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RESUMEN

Moshinsky’'s results Yo ‘“diffraction in time'’ are extended to the case of

a rectangular pulse. Besides interference effects of the type studied by Moshinsky
there appears also the well known quantum mechanical spreading effect. Rise time
end monochromaticity requirements seem to preclude the possibility of experimental
nbservation of the interference effects, so that they need not be taken into account

in neutron velocity selectors. The detection of the spreading, wich is subject to

weaker requirements, would provide a direct test of the uncertainty relation,

et a monochromatic, non-relativistic beam of particles (mass m, wave
number k ) be confined to the half space x < 0 by means of a perfectly absorbing
shutter. If, at the instant t = 0, the shutter is removed, the wave function ¥{x,t)

for t+ > 0 will be a solution of Schrodinger’'s equation satisfying the initial condi-

tions
* Now ot CENTRO BRASILEIRO DE PESQUISAS FISICAS, RIO DE JANEIRO.
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exp (ikx) if x<0

= ]
¥ (x,0) {0 if x>0 )

The solution of this problem has been given by Moshinsky '

¥ (x1) = exp (i m/4) ¥, (xt) [F (@) -F0) ] ()

where

¥ _(x,1) = exp i[ kx - thk*/2m) t ] (3)
F{u) = f: exp (i_g_.nz) dn

o= 2m/ht) % (x=vt) ; v = Fik/m o (5)

The transient current J(x,t) is the sum of two terms, one of which may be

neglected if x 5 A= 27/, giving '

| F(®) - F(u) | ? (6)

t

J (x,t)/Jo = —%—
where J = v is the incident current. Expression (6) is identical to the Fresnel
diffraction pattern of a straight edge. This is the reason for the name of ** di ~
ffraction in_time’’. Fig. 1 shows a plot of J/J_ as a function of time, for given

x. The unit step function starting at T = x/v represents the effect accordingto
classical mechanics (‘‘geometrical optics’’ limit). As a measure of the ‘‘width”’
of the diffraction effect, we may take the difference 7= t, =1, between the first
two times at which J/J_ passes by its classical value (see Fig. 1). This is

given by Moshinsky ' as:
T2 0.85 (xh/mv’) (7)

For 300 ° K neutrons at a distance x= 1m, 7= 2.7 x 10°? sec.Since

times of this order of magnitude may be measured, this raises the following ques-

tions:
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1) Is the “‘diffraction in time'’ effect observable with present-day techni-

ques”?
2) If so, need it be taken into account in the operation of neutron velocity

selectors ?
There are several effects, not examined in the preceding analysi$, which

ought to be considered before attempting to give an answer to these questions.

The following seem to be among the most important ones:

a) Shape of the particle pulse,

b) Non-monochromaticity of the incident beam.

a) SHAPE OF THE PARTICLE PULSE
Moshinsky’s results apply to a semi-infinite wave train, In practice, howe-
ver, we always have to deal with wave packets of finite extension, Let us consider
the case in which the initial shape of the packet is a rectangular pulse of length
/| = vAt (such as migth be produced by an infinitely fast shutter kept open du -

ring the time At). The initial conditions (1) are accordingly to be replaced by

exp (ikx) if =/ <x<(

W(x'0)=
0 if x<=!lor x>0 . (8)

This may be rewritten as

¥ (x,0) = ¥, (x,0) +¥, (x,0) (9)
exp (ikx) if x <0 ~ exp (ikx) if x < =1
0) = : -
¥, (x,0) {O e Y20 {0 L0y

The wave functions ¥,(x,t) and ¥, (x,t) are easily found with the help

of Eqs. (1) to (5). The result is

Y(xt) = pexp (-1 m/4) ¥, (x8) [Flup)=Flo,) 1, (D
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where

o = 2m/M)E (xevh) ; u, = @/hD % (x 41 -v)  (12)

and the other symbols retain the meaning given in Eqgs. (1) to (5). The transient

current is again a sum of two terms, one of which may be neglected if x > A ,

[ J(x,8) /v ] =.%_ | F(u,)=-F(u,) |2 . (13)

As might have been expected, this is identical to the Fresnel diffraction

pattern of a slit, of numerical width

A u= u‘.‘,--u|=(2m/|"l'|’)j5 [ (14)

In Optics, the numerical width is a measure of the number of ‘‘Fresnel zones '’

contained in the slit width, Its value determines the character of the diffraction
pattern,

For I »® the above formulae reproduce Moshinsky's results. Figs. 2(a)
to 2(f) illustrate the evolution of the diffraction pattern as a function of Au. Since Au
decreases continuously as the time increases, they may also be thought of as
depicting successive stages in the propagation of a rectangular wave packet,

Fig. 2(a) represent the classical ( ““geometrical optics’’) results, a re -
plica of the initial pulse, which starts at T, = x/v andends at T, = T +At,
For A u>1 (Fig. 2(b) ), we have essentially a superposition of two inde -
pendent '‘straightedge’’ patterns, i.e., Moshinsky’s effect (Fig. 1) is simply
repeated at the beginning and at the end of the pulse.For 1 < Ay < 10 (Figs. 2(c)
2(d) ), the pattern shows large oscillations, which are due to interference between
the two edges. These oscillations are perceptible even in the ‘‘geometrical shadow"
However, the mean current does not deviate much from the classical value. For
Avu=1 (Fig. 2(e) ), the wave packet begins to spread appreciably, with a conse-
quent amplitude reduction. These effects become more marked as A u decreases
(Fig. 2(f) ).

The broadening of the wave packet for A u £ 1 is adirect consequence

of the uncertainty principle. In fact, the initial width At of the packet corresponds
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fo an energy spread

AE= mvAv 2 &/ At (15)

ond this gives rise, after a time t, to a broadening
Ax~ (AV)t 2 &/ mvAt=1/7(Lv)?  (16)

which begins to be important for A v £ 1. This effect sets a limit to the de -

gree of monochromaticity attainable with a velocity selector,

The lower limit to the broadening given by Eq. (16) obviously does not de-
pend on the initial shape of the packet. It is well known, for instance, that a wave
packet with an initial Gaussian probability distribution preserves its Gaussian

shape in free propagation, but undergoes a spread the order of n]_agnitudezof which
is just that given by (16). Therefore, the appearance of spreading for A u < 1

LAY

is a shape-independent effect,

On the other hand, the interference eftects which appear in Figs. 2 (b},
2(c) ond 2(d) are strongly shape-dependent. The oscillations in the pattern are
closely connected with the existence of ‘“straight edges’’ in the initial pulse i.e,,

with the assumption that its rise time and decay time are negligible. A “‘rounding’”
of the edges will smooth out the oscillations. This is clearly seen in the above

cited example of a Gaussian wave packet.
To formulate these notions more precisely, let us call T, the rise time

of the initial pulse. Then, in order to observe Moshinsky’s diffraction width, we
must have: 7, < 7. Similarly, if we want to observe interference effects in the

range 1 <A u< 10, we musthave: 7T, KAt /Ay, i e, T, must be small

compared with the spacing between peaks. |t is easily seen that either one of these

conditions inplies that

LooL
2 A o2

r «h ™% (17)

m" " X

where E is the kinetic energy of the incident particles,
For the previously given example of 300° K neutrons at a distance x = 1 m,

we must have, according to (17), 7, < 2.7 x 10°° sec, which is impossible

R

121



with a mechanical selector. Forming the neutron pulses by means of charged
particles would be a change for the worse, since E would increase by alarge
factor. Results would be improved by decreasing the energy. ‘‘Cold’’ neutrons
migth be obtained by several methods (neutron diffraction, use of low temperature
thermalizing substance, etc,). Admitting that a 20° K neutron beam of sufficien-
tly high intensity may be produced, this would mean a gain by a factor of (15)% <
= 7.6. The distance x might be increased perhaps by factor of 20, giving an ad -
ditional gain of (20) % = 4,5. This would bring us to Ty K 1077 sec. It is still
very doubtful whether such values of the rise time can be attained with @ mechanical
selector,

Another possibility would be to employ heavy ions in place of the neutrons.
For 0.1 ev Rb ions at a distance x = 1 m, we find: T K 3 x 10°° sec. Since

the ion pulse can be formed by electronic devices, it might be possible to satisfy

this condition.

b) NON-MONOCHROMATICITY OF THE INCIDENT BEAM

The incident beam will be, in general, a superposition of non-coherent
components having a certain velocity distribution, e. g., a maxwellian distribution
in the case of thermal neutron. The resulting “‘diffraction pattern’’ is then obtai -
ned by superposing the patterns given by (13) for each value (or small range of
values) of the velocity. How does this affect the results previously obtained ?

Let us consider what comes out of superposing two pattems, corresponding

to velocities v and v+ dv, For & v/v < 1, the two patrerns will have prac-
tically the same shape, and all we need consider is their relative shift in the time
scale,

This shift is given by

St=T(v)=T(v+8v)=x/v=x/(v+3v) = T(v) dv/v , (18)

If we do not want the oscillations to be ‘‘smoothed out’’ by overlapping,
we must have 0Ot K 7 (for Moshinsky’'s effect) or St K At/Auv ( for

1 <Au<10). From this it follows,as in (17), that we must satisfy the condition

Sviv Y St/T(v) € 4% m % x% g4 (19)

|
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For 300° K neutrons, x= 1 m, (19) gives: & v/v < 6 x 10°° . This
would demand a degree of monochromaticity wich it seems wery difficult to attain.
It would hardly be of any help to use ‘‘cold’’ neutrons, owing to the small exponent
with which E appears in (19): even with 20° K neutrons, we should gain less
than a factor of two. If, on the other hand, we try to increase x - by a certain
factor, (17) decreases by the same factor, which cannot be allowed, since 7,
for neutrons is already too small, as it is. For 0.1 ev Rb ions, x = 1 m, we find
Sv/v € 1.4x10°° , which is even worse. Thus we see that we cannot simul -
taneously satisfy requirements on rise time and monochromaticity expressed by con-
ditions (17) and (19). Therefore, both Moshinsky's effect and the interference effect
in the region 1 < A u< 10 are outside the-range of present experimental possi -
bilities.

What about the spreading effect? Let us find out, in the first place, whether
the region A u € 1 can be attained. Eq. (14) may be rewritten as follows:

Au= 095 ‘Fl'Ji rn"t" x'% Es}'i At . (20}

Taking the case of a very good mechanical selector 3, in which x= 20 m,
At=5x10""7 sec, we find: A u = 24. Therefore, usual neutron velocity selectors
operate in the region A u > 1, Toattain Au=1, for x=20m, with 20°
K neutrons, we should have to make At = 1,5 x 10°7 sec. This would by a diffi-
cult problem, but it is not too far from what has already been done, On the other
hand, for 300° K Rbions, x= 1m, weneed At 1.4x 10°%sec toget Au= 1.
The time of flight for this arrangement would be T 2 4.1 x 10™° sec, so that this
delay would have to be measured with an accuracy of the order of 10°° . These are
rather stringent requirements, but they seem to be within the possibilities of modern
electronic techniques. Of course, the above fiqures are only meant to be illustrative, and
a better choice of parameters can probably be made.

Taking for granted that A v € 1 may be attained, how will the problem be
gffected by the above effects? As we have seen, the initial shape is not critical .
What about the non-monochromaticity of the incident beam? According to Eq. (16),
the non-monochromaticity which originates from the experiment, due to the uncertain-

ty principle, is

123



Av/v2 WNAEAY ~ At/ [ T(v) (Au ¥ ] . (21

|f we want to distinguish the spread due to the uncertainty principle from that due

to the original non-monochromaticity of the incident beam, the latter has to be at
most of the same order as the former, i. e., we must have: dv/v $ Av/v. In the
case of our last example, we find from Eq. (21) that Av/v 2 3.4 x 107¢. Eq.(21)
also shows that Av/v increasses by decreasing either E or At. Thus, the

detection of the spreading due to the uncertainty principle does not depend on such

stringent requirements as the detection of the interference effects, but it still de -

mands a highly monochromatic incident beam.

In conclusion, we see that: 1) Moshinsky's effect and similar interference
effects for 1 < Av < 10 do not seem to be accessible to present techniques .
Obviously, then, they need not be considered in the operation of neutron velocity
electors. 2) To detect the spread of a wave packet due to the uncertainty princi-
ple with modern experimental techniques seems to be a difficult, but not perhaps
on insurmountable problem. An experiment of this type would be very interesting ,
both as an observation of o transient solution of Schrédinger’s equation, and as a

direct test of Heisenberg’s uncertainty relation,
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