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Exact solutions for small systems: urns models
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In this study, we analyzed urn models by solving the discrete-time master equation using an expansion in moments. This approach is a
viable alternative to conventional methods, such as system-size expansion, allowing for the determination of analytical expressions for the
mean and variance in an exact form and thus valid for any system size. In particular, this approach was used to study Bernoulli-Laplace and
Ehrenfest urns, for which analytic expressions describing its evolution were found. This approach and the results will contribute to a more
comprehensive understanding of stochastic systems and statistical physics for small-sized systems, where the thermodynamic limit cannot
be assumed.
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1. Introduction

Stochastic processes play a fundamental role in various fields,
including biology, physics, chemistry, finance, and eco-
nomics [1-4]. In particular, the master equation is a key tool
in representing and describing Markov processes like those
considered in this work [2,3]. It is applied to both discrete-
and continuous-time stochastic processes. However, for most
systems, solving their master equation is a major challenge.
In the case of continuous-time stochastic processes, the Gille-
spie algorithm and its variants are commonly used to simu-
late realizations of the process evolution [5]. These simula-
tions allow for the analysis of properties, such as the mean,
variance, and estimation of the probability distribution. Urn
models are common problems in discrete-time stochastic pro-
cesses [2] and are very helpful in illustrating different meth-
ods and techniques for analyzing stochastic processes. The
most commonly used technique to solve this type of prob-
lem is called linear noise approximation or system-size ex-
pansion [6-8], which describes the fraction of balls in each
urn instead of the number of balls. When the total number
of balls increases, the fraction of balls in each urn can be
approximated as a continuous variable, along with the time
variable, leaving a partial differential equation to be solved.
The solution obtained via system-size expansion is the solu-
tion in the large-size system limit. However, this approxi-
mation is not always applicable in many systems of interest,
particularly in cell biology [3,9-11]. Among other techniques
that do not rely on approximations are those based on finding
generating functions and matrix representations [1,2]; how-
ever, it is not always feasible to identify such solutions, par-
ticularly for non-polynomial transition rates, such as sigmoid
responses [12].

Finally, the moment-expansion formalism [13,14], which
employs the master equation to find a set of differential equa-
tions for the moments, such as the mean and variance, with-

out explicitly solving the master equation, has mainly been
applied to continuous-time stochastic processes. The use of
moment-expansion formalism in discrete-time systems has
been little exploited but is a promising technique [15,16].

In this study, we used the moment expansion technique
to analyze the dynamics of Bernoulli-Laplace [17,18] and
Ehrenfest urns [19]. Bernoulli-Laplace urn has historical sig-
nificance in probability theory [18] as well as the challenges
and difficulties it poses in finding an analytical solution that
considers discrete time [7]. This was one of the first problems
related to its type. Ehrenfest urn has been applied in physics
and natural sciences to understand phenomena such as parti-
cle diffusion in gases, population dispersion, and the evolu-
tion of biological systems [15]. For example, the Ehrenfest
problem is analogous to species dispersal in an ecosystem, or
particle diffusion in a porous medium [3].

We found that the moment-expansion leads to an exact
solution, even for small systems. This shows that this method
can be useful in finding exact solutions in mesoscopic sys-
tems and describing event-driven stochastic dynamics. These
results serve as a basis for the study of more complex sys-
tems, such as the mesoscopic and stochastic cell regulatory
networks.

The remainder of this paper is organized as follows. In
Sec. 2, Bernoulli-Laplace urns are studied, and analytic ex-
pressions for the mean and variance are obtained from the
master equation. In Sec. 3, Ehrenfest urns are studied, and
analytic expressions for the mean and variance are obtained
from the master equation. Section 4 presents the conclusions
and results.

2. Bernoulli-Laplace urns model

The Bernoulli-Laplace urns problem was originally proposed
by Bernoulli [17]. It is a stochastic process with discrete-time
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FIGURE 1. Bernoulli-Laplace urns model. In this model we have
two urns, each initially containingn black andn white balls. A ball
is taken from one urn and transferred to the other; simultaneously,
the same movement is performed with the other urn.

and discrete states space [2]. They have applications in vari-
ous fields such as physics and biology, for example, diffusion
processes and gene frequencies in a finite population [3,8,20].

Until now, one of the most widely recognized analytical
solutions involves a system size expansion, which results in a
Fokker-Planck equation [7]. Other methods exist for solving
similar problems; for instance, by relating differential equa-
tions to an urn model [8] and solving these equations directly.
In this study, we employ moment expansion techniques to ac-
curately determine the mean and variance.

The problem consists of two urns, each initially contain-
ing n black andn white balls. A ball is taken from one urn
and transferred to the other; simultaneously, the same move-
ment is performed with the other urn, as shown in Fig. 1. We
aim to determine the number of white balls in the left urn
after r exchanges. The master equation describes the prob-
ability px(r) that there arex white balls in the left urn after
r-th exchanges, and is given as follows [2]

px(r + 1) =
(

x + 1
n

)2

px+1(r) + 2
x

n

(
1− x

n

)
px(r)

+
(

1− x− 1
n

)2

px−1(r). (1)

The first term on the right side of the equation represents
the probability of exchanging a white ball with a black ball.
Considering that(x + 1)/n is the probability of choosing a
white ball from the left urn when it containsx+1 white balls,
in the right urn, there will be the same number of balls but
black. Therefore,([x + 1]/n)2 is the probability of choosing
a white ball from the left urn and a black ball from the right

urn. Finally, this probability is multiplied by the probability
px+1(r) of havingx + 1 white balls in the right urn. Sim-
ilarly, the remaining terms are constructed by noticing that
([1 − x]/n) is the probability of obtaining a white ball from
the right urn.

Since solving Eq. (1) directly is challenging, we address
it in terms of its mean and variance. We define the mean
proportion and variance proportion of white balls at ther-th
exchange as follows:

x̂(r) =
〈x〉 (r)

n
,

σ2
x(r) =

1
n2
〈(x− 〈x〉 (r))2〉 (r),

where〈x〉 (r) is the mean of white balls in urn A at ther-
th exchange, and̂x(r) is the proportion of white balls in the
right urn afterr exchanges.

First, we calculatêx(r), for this we multiplying the mas-
ter Eq. (1) by x/n and taking the average, we obtain:

x̂(r + 1) =x̂(r) +
1
n
− 2

n
x̂(r), (2)

considering an initial proportion̂x(0) = 1, we obtain the ex-
act expression

x̂(r) =
1
2

(
1 +

[
1− 2

n

]r)
. (3)

This equation gives the mean proportion of white balls in urn
A at ther-th exchange. Forn = 1, the system oscillates be-
tween 1 and 0. Forn = 2, x̂(r) = (1/2) (r > 1), which
implies that, on average, at least one white ball is in the urn.
For n > 3, x̂ → 1/2 asr → ∞, coinciding with the steady
state of the system. Figure 2 shows a plot of the average and
its tendency towards1/2. As the size of the system increases,
more exchanges are required to reach equilibrium.

Equations (2) and (3) were derived using alternative,
more complex methodologies by Laplace [18]. Furthermore,
relating r = nt wheret is the continues time variable, in
the limit n À 1 we recover the continuous time approxima-
tion [7]

x̂(t) =
1
2

(
1 + e−2t

)
.

The variance is calculated by multiplying the master
Eq. (1) by ((x− 〈x〉 (r + 1))/n)2 and summing overx,

σ2
x(r+1)=

1
n2
− 2

n
x̂(r + 1)+(x̂(r + 1))2+2x̂(r)

(
1
n

+
2x̂(r + 1)

n
−2x̂(r + 1)− 1

n2

)
+
〈x2〉 (r)

n2

(
1+

2
n2
− 4

n

)
, (4)

As expected, the moment expansion [14] over〈x2〉 (r) yields an exact result with only two moments
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FIGURE 2. The mean and variance of Bernoulli-Laplace Urns. In the above graph, we observe how the proportion of white balls in the
first urn behaves as the iterations progress, all tending towards1/2. Meanwhile, in the graph below, to compare behaviors, we multiply the
variance byn. As n increases, the values in the graph below tend towards1/8.

〈x2〉 (r)
n2

=
1
n2
〈〈x〉2 (r) + 2(x− 〈x〉 (r)) 〈x〉 (r) + (x− 〈x〉 (r))2〉 (r) = x̂2(r) + σ2

x(r). (5)

From this result, and using Eqs. (2), Eq. (4) simplifies to

σ2
x(r + 1) =σ2

x(r) +
2
n

(
x̂(r)
n

− x̂2(r)
n

− σ2
x(r)

(
2− 1

n

))
. (6)

Takingσ2
x(0) = 0 because the exact proportion of balls is known initially, and using Equation (3), we obtain

σ2
x(r) =

1
8n− 4

(
1 + (2n− 2)

(
(n− 4)n + 2

n2

)r

+ (1− 2n)
(

n− 2
n

)2r
)

, (7)

the variance is zero forn = 1, whereas forn > 1 it con-
verges to1/[8n− 4], whenn is largerσ2

x → [1/8n] [2,7].
This is the result of the continuous approximation for suffi-
ciently largen. This analysis can be observed in Fig. 2, where
we multiplied the variance byn to compare the variances for
differentn. We can observe that as the value ofn increases,
the stationary value of the variance approaches the predicted
value in the continuous case, which is plotted with a dashed
line. Another aspect to consider from Eq. (7) is that, asn
increases, a greater number of iterations are required to reach
its steady state.

Notably, Eq. (7) has not been previously derived in this
exact form. This is of particular significance because the
availability of analytical expressions for the mean and vari-
ance enables predicting the system’s behavior for any given
number of exchangesr and ballsn. Furthermore, known ap-
proximations are based on continuous approximations of the
system, as discussed in Ref. [7].

It is also worth noting that if we identifyr = nt as in
Ref. [7] in the the limitn À 1, we obtain the solution for the
continuous approximation:

σ2
x(t) =

1
8n

(
1− e−4t

)
.

3. Ehrenfest urns model
Next, we studied the Ehrenfest urns model [19]. Studying the
Ehrenfest urn is essential in probability theory and physics,
as it provides a simple yet powerful model for understand-
ing the randomness and evolution of dynamic systems, with
applications in physics and natural sciences, such as particle
diffusion and population dispersion. This model teaches the
key concepts of equilibrium and reversibility, develops im-
portant mathematical skills, and serves as the foundation for
more complex models [21].

Initially, the Ehrenfest urn model consists ofn balls in
one urn, while the other urn is empty. Subsequently, at each
exchange, a ball is randomly drawn independently of the urn
with probability1/n from one of the urns and transferred to
the other [19], as illustrated in Fig. 3.

The question posed by this model is how many balls will
be in urn A afterr exchanges. The master equation describ-
ing this process is as follows:

px(r + 1) =
n− x + 1

n
px−1(r) +

x + 1
n

px+1(r), (8)

the first term on the right-hand side describes the probability
of drawing a ball from urn A and transferring it to urn B,
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FIGURE 3. Ehrenfest urns model.Initially, this model consists of
n balls in one urn, while the other urn is empty. At each exchange,
a ball is randomly drawn from any of the urns and transferred to the
other.

whereas the second term describes the probability of trans-
ferring a ball from urn B to urn A.

We follow a procedure similar to that used for Bernoulli-
Laplace urns. To do this, we calculate the mean and variance
using the master Eq. (8). First, the mean value is calculated,
to do this, we multiply the master equation byx/n, then we
sum overx and consider the initial proportion̂x(0) = 1, thus
we obtain an exact expression

x̂(r) =
1
2

(
1 +

[
1− 2

n

]r)
, (9)

wherex̂(r) (= (1/n) 〈x〉 (r)) is the proportion of white balls
in urn A afterr exchanges. Forn = 1, the system oscillates
between 1 and 0; forn = 2, x̂(r) = (1/2) (r > 1), implying
that on average, at least one ball is in one of the urns. For
n > 3, x̂ → (1/2) asr → ∞, coinciding with the steady
state of the system. In Fig. 4, we can observe how the aver-
age is plotted and how it tends to1/2 as the system becomes
larger, thus requiring more exchanges.

Next, we determine the variance. To do this, we used the
master Eq. (8). Following a process similar to that described
in the previous section, where we takeσ2

x(0) = 0 because the
exact proportion of balls is initially known, we obtain

σ2
x(r)=

1
4n

(
1+(n− 1)

[
1− 4

n

]r

−n

[
1− 2

n

]2r
)

, (10)

whereσ2
x(r) = (1/n2) 〈(x− 〈x〉 (r))2〉 (r). For n = 1, the

variance is zero. Forn = 2, the variance oscillates between
zero and1/4, whereas forn > 3, it converges to14n. Fig-
ure 4 illustrates the variance behavior. To compare the vari-
ances for differentn, we multiply the variance byn. We can
observe that, as the value ofn increases, the system requires
more iterations to reach its steady state.

If we introduce a change of variabler = nt to make the
exchanges to continuous time and take the limitn À 1, we
obtain the solution for the continuous approximation:

x̂(t) =
1
2

(
1 + e−2t

)
,

σ2
x(t) =

1
4n

(
1− e−4t

)
.

FIGURE 4. The mean and variance of Ehrenfest Urns.In the
above graph, we observe how the proportion of white balls in the
first urn behaves as the iterations progress, all tending towards1/2.
Meanwhile, in the below graph, to compare behaviors, we multiply
the variance byn. As n increases, the values in the below graph
tend towards1/4.

Expressions (9) and (10) can also be found using the ex-
act solution of (8) [22]. However, the procedure followed
here shows that, in this case, the moment expansion gives an
exact result without the need to solve the master equations
directly.

We observe that the Ehrenfest urn model has the same
mean as the Bernoulli urn model, which essentially means
that in both models, the number of white balls in the urns be-
comes uniform. However, the way the balls are exchanged
and the fact that in the Bernoulli-Laplace urn model, there
are actually black balls make the difference evident.

4. Conclusions

The application of moment expansion results in difference
equations describing the exact evolution of the mean and vari-
ance. This approach is valuable for stochastic systems with
discrete time, because it enables a detailed analysis of the
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system’s behavior in terms of its moments without resorting
to any continuous-time approximation. This underscores the
significance of our findings in providing a practical and in-
sightful approach for analyzing and predicting the behavior
of complex systems in the mesoscopic regime. Specific for
both Bernoulli-Laplace and Ehrenfest urns, we found ana-
lytic exact expressions for the mean and variance for any sys-
tem size, that coincide with those of continuous approxima-
tion when the number of balls is larger and a continuous time
approximation [2]. In future work, extensions of this study
could be explored, such as the inclusion of nonlinear inter-
actions or consideration of higher-order moments. Nonlinear
interactions are common in many systems and their incor-
poration can provide a more accurate representation of real-
world phenomena. Additionally, investigating higher-order
moments can offer deeper insights into a system’s behavior,
capturing more nuanced aspects of variability and dynamics.
Such extensions will contribute to a more comprehensive un-
derstanding of stochastic systems and statistical physics for

small-sized systems, where the thermodynamic limit cannot
be assumed.
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