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A novel optical flow method based on a
second-order non-linear differential equation
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A novel optical flow algorithm based on a second-order nonlinear differential equation is presented. This equation expresses the difference
between two sequential images, and from its solution, the optical flow information between the images can be extracted. The new algorithm
is compared with standard optical flow algorithms, as well as some of their recent generalizations. The comparisons are conducted using
common tests applied in particle image velocimetry. The results show that the new algorithm outperforms classical algorithms in these
particular tests

Keywords: Optical flow; second-order; algorithm.

DOI: https://doi.org/10.31349/RevMexFis.71.021301

1. Introduction The test follows a standard procedure in optical flow. Finally,

. in Sec. 4, the conclusions are provided.
Optical flow refers to the pattern of apparent movement of

objects, surfaces, and edges in a scene, caused by the rela- i

tive motion between an observer and the scene [1]. The maid- Mathematical model
applications of optical flow include detection, speed determi-
nation [2,3], deformation measurements [4,5], displacemen
measurement [6], particle velocimetry [7], and fluid motion
analysis [8,9], among others.

Optical flow can be computed from a sequence of image
Most optical flow algorithms work with two consecutive im- . -
ages of the same scene [10,11]. The most commonly use ould re_semple th? second imagér, y). The.objectwe of
optical flow algorithms are the Lucas-Kanade algorithm and€ algorithm is to find: andv such that the differences be-

the Horn-Schunck method [10-13]. The basic assumption%ween]l(x+“’y‘“’) andly(, y) are minimized. In the fol-

of the Lucas-Kanade algorithm are that the flow is essentiallyowIng derivation, the dependence on independent variables

constant within a local neighborhood of the pixel under con-® omitted to simplify the notation. Thug, (z,y) = I, and
sideration, and that it solves the optical flow equations for[2(w’y) = I. - .

all pixels in that neighborhood. The algorithm divides the From _the derivation .Of the I__ucas-Kan_ade_ algorithm, we
image into small windows/neighborhoods and computes th§2"n consider the total differential of the first imajéz, y)

velocity of a particular neighborhood using a Iea\st-squareg0 be equal to the negative derivative of the first image con-

he goal of the algorithm presented in this manuscript is to
etermine the optical flow between two consecutive images.
Let v andwv represent the pixel displacements between the
é'mages in ther andy directions, respectively. Consequently,
if the first imagel; (x, y) is displaced td; (x + u, y + v), it

method [10,14]. cerning time,
The Horn-Schunck method, on the other hand, is an opti- ol oI, o,
cal flow algorithm that estimates the velocity globally instead oz a—yv = (1)

of using local windows/neighborhoods [11]. Both algorithms

have several generalizations and extensions, including thosterivating Eq./T) respect ta: and multiplied by,

incorporating artificial intelligence [13], fractional calculus

[15-17], pyramid implementations [9], fuzzy logic [18], and u — v )

more. Notably, applying fractional calculus to optical flow Ozt dx? Oxdy

has improved performance under c'ertain conditions [15]. Independently, derivating EGLY it respect toy and multi-
Here, a novel optical flow algorithm based on a second-p“ed by

order nonlinear differential equation is presented. The men- ’

tioned differential equation is solved using a least-squares 921, _ , 0211 021, 3

method in an iterative process. This manuscript is organized Yoot~ C a2 Voray ®)

as follows: In Sec. 2, the mathematical derivation of the

second-order nonlinear differential equation and its solutiofNow, on the other hand, we take the first image evaluated

using the |east-squares method is presented_ In Sec. 3, tM\éth the displacemente andwv in horizontal and vertical di-

novel algorithm is tested against the Kanade algorithm [10]rections respectively and then we expand it in the Taylor se-

the Horn-Schunck method [11], and their fractional versions'ies, taking also the first non-linear terms,
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ol oL 1 ( ,90°L 2621 6[1 ol
hie+uytv)=htuzs+v ay+<“ oz TV gE T @)
Then, if we take equation EcRXand Eg./8) and substitute them in equation E4) (ve have,
o, oL, 1 ( 9’  9*L
I =1 — tv— — = )
(z+u,y+v)= 1—&-ua + v a9y ( 8x8t+vay5t (5)

Observe that Eq5) does not have non-linear terms, but it has not lost its information. Therefore, the least squares can be used
to compute the error estimation of the differencdafr + v,y + v) — Is(x,y),

- on oL 1( 9L oI 2
E_zi:;[““a“L 8y—< womgr Vo) R ©)

where}; and}_; are the sums over the windows/neighborhoods. If we want to minimize the error, we need to derivative
Eq. (6) concerningu andv and equal to zero. Thus, in

o oh 1 ( L ol on 1%L
O_ZZ[I“L“ 8y_2<u3x8t+v8y8t 2| (50 ~ 25001 ™

inwv,

8[1 on 1 0L 0%, oI, 102
= I - = L= -2 .
0= ZZ h+ “or Ty T2 (“axat Vot 2 9y 20y0t ®)
Expanding and reordering the terms, in Exf), (
on 19%\ on, 10°n\° on,  182L)\ (oI, 18I
2.2 (= 1) (amzaan “L 2 <ax2axat> P (ay - 28y8t) (&zam) O
and expanding and reordering the terms, but now in/8)q. (
oL 10°L\ on, 10°L\ (0, 10°I on 19°1\°
2.2 (B=h) ( o 28y8t> R (a:c_wxat) (c‘)y_28y§t> L2 (ay‘wyat) - (10)

The above equations can be expressed in a matrix form,

oI 1021, \? oI 1 0%1 I 10%1
22 (aTal_Eamalt) 22 Tj_iayalt) (Tﬁ‘iawﬁ) {u]
oI 10%I oI 1 0%1 oI 1021\ 2 v
o5 (B -18s) (B2 -188) =5 (% - 12)
2
- 1) (G - s 5 (1)
o 8l 19%1,
Zi Zj(l2 - Il) By 2 9yot
The solution of Eq.11) is Eq. [12),
-1
S (%_18%)2 Sy %_18%)(@_;6%)
{u] _ i22j \ 0z — 20z0t i 225 \ oy ~ 2 ogot = 2 0z0t
v oI 1 821 oI 1 0% oI 1021, \?
v (B -585) (% -125) iy (- 188
al 8°I
y > ZJ(IQ - ) (% — %Bmalt (12)
) .
¥, —h) (%2 - 355
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Equation [L2) is the most important equation in the pre- 5 o 222
sented manuscript. It describes how the displacements L e gy et e s 2 S NI e
andv are such that the error estimation of the difference of ., B Sl R : N
Ii(z+u,y+v)—Iz(z,y) is minimized. The computation of
Eq. (12) can be presented in aloop to improve the algorithm’s
performance. 100 i

The second derivative df, with respect tar and timet
is the numerical difference betweéiI,, derivated respect
to x. 150

R AV R A A

’

3. Experimental results and performance 200 |8

Equation|2) will be tested using a common optical flow sce- :
nario derived from particle image velocimetry (PIV). PIV is 250 jEaaasss _
a non-intrusive optical measurement technique used to study 50 100 150 200 250
fluid flow patterns and velocities [7,19,20]. The test involves ) _ _
generating particles with Gaussian profiles at random pOSiE.IGURE 1. Optl(_:al flow .detected by new algorithm for a circular
tions along the rows and columns of an image. The completdisplacement with amplitudd = (1/75) pix.
simulation consists of two images: one showing the initial ) , )
positions of the particles and another showing the particles Table I shows the results for varying the amplitude while
after a known displacement [19]. keeping the other parameters constant. The performance of
The numerical analysis considers the following data se£3ch algorithm is presented in a column of Table | in the
lection: The image size is 25@50 pixels, with 6,000 parti- fOIIOV‘_’mg order: the new aIgo_nthm (NA), the Lucas-Kar_lade
cles in each image. The particle diameters range from 1 to #90rithm (LK) [10], the fractional Lucas-Kanade algorithm

pixels. The selected displacement is a curl displacement, (FLK) [17], the Horn-Schunck method (HK) [11], and the
Kumar-Horn-Schunck method (KHS) [15]. The experiment

uw=A(v—z.) 4+ noise v=—A(u—y,.)+noise (13) in Table | demonstrates the response of the algorithms as the
amplitudeA of the curl displacement increases. From the ta-

where A represents the amplitude of the displacement, typble, it is clear that the new algorithm outperforms the others
ically settoA = 1/25. The noise in the displacement is for this particular task.
random, ranging from -2 to +2 pixels. The center of the vor-  Tables II, I, and IV are presented in the same format
tex for the curl displacement is located &t = 117 and  as Table |, but they vary in terms of particle size, number of
y. = 158. For the Lucas-Kanade algorithm, its fractional particles, and noise amplitude, respectively. In all tests, the
version, and the new algorithm, the scan window size wasiew algorithm demonstrated superior performance. Figure 1
10x 10 pixels, and the algorithms ran for 7 iterations. Fi-presents the analysis of the optical flow detected by the new
nally, the number of iterations for the Horn-Schunck methodalgorithm for a circular displacement. Additionally, from the
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and its fractional version_ was set to 30. values in Tables I, II, and Il1, it can be observed that the frac-
To evaluate the mentioned methods, the percentage of reffonal versions generally perform better than their original
ative error is computed in its components, [19] counterparts.

— . The method presented here differs from the Lucas-
B — > iz (uy —u')? 100 (14) Kanade algorithm [10] and the Horn-Schunck method [11]

n max(ug)’ because it is based on a second-order nonlinear differential
equation rather than a first-order differential equation. This
n i i
B, = Z=il% = V)" 100 (15)
v n max(vy)’

h d . | f the displ tsis th TABLE |. Performance of NA, LK, FLK, HK, KHS, in terms of the
wheréu, andv, given values ot the displacements)s the o 4tve error for 50 sets of PIV images, and for different values of

length of vector and maxu) returns the maximum value of ¢ ampiitude A.
u.

The following tests will be performed under the assump- A[pix] NA (%) LK) FLK(%) HS(@) KHS(%)
tion of ceteris paribus. Ceteris paribus is a term used to an- 1,195 21.05 2528 2482 3819 30.21
alyze the behavior of independent parameters while keeping 1/100 12.98 17.05 19.98 35.92 3475
other parameters constant. The parameters to be studied are ' ' ' ' '

the displacement size, the particle diamdirand the num- 1rs 21.01 26.24 28.47 49.96 46.06
ber of particlesn. All tests are conducted using a set of 50  1/50 3143 3873 6540 10021 9751
PIV images. 1/25 76 81 99 147 134
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Lucas-Kanade algorithm because the fractional versions are
TABLE Il. Performance of NA, LK, FLK, HK, KHS, in terms of ~based on fewer terms from the Taylor series.

the relative error for 50 sets of PIV images, and different values of ~ The Lucas-Kanade algorithm is restricted to the first
the diameter range of the size of the particle pix. terms of the Taylor series and is therefore limited to the lin-
ear information they provide. While several generalizations
of the Lucas-Kanade algorithm incorporate artificial intelli-
(36) 2289 3234 3221 5299 4896  gence and machine learning, we do not compare these gen-
(2,5) 21.06 27.97 29.92 50.67 47.68  eralizations in this manuscript. Our focus is on highlighting
(1,4) 21.01 26.24 28.47 49.9 46.06 the additional terms from the Taylor series used by the new
(1.3) 2208 2721 26.99 51.46 44.89 algorithm. A natural next step would be to integrate artificial
intelligence into the new algorithm; however, this is beyond
the scope of the paper due to the various approaches it could
take and its open-ended nature.

Dpix] NA(%) LK(%) FLK(%) HS(%) KHS(%)

(1,2) 16.08 37.98 29.26 55.98 51.78

TABLE lll. Performance of NA, LK, FLK, HK, KHS, in terms of
the relative error for 50 sets of PIV images, and for different num- 4 Conclusion
ber of particles. ’

m NA (%) LK(%) FLK(%) HS(%) KHS(%) In 'E[hi?hmam{[.scrilpf:, itV\éast\sreseE:led a novel ?Igorithm to C(‘)rrk?_
pute the optical flow between two consecutive images. The
8000 24.69 33.96 32.98 53.78 49.95 algorithm is based on a second-order non-linear differential
7000 2105 3111 2687 4874 4407  equation, Eq.6). The mentioned equation expresses the er-
6000 21.01 26.24 28.47 49.9 46.06 ror difference between the consecutive images. The error is
5000 23.61 30.19 33.36 56.64 47.97 minimized with Eq.12), which is the most important equa-
4000 2897 3455 3297 6094 5108 Uoninthe presented paper. ,

The new algorithm is compared with the Lucas-Kanade
algorithm, the Horn-Schunck method, and their fractional
TABLE IV. Performance of NA, LK, FLK, HK, KHS, in terms of  versions using a standard test in particle-image velocimetry.
the relative error for 50 sets of PIV images, and for different noise The results show that the novel algorithm outperforms the

applitude. other algorithms for this particular task. A natural next step
o] NA(%) LK®%) FLK%) HS%) KHS(%) in _th|s rese_arch is t(_) integrate the new algorithm with ma-
chine learning techniques.
0 21.11 25.22 24.67 41.86 30.75
1 2151 28.10 25.25 42.90 33.54 Data availability
2 23.17 29.98 29.08 44.41 3291

Data underlying the results presented in this paper are not

method starts with two consecutive images of a scene, frorHublicly available at this time but may be obtained from the

which the differential equation is derived and solved us:ing"’luthor upon reasonable request.

an iterative process with the least-squares algorithm. Lik .

the Lucas-Kanade method, the algorithm is implemented i:i:undlng

small windows or neighborhoods across the image. Howevetheare is no funding award related to this research.
the proposed method considers more terms from the Taylor

series than the Lucas-Kanade algorithm, which contributes tg)isclosures

its superior performance. Although the new algorithm does

not use fractional calculus, it still outperforms the fractional The author declares no conflicts of interest.
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