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A novel optical flow method based on a
second-order non-linear differential equation
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A novel optical flow algorithm based on a second-order nonlinear differential equation is presented. This equation expresses the difference
between two sequential images, and from its solution, the optical flow information between the images can be extracted. The new algorithm
is compared with standard optical flow algorithms, as well as some of their recent generalizations. The comparisons are conducted using
common tests applied in particle image velocimetry. The results show that the new algorithm outperforms classical algorithms in these
particular tests
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1. Introduction

Optical flow refers to the pattern of apparent movement of
objects, surfaces, and edges in a scene, caused by the rela-
tive motion between an observer and the scene [1]. The main
applications of optical flow include detection, speed determi-
nation [2,3], deformation measurements [4,5], displacement
measurement [6], particle velocimetry [7], and fluid motion
analysis [8,9], among others.

Optical flow can be computed from a sequence of images.
Most optical flow algorithms work with two consecutive im-
ages of the same scene [10,11]. The most commonly used
optical flow algorithms are the Lucas-Kanade algorithm and
the Horn-Schunck method [10-13]. The basic assumptions
of the Lucas-Kanade algorithm are that the flow is essentially
constant within a local neighborhood of the pixel under con-
sideration, and that it solves the optical flow equations for
all pixels in that neighborhood. The algorithm divides the
image into small windows/neighborhoods and computes the
velocity of a particular neighborhood using a least-squares
method [10,14].

The Horn-Schunck method, on the other hand, is an opti-
cal flow algorithm that estimates the velocity globally instead
of using local windows/neighborhoods [11]. Both algorithms
have several generalizations and extensions, including those
incorporating artificial intelligence [13], fractional calculus
[15-17], pyramid implementations [9], fuzzy logic [18], and
more. Notably, applying fractional calculus to optical flow
has improved performance under certain conditions [15].

Here, a novel optical flow algorithm based on a second-
order nonlinear differential equation is presented. The men-
tioned differential equation is solved using a least-squares
method in an iterative process. This manuscript is organized
as follows: In Sec. 2, the mathematical derivation of the
second-order nonlinear differential equation and its solution
using the least-squares method is presented. In Sec. 3, the
novel algorithm is tested against the Kanade algorithm [10],
the Horn-Schunck method [11], and their fractional versions.

The test follows a standard procedure in optical flow. Finally,
in Sec. 4, the conclusions are provided.

2. Mathematical model

The goal of the algorithm presented in this manuscript is to
determine the optical flow between two consecutive images.
Let u and v represent the pixel displacements between the
images in thex andy directions, respectively. Consequently,
if the first imageI1(x, y) is displaced toI1(x + u, y + v), it
should resemble the second imageI2(x, y). The objective of
the algorithm is to findu andv such that the differences be-
tweenI1(x+u, y+v) andI2(x, y) are minimized. In the fol-
lowing derivation, the dependence on independent variables
is omitted to simplify the notation. Thus,I1(x, y) = I1 and
I2(x, y) = I2.

From the derivation of the Lucas-Kanade algorithm, we
can consider the total differential of the first imageI1(x, y)
to be equal to the negative derivative of the first image con-
cerning timet,

∂I1

∂x
u +

∂I1

∂y
v = −∂I1

∂t
, (1)

derivating Eq. (1) respect tox and multiplied byu,

u
∂2I1

∂x∂t
= −u2 ∂2I1

∂x2
− uv

∂2I1

∂x∂y
. (2)

Independently, derivating Eq. (1) it respect toy and multi-
plied byv,

v
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= −v2 ∂2I1

∂y2
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. (3)

Now, on the other hand, we take the first image evaluated
with the displacementsu andv in horizontal and vertical di-
rections respectively and then we expand it in the Taylor se-
ries, taking also the first non-linear terms,
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Then, if we take equation Eq. (2) and Eq. (3) and substitute them in equation Eq. (4) we have,

I1(x + u, y + v) = I1 + u
∂I1

∂x
+ v

∂I1

∂y
− 1

2

(
u

∂2I1

∂x∂t
+ v

∂2I1

∂y∂t

)
. (5)

Observe that Eq. (5) does not have non-linear terms, but it has not lost its information. Therefore, the least squares can be used
to compute the error estimation of the difference ofI1(x + u, y + v)− I2(x, y),
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where
∑

i and
∑

j are the sums over the windows/neighborhoods. If we want to minimize the error, we need to derivative
Eq. (6) concerningu andv and equal to zero. Thus, inu,
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Expanding and reordering the terms, in Eq. (7),
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and expanding and reordering the terms, but now in Eq. (8)
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The above equations can be expressed in a matrix form,
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The solution of Eq. (11) is Eq. (12),
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Equation (12) is the most important equation in the pre-
sented manuscript. It describes how the displacementsu
andv are such that the error estimation of the difference of
I1(x+u, y+v)−I2(x, y) is minimized. The computation of
Eq. (12) can be presented in a loop to improve the algorithm’s
performance.

The second derivative ofI1 with respect tox and timet
is the numerical difference betweenI1-I2, derivated respect
to x.

3. Experimental results and performance

Equation (12) will be tested using a common optical flow sce-
nario derived from particle image velocimetry (PIV). PIV is
a non-intrusive optical measurement technique used to study
fluid flow patterns and velocities [7,19,20]. The test involves
generating particles with Gaussian profiles at random posi-
tions along the rows and columns of an image. The complete
simulation consists of two images: one showing the initial
positions of the particles and another showing the particles
after a known displacement [19].

The numerical analysis considers the following data se-
lection: The image size is 250×250 pixels, with 6,000 parti-
cles in each image. The particle diameters range from 1 to 4
pixels. The selected displacement is a curl displacement,

u = A(v − xc) + noise, v = −A(u− yc) + noise, (13)

whereA represents the amplitude of the displacement, typ-
ically set toA = 1/25. The noise in the displacement is
random, ranging from -2 to +2 pixels. The center of the vor-
tex for the curl displacement is located atxc = 117 and
yc = 158. For the Lucas-Kanade algorithm, its fractional
version, and the new algorithm, the scan window size was
10×10 pixels, and the algorithms ran for 7 iterations. Fi-
nally, the number of iterations for the Horn-Schunck method
and its fractional version was set to 30.

To evaluate the mentioned methods, the percentage of rel-
ative error is computed in its components, [19]

Eu =

√∑n
i=1(ui

g − ui)2

n

100
max(ug)

, (14)

Ev =

√∑n
i=1(vi

g − vi)2

n

100
max(vg)

, (15)

whereug andvg given values of the displacements,n is the
length of vectoru and max(u) returns the maximum value of
u.

The following tests will be performed under the assump-
tion of ceteris paribus. Ceteris paribus is a term used to an-
alyze the behavior of independent parameters while keeping
other parameters constant. The parameters to be studied are
the displacement size, the particle diameterD, and the num-
ber of particlesm. All tests are conducted using a set of 50
PIV images.

FIGURE 1. Optical flow detected by new algorithm for a circular
displacement with amplitudeA = (1/75) pix.

Table I shows the results for varying the amplitude while
keeping the other parameters constant. The performance of
each algorithm is presented in a column of Table I in the
following order: the new algorithm (NA), the Lucas-Kanade
algorithm (LK) [10], the fractional Lucas-Kanade algorithm
(FLK) [17], the Horn-Schunck method (HK) [11], and the
Kumar-Horn-Schunck method (KHS) [15]. The experiment
in Table I demonstrates the response of the algorithms as the
amplitudeA of the curl displacement increases. From the ta-
ble, it is clear that the new algorithm outperforms the others
for this particular task.

Tables II, III, and IV are presented in the same format
as Table I, but they vary in terms of particle size, number of
particles, and noise amplitude, respectively. In all tests, the
new algorithm demonstrated superior performance. Figure 1
presents the analysis of the optical flow detected by the new
algorithm for a circular displacement. Additionally, from the
values in Tables I, II, and III, it can be observed that the frac-
tional versions generally perform better than their original
counterparts.

The method presented here differs from the Lucas-
Kanade algorithm [10] and the Horn-Schunck method [11]
because it is based on a second-order nonlinear differential
equation rather than a first-order differential equation. This

TABLE I. Performance of NA, LK, FLK, HK, KHS, in terms of the
relative error for 50 sets of PIV images, and for different values of
the amplitude A.

A[pix] NA (%) LK(%) FLK(%) HS(%) KHS(%)

1/125 21.05 25.28 24.82 38.19 30.21

1/100 12.98 17.05 19.98 35.92 34.75

1/75 21.01 26.24 28.47 49.96 46.06

1/50 31.43 38.73 65.40 100.21 97.51

1/25 76 81 99 147 134

Rev. Mex. Fis.71021301
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TABLE II. Performance of NA, LK, FLK, HK, KHS, in terms of
the relative error for 50 sets of PIV images, and different values of
the diameter range of the size of the particle pix.

D [pix] NA (%) LK(%) FLK(%) HS(%) KHS(%)

(3,6) 22.89 32.34 32.21 52.99 48.96

(2,5) 21.06 27.97 29.92 50.67 47.68

(1,4) 21.01 26.24 28.47 49.9 46.06

(1,3) 22.08 27.21 26.99 51.46 44.89

(1,2) 16.08 37.98 29.26 55.98 51.78

TABLE III. Performance of NA, LK, FLK, HK, KHS, in terms of
the relative error for 50 sets of PIV images, and for different num-
ber of particles.

m NA (%) LK(%) FLK(%) HS(%) KHS(%)

8000 24.69 33.96 32.98 53.78 49.95

7000 21.05 31.11 26.87 48.74 44.07

6000 21.01 26.24 28.47 49.9 46.06

5000 23.61 30.19 33.36 56.64 47.97

4000 28.97 34.55 32.97 60.94 5.1.08

TABLE IV. Performance of NA, LK, FLK, HK, KHS, in terms of
the relative error for 50 sets of PIV images, and for different noise
applitude.

± [pix] NA (%) LK(%) FLK(%) HS(%) KHS(%)

0 21.11 25.22 24.67 41.86 30.75

1 21.51 28.10 25.25 42.90 33.54

2 23.17 29.98 29.08 44.41 32.91

method starts with two consecutive images of a scene, from
which the differential equation is derived and solved using
an iterative process with the least-squares algorithm. Like
the Lucas-Kanade method, the algorithm is implemented in
small windows or neighborhoods across the image. However,
the proposed method considers more terms from the Taylor
series than the Lucas-Kanade algorithm, which contributes to
its superior performance. Although the new algorithm does
not use fractional calculus, it still outperforms the fractional

Lucas-Kanade algorithm because the fractional versions are
based on fewer terms from the Taylor series.

The Lucas-Kanade algorithm is restricted to the first
terms of the Taylor series and is therefore limited to the lin-
ear information they provide. While several generalizations
of the Lucas-Kanade algorithm incorporate artificial intelli-
gence and machine learning, we do not compare these gen-
eralizations in this manuscript. Our focus is on highlighting
the additional terms from the Taylor series used by the new
algorithm. A natural next step would be to integrate artificial
intelligence into the new algorithm; however, this is beyond
the scope of the paper due to the various approaches it could
take and its open-ended nature.

4. Conclusion

In this manuscript, it was presented a novel algorithm to com-
pute the optical flow between two consecutive images. The
algorithm is based on a second-order non-linear differential
equation, Eq. (6). The mentioned equation expresses the er-
ror difference between the consecutive images. The error is
minimized with Eq. (12), which is the most important equa-
tion in the presented paper.

The new algorithm is compared with the Lucas-Kanade
algorithm, the Horn-Schunck method, and their fractional
versions using a standard test in particle-image velocimetry.
The results show that the novel algorithm outperforms the
other algorithms for this particular task. A natural next step
in this research is to integrate the new algorithm with ma-
chine learning techniques.
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