4
tion of the crystallite size requires a knowledge of the approx-
imate shape of the crystallites.

. Conclusions and summary

Split Voigt functions can be used in X-ray diffraction anal-

Although the analysed experimental peaks does not allowses to determine microstructural features in polycrystalline
to apply a rigorous multiple line method, assuming sphericamaterials, as other functions traditionally employed (pseudo-
crystallites with isotropic r.m.s. strain (that is, independent ofVoigt, Pearson VII, Voigt, etc). Due to the extensive use of
the crystallographic direction) a double-line procedure [30]the Voigt function to describe the shape of the X-ray diffrac-
could be used with the two peaks of the same phase (11-1 ntion lines (justified both theoretically and experimentally),
ZrO, and 111 m-ZrQ). However, for the sake of simplicity, the split Voigt function is a natural extension of the former
this step has been omitted. Note that the application examphery useful to modelling asymmetric X-ray diffraction peaks.
is not intended for a complete analysis of the microstructurén this study | have analysed different properties of the split
of the selected sample. The main purpose is the applicatiovoigt function (especially interesting in the field of the X-ray
of simple methods of X-ray diffraction microstructural anal- diffraction procedures), using that function in the description

of the instrumental-spectral peaks to study a sample of quartz
| and zirconia by single line methods.

Appendix
Supplementary material
A. Continuity

According to the Eq.2) the continuity property can be expressed as

LBen /+oo exp (—ﬂﬁy—gl) 4 LB /+oo exp (—mgr) dy. (A.1)

exp(k?) erfe(ky) J_ oo B2, +72Y2 v= exp(k2) erfe(k,) J oo B2, + m2y?
The integrals in the EqA.1) can be easily solved [19], leading to

gt
I oxp (<73 ) | exp(kp)erfe(h)

_ ’ A2
—o0 5%[ + 7r2y2 BCZ ( )
and
2
/ o Md _ exp(ky) exfe(kr) (A3)
e B2 YT Bor . |

Substituting Eqs.A.2) and [A.3) in Eq. (A.1), it can be demonstrated that the maximum of the left half of the split Voigt
profile is the same than the maximum of the right half, and equaj tbat corresponds to the maximum of the peak. That is,
(2) defines a function continuous in all the points.
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B. Integral breadth

According to the Egs/2) and B), we can write

+00 exp i 400 ptoo exp i
RS < — BCZ / / ﬁGl) dyda+——-———— Ber / / ﬂcr) dydz. (B.1)
exp(k?) erfe(k;) BZ, + m2(z —y)? exp(k2) erfe(k B2, +m2(z —y)?

Note that each half has an area that is the area of a Voigt function with the same parameters divided by two. In regard to
this, the left and right-handed terms in EB.1) can be substituted by the integral breadths of the corresponding Voigt functions
multiplied by1/2, that is

Bai Bar B+ Br
2exp(k?) erfe(ky) + 2 exp(k2) erfe(k,.) 2 (B2
As it could be expected, EdB(2) reduces to the Voigt integral breadth féw; = G¢. andBa; = B
C. Centroid
The centroid of the split Voigt function can be defined as
+oo
<z >= / xsV (x)dx, (C.1)
or
0 “+o00
<z >= / xsVi(z)dx —|—/ xsV,(z)dx, (C.2)
— 00 0

beingsV;(z) andsV,.(z), respectively, the left-handed and right-handed parts of the split Voigt function. The right-handed part
is proportional to

y)?

+oo +oo eXp ﬁcr )
— 2.5 dydz, (C.3)

_|_ 2y2

where the arguments of the Gauss and Cauchy componentg,; (@andy, respectively) have been interchanged with respect
to the Eq. 2). Note that this change does not modify the definition of the split Voigt function, due to the properties of the
convolution integral.

Integrals in Eq./C.3) can be interchanged in the following way

T B (xy)z] ) dy
/700 </0 T { | ") B e (C.4)
where
oo — 2 ﬁzre p\— 4
/ T (W(lﬂQ 5 > dr = ;< o ( Wﬂcr) + Bery + Bary erf (ﬁy) > (C.5)
’ ar m BGT

Note that the third term in the right-handed member of the above equation leads to the following intggral in

/+°° Bary erf(YTY )dy

C.6
oo BE 4R (C6)

3

that does not converge in the-fo, +oc] interval. A similar result is obtained by examining the left-handed part of the
Eq. (C.2). This means that the centroid of the split Voigt function is not well defined. As consequence, the variance about the
centroid is also not well defined, as in the case of the Cauchy function [19].
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D. Fourier transform

Equation21), according to the expressic®)( translates to

2
+00 exp Y
F(t) = el / / [T BGL) 5 exp(2mixt)dyd
T

exp( k2 erfe(k;) 2, —y)
oﬁCr /+oo /+Oo exp @) )
- 2mixt)dyd D.1
1 exp(i2) exfe(ky) exp(k2) erfe(k B+ 2z —y)? exp(2mixt)dydz, (D.1)
or
(z—y)?
OﬂCl / /+oo eXp 52 )
Ft) = omict)dyd
®) exp(k2) erfe(k;) 501 T r2y? exp(2mizt)dydx
oﬂC’r oo oo eXp ;y)z)
exp(k2) erfe(k,) / / 72 a2y exp(2mixt)dydz. (D.2)
CT

In Eqg. (D.2) we can examine first the left-handed term. In this way, interchanging the integrals, we have

(z—y)?
oﬁCl / /+oo exp Bz )
2mixt)dyd
eXp k.2 erfc kl ﬂCl +7T2 2 eXp( 772.%’) yaxr

+oo
- exp( k‘;ﬂecrlfc (kp) / / exp < 32 )’ )eXP(met)de[ﬁ%z + my7) " dy. (D.3)
el

The integral inz in Eq. (D.3) can be developed as

0
/ exp <7r (2 2y)2> exp(2mizt)dx = % exp(—7 &%) exp(2miyt) <1 —terfi |:ﬁﬂg1t - %/Ezy}) , (D.4)
Gl

—00 ﬁGl
erfi(z) being the imaginary error function

erf(iz)
P

erfi(z) = (D.5)

Thus, Eq.ID.3) can be expressed as
I,8c1 B 2 2 /+°° exp(2miyt) VT
_— - —————=1—erf D.
o) ertel) 2 Pl | e g+ VTt ) O
that it can be written as
1,8c: Bai 9 o </+°° cos(2myt) /+°° exp(2miyt) {ﬁ ] )
_— - t ————dy — ——————=erf |-— ti| dy | . D.7
ol ertcl) 2 PN | B g T, B e O et TV Reti ) (1)
taking into account that the integral

oo sin(27yt)
———dy, D.8
[oo ﬁ%‘l + 7T2y2 y ( )
vanish due to the odd character of the sine function. In regard to this, after some manipulatiih3Jecal be expressed as

IoﬂCl ﬂGl 2 ,2 -1 /+OO eXp(Q?TZyt) ﬁ .
— N i o - -2 - ————erf | 2— . D.
exp(k?) erfe(ky) 2 exp(—mBgt”) | Be; exp(—20cit) o B e | B + VT Baiti| dy (D.9)
It can be proved that the integral containing the error function provides the imaginary part BX.8)qafthough it can not
be expressed in a simple form, as in the case of the real part. In a similar way, the right-handed teriD @) Egn(be written
as

IoﬂCr ﬂGr
exp(k?) erfe(k,) 2

o0 exp(2miyt) ¢ {ﬁ

exp(fﬂﬂértz) <55}, exp(—206c.t) +/ e
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also being the integral containing the error function the corresponding imaginary part of tli2. Hi). Now, the sum of the
left- and right-handed parts is

FT(t) =

1, B 400 o .
(ﬂ([)(k;f)‘izcrlfc(kl)ﬂ;” exp(—ﬂﬂ%lﬁ) (»3@1 exp(—2B8cit) — /_ m erf [g/jy + ﬁﬂclm} dy)
IO r r _ +oo 2 . .
+exp(k2)5;fc(kr)ﬁg exp(—mfg,t%) (ﬁcrl exp(—2fcrt)+ /_ meﬁ [ﬁ\éiy—kﬁﬁgrtz} dy). (D.11)

Note, as | have pointed out, that the imaginary part can not be expressed in terms of simple analytical functions.
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