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1. Introduction

Since Isaac Newton formulation of the two-body problem,
compatible with the three Kepler’s laws for the motion of
planets, it has been an interest in classical mechanics for
performing a similar task in the case of three bodies. For
over 250 years, there have been published hundreds of papers
concerning this problem. In this paper, we highlight Euler’s
contribution to discover the collinear solution [1], for three
different relative positions, according to the permutation or-
der on the line. This work was extended by Lagrange [2],
who added the other equilateral triangular configuration to
the three-body problem.

The aim of our paper is to present a simple new set of
mathematical properties hidden in the literature, so that even
non-experts can become familiar with these Eulerian solu-
tions.

The Euler’s collinear solution was the first example of
a central configuration. The Lagrange’s equilateral triangle
was the second known example of a central configuration.

A central configurationis a special configuration of the
N -body problem, in which the position and acceleration vec-
tors of each body with respect to the center of mass are pro-
portional to the same parameter of proportionality, see [3].
One of the most important properties of the central configura-
tions is related to the fact that they generate explicit solutions
of the N -body problem, called the homographic solutions,
where the configuration of the bodies is similar to the same
central configuration for all time. It is well known that the
central configurations are invariant under rotations, transla-
tions, reflections and dilatations.

On the other hand, a central configuration is said to be a
Dziobek’s central configuration, if it is a configuration ofN
bodies in a(N − 2)-dimensional space. In Ref. [4], Dziobek
formulated the central configuration problem forN = 4 in

terms of mutual distancesrij , obtaining algebraic equations
that characterize such central configurations. For more de-
tails on this subject, the reader is addressed to [5] and refer-
ences therein.

2. The Euler’s three-body collinear solution

The collinear case of motion of three bodies interacting with
Newton force, discovered by Euler, has the strong hypothe-
sis that the three bodies remain collinear. In the frame of the
center of mass, therefore, the three bodies have positionsri

along a time-dependent unit vectoru

ri = Ziu. (1)

The velocity become

ṙi = Żiu + Ziu̇, (2)

where a dot on a variable denotes the time derivative.
The total angular momentum vector is therefore

J =
3∑

i=1

miri × ṙi =

(
3∑

i=1

miZ
2
i

)
u× u̇. (3)

This vector is a constant of motion. Conservation of the
total angular momentum is a consequence of the fact that the
Newtonian force is derivable from a potential energy, which
is a function of the distances between bodies. Avoiding the
case in which bothu andu̇ are parallel, this angular momen-
tum vector is a constant vector orthogonal to bothu and u̇
vectors, that remain in the fixed plane orthogonal to vector
J. Euler’s collinear solution proves that the relative positions
with respect to the center of massZi are proportional to a
common variableR

Zi = Rzi, (4)



2 E. PIÑA AND M. ALVAREZ-RAM ÍREZ

where the lowercasezi are three constants depending only on
the values of the masses. They are the initial values of those
relative positions to the center of mass ifR = 1 is the initial
value of coordinateR.

We choose the coordinate system with the third coordi-
nate axis along the constant vectorJ, therefore

J = (0, 0, J). (5)

The plane of motion of vectoru (and u̇) is the coordinate
plane orthogonal toJ, and then we give a coordinateψ to
vectoru

u = (cos ψ, sin ψ, 0), (6)

and then
u̇ = ψ̇(− sin ψ, cos ψ, 0). (7)

The constant magnitude of the angular momentum is

J =

(∑

i

miz
2
i

)
R2ψ̇. (8)

We have written the Cartesian coordinates of this three-
body problem in terms of two coordinatesR andψ. We con-
struct the Lagrangian function, equal to the kinetic energy
minus the potential energy, namely

L(R, Ṙ, ψ, ψ̇) =
1
2

(∑

i

miz
2
i

)(
Ṙ2 + R2ψ̇2

)

−

∑

i<j

Gmimj

|zi − zj |


 1

R
, (9)

whereG is the gravitational constant. With no loss of gen-
erality, we assume in what follows that its value is equal to
one.

It follows the constant conjugate momentJ = ∂L/∂ψ̇,
to coordinateψ that does not appear explicitly in this La-
grangian. Also, we have the constant total energy, because
the Lagrangian is not an explicit function of the time.

This Lagrangian function is formally analogous to the La-
grangian function of the two-body problem that solves in po-
lar coordinates the Kepler problem. The solutions are there-
fore the well known conic solutions. The three bodies move

collinearly describing each one a conic. The three are ho-
mothetic and have the pole at the center of mass as center of
homothecy.

3. The Euler three body collinear solution as a
Dziobek central configuration

In this section we will write the equations for the collinear
Euler’s central configuration, relating the initial relative dis-
tances to the center of masszi, to the distancesrij = |zi−zj |.
The variational presentation of the central configurations is
to use the property that a central configuration corresponds
to an extreme of the potential energy subject to the condition
of constant moment of inertia. The potential energy is

V =
∑

i<j

mimj

rij
. (10)

The total moment of inertia is

I =
∑

i<j

mimjr
2
ij . (11)

This prescription, assuming the independence of the three
distances, gives the planar equilateral solution founded by
Lagrange, deriving respect tor2

ij

mimj

r3
ij

= νmimj → rij = 1/ 3
√

ν, (12)

whereν is a Lagrange multiplier.
A collinear solution is obtained if we add to the previous

variational formulation the prescription of zero area. Accord-
ing to the Henon’s formula for the square of the area of the
triangle, it is zero when

(
r2
23 r2

13 r2
12

)


−1 1 1
1 −1 1
1 1 −1







r2
23

r2
13

r2
12


 =0. (13)

Adding this constraint to the variational problem with another
Lagrange multiplier, one has instead of (12)

mimj

r3
ij

= νmimj + Λ
∂

∂r2
ij

(
r2
23 r2

13 r2
12

)


−1 1 1
1 −1 1
1 1 −1







r2
23

r2
13

r2
12


 , (14)

which we write in matrix notation as




1/r3
23

1/r3
13

1/r3
12


 = ν




1
1
1


 + λ




m1 0 0
0 m2 0
0 0 m3






−1 1 1
1 −1 1
1 1 −1







r2
23

r2
13

r2
12


 , (15)

where the newλ is 2Λ/(m1m2m3).
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Theν number is cancelled taking the× product of both sides of Eq. (15) with the vector factoringν, that is,



1
1
1


×




1/r3
23

1/r3
13

1/r3
12


 = λ




1
1
1


×




m1 0 0
0 m2 0
0 0 m3






−1 1 1
1 −1 1
1 1 −1







r2
23

r2
13

r2
12


 . (16)

Therefore both members are orthogonal to vector (15),



1/r3
23

1/r3
13

1/r3
12


 ·







1
1
1


×




m1 0 0
0 m2 0
0 0 m3






−1 1 1
1 −1 1
1 1 −1







r2
23

r2
13

r2
12





 = 0. (17)

This equation was published in Ref. [6] as



1/r3
23

1/r3
13

1/r3
12




T 


m3 −m2 m2 + m3 −m2 −m3

−m1 −m3 m1 −m3 m1 + m3

m1 + m2 −m1 −m2 m2 −m1







r2
23

r2
13

r2
12


 = 0. (18)

By interchangin the dot product and the× product in Eq. (17), we arrive at






1/r3
23

1/r3
13

1/r3
12


×




1
1
1





 ·




m1 0 0
0 m2 0
0 0 m3






−1 1 1
1 −1 1
1 1 −1







r2
23

r2
13

r2
12


 = 0. (19)

The three distances between bodies and the three masses obeys the simultaneous symmetric equations (13) and (17) that
are invariant with respect to an interchange of two of the indices of the bodies. However, it is convenient, in order to reduce
the number of variables, to assume the body 2 inside the segment connecting the bodies 1 and 3. Then the equation (13) is
replaced by

r12 + r23 = r13, (20)

that give the equivalence 

−1 1 1
1 −1 1
1 1 −1







r2
23

r2
13

r2
12


 =




2r12r13

−2r12r23

2r23r13


 . (21)

A Dziobek’s central configuration is a central configuration whenN bodies are in a space ofN − 2 dimensions.
The case forN = 4 (four bodies in a fixed plane) has been considered in many publications, starting with Dziobek [4]. If

we replace (21) in (15), it comes to an equation similar to a Dziobek’s equation if we replace directed distances for directed
areas. Something similar happens again forN = 5 if we replace now by directed volumes.

Substitution of the Eq. (21) in (19) and multiplication byr2
12r

2
23r

2
13, it is transformed into

(r3
12 − r3

13)r
2
23m1 − (r3

23 − r3
12)r

2
13m2 + (r3

13 − r3
23)r

2
12m3 = 0, (22)

that is generally written in terms of the ratio
x =

r23

r12
, (23)

to have a five-order inx algebraic equation

[1− (x + 1)3]x2m1 + (1− x3)(x + 1)2m2 + [(x + 1)3 − x3]m3 = 0. (24)

This equation is attributed to Euler and appears in many books where the three-body problem is considered, see for example
[3,8]. In what follows it will be called the Euler’s quintic.

4. The Euler’s quintic equation

Equation (24) is written in terms of three polynomials

P1(x) = (1− (x + 1)3)x2, (25)

P2(x) = (1− x3)(x + 1)2, (26)

P3(x) = (x + 1)3 − x3, (27)

Rev. Mex. Fis.71020701
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in the form
m1P1(x) + m2P2(x) + m3P3(x) = 0. (28)

For a given choice of masses this Euler’s quintic has a unique real root, that is always positive, [8].
The Eq. (24) will be expressed in different interesting forms related to the positions relative to the center of mass.
If z1, z2, z3 are the positions of the bodies relative to the center of mass, they obey the equation

m1z1 + m2z2 + m3z3 = 0. (29)

From this equation we obtain

1
r12




z1

z2

z3


 =

1
m



−m2 −m3(x + 1)

m1 −m3x
m1(x + 1) + m2x


 , (30)

wherem = m1 + m2 + m3.
The Euler’s quintic (24) is rewritten in three different

forms, by using a fourth symmetrical polynomial

P4(x) = x4 + 2x3 + x2 + 2x + 1, (31)

namely

(m1 + m2 + m3)P1(x)

+ (m2 + m3(x + 1))P4(x) = 0, (32)

(m1 + m2 + m3)P2(x)

+ (m3x−m1)P4(x) = 0, (33)

(m1 + m2 + m3)P3(x)

− (m1(x + 1) + m2x)P4(x) = 0. (34)

These equations lead to express the relative positions (30)
in terms of the rational functions

T1(x) =
P1(x)
P4(x)

, T2(x) =
P2(x)
P4(x)

,

T3(x) =
P3(x)
P4(x)

, (35)

which are simply related

T1(x) = T2(x)− 1, T2(x) = T3(x)− x. (36)

One has

1
r12




z1

z2

z3


 =

1
m



−m2 −m3(x + 1)

m1 −m3x
m1(x + 1) + m2x




=




T1(x)
T2(x)
T3(x)


 . (37)

The last equation is valid forx = ra, the root of the
Euler’s quintic (24). We remark the non-trivial nature of
Eq. (37). It comes, noting the middle term is equal to the
extreme separated vectors. Albouy and Moeckel [7] in a gen-
eral study of the inverse problem of the collinear motion of

several bodies under the action of a general force, have con-
sidered the particular case we are considering here. They
found this result as that they are looking for the position of
the center of mass on the line, determined by the value of the
root of the quintic, but independent of the actual values of
the masses. In the same reference these authors take into ac-
count a demand of priority of this result from the Marchal’s
book of the three-body problem [8]. Actually the first entry
of Eq. (37) coincides in such book as

z1

r12
=

P1(ra)
P4(ra)

. (38)

We recognize the priority of those authors, nevertheless com-
pare the difference in presentation of the same result. In par-
ticular, our polynomialP4(x) appears in both Refs. [7,8].

To simplify some proofs in the sequel, observe the middle
vector in Eq. (37) is the× product

1
m



−m2 −m3(x + 1)

m1 −m3x
m1(x + 1) + m2x


=

1
m




m1

m2

m3


×




−x
x + 1
−1


 .

The Euler’s quintic Eq. (24) has a property of symme-
try. For an interchange of the two masses at the extreme,m1

andm3, the root changes from the valuex to the value1/x.
This comes from the symmetry on the line of the three bodies
when it is reflected with respect to the center of mass.

By this trivial symmetry, we will consider only cyclic per-
mutations of bodies.

Each of the three permutations of masses, gives, in gen-
eral, a different quintic with a different root:ra, rb, rc. We
will have therefore the three cases

m1P1(ra) + m2P2(ra) + m3P3(ra) = 0, (39)

m1P3(rb) + m2P1(rb) + m3P2(rb) = 0, (40)

m1P2(rc) + m2P3(rc) + m3P1(rc) = 0. (41)

The relative positions with respect to the center of mass,
corresponding to these three cases are




T1(ra)
T2(ra)
T3(ra)


 =

1
m




m1

m2

m3


×




−ra

ra + 1
−1


 , (42)




T3(rb)
T1(rb)
T2(rb)


 =

1
m




m1

m2

m3


×




−1
−rb

rb + 1


 , (43)
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


T2(rc)
T3(rc)
T1(rc)


 =

1
m




m1

m2

m3


×




rc + 1
−1
−rc


 . (44)

5. Permutation of masses and linear algebra

Mass permutation is here represented by a rotation ofπ/3
and its inverse


0 0 1
1 0 0
0 1 0







0 1 0
0 0 1
1 0 0


 =




1 0 0
0 1 0
0 0 1


 . (45)

The three matrices in this product form a cyclic group gener-
ated by the first matrix at the left.

Vector 


1
1
1


 , (46)

is the axis of rotation of the group.
Equations (36) are represented also by the vectorial equa-

tion, valid for anyx



P1(x)
P2(x)
P3(x)


×




1
1
1


 =




−x
x + 1
−1


 P4(x). (47)

Note the entries of the vector on the right are the directed
distances(−r23, r13,−r12) if r12 is the unit of distance.

Another auxiliary vector produces the interesting equa-
tion


P1(x)
P2(x)
P3(x)


 =




(x + 1)2

−x2

x2(x + 1)2


×




−x
x + 1
−1


 . (48)

Taking the× product of the axis of rotation with this
equation leads to the property where appears the scalar prod-
uct of the new vector with the axis of rotation

P4(x) =




(x + 1)2

−x2

x2(x + 1)2


 ·




1
1
1


 , (49)

where we used (47).
From (28) and (48) we see that the vector (48), computed

atx = ra is orthogonal to the three vectors



m1

m2

m3


 ,




(ra + 1)2

−r2
a

r2
a(ra + 1)2




and




−ra

ra + 1
−1


 . (50)

Therefore, they are linearly dependent



m1

m2

m3


 = α




(ra + 1)2

−r2
a

r2
a(ra + 1)2


+β




−ra

ra + 1
−1


 , (51)

whereα will be determined now.

The scalar product of the axis of rotation (46) with the
vector of masses ism = m1 +m2 +m3. Then we have from
(49) and (51)

m = αP4(ra), (52)

therefore

1
m




m1

m2

m3


 =

1
P4(ra)




(ra + 1)2

−r2
a

r2
a(ra + 1)2




−B




−ra

ra + 1
−1


 , (53)

whereB = β/m. This equation with a different notation was
published byÁlvarez and Pĩna in a book published in Spanish
language to commemorate Poincaré and Hilbert [9].

This equation gives the masses as a function of the rootra

of the Euler’s quintic and the parameterB. For anyB value
this expression of the masses give the same value of the root
ra, namely the same geometric configuration for any value of
the masses in the open interval of the values ofB that gives
positive values of the masses. The interval ends when one of
the masses has the zero value. Note any set of masses in (53)
has the same center of mass (for any value ofB).

A numerical example illustrates this result. If we choose
the masses to have the valuesm1 = 5, m2 = 2, m3 = 34, the
root of the Euler’s quintic is exactly the value 2. The same
root is obtained for the masses defined by

1
m




m1

m2

m3


 =

1
41




9
−4
36


 + B



−2
3
−1


 , (54)

for any real value ofB, but for positive values of the masses,
B is limited to be inside the open interval(4/123, 9/82).
For B equal to the extreme values of the interval, one of the
masses is equal to zero.

The masses(5, 2, 34) above correspond to the valueB =
2/41. For B = 3/41 the masses are respectively(3, 5, 33).
ForB = 4/41 the masses are respectively(1, 8, 32). In these
three cases the sum of the masses is 41.

A different expression for the masses in terms of the root
of the Euler’s quintic is

1
m




m1

m2

m3


 = µa




T2(ra)
−T1(ra)

0




+
1− µa

ra + 1




T3(ra)
0

−T1(ra)


 , (55)
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which give positive masses ifµa is in the open interval(0, 1),
and if T2(ra) > 0. Otherwise, the first vector should be re-
placed by




T2(ra)
−T1(ra)

0


 → 1

ra




0
T3(ra)
−T2(ra)


 ,

to have

1
m




m1

m2

m3


=µa

1
ra




0
T3(ra)
−T2(ra)


 +

1−µa

ra+1




T3(ra)
0

−T1(ra)


 .

The last expression for the masses is a linear combination
of two vectors having a zero mass at the extrema of the inter-
val, for µa equal to 0 or 1. Note the three vectors have a zero
scalar product with vectors in (37). Also, we observe that the
scalar product of the vectors in (55) with the axis of rotation
give the value one, recovering our equations in the forms

T2(ra)− T1(ra) =
1

ra + 1
[T3(ra)− T1(ra)]

=
1
ra

[T3(ra)− T2(ra)] = 1.

Similar equations are obtained for the cases when the
masses are cyclically permutated. We compute the permu-
tation of the entries of the vector of masses using a rotation
matrix, then we remember that the rotation of the× product
is equal to the× product of the rotation, and we use that the
axis of rotation (46) is an eigenvector, with eigenvalue equal
one, of the rotation that represent the permutation; we find
for example

1
m




m3

m1

m2


 = µb




T2(rb)
−T1(rb)

0




+
1− µb

rb + 1




T3(rb)
0

−T1(rb),


 , (56)

which gives positive masses ifµb is in the open interval(0, 1),
and if T2(rb) > 0, otherwise a similar vector replacement
should be made for the first vector


T2(rb)
−T1(rb)

0


 → 1

rb




0
T3(rb)
−T2(rb)


 .

For the third root

1
m




m2

m3

m1


 = µc




T2(rc)
−T1(rc)

0




+
1− µc

rc + 1




T3(rc)
0

−T1(rc),


 , (57)

which gives positive masses ifµc is in the open interval(0, 1),
and ifT2(rc) > 0, otherwise a similar replacement should be
made for the first vector




T2(rc)
−T1(rc)

0


 → 1

rc




0
T3(rc)
−T2(rc)


 .

In the included figures (see Fig. 1) we ordered the masses,
so the lower mass is measured in the horizontal from left to
right. The middle mass is measured ascending on the right
side of the triangle. The third-largest mass is measured de-
scending on the left side of the triangle. With this order,
T2(ra) < 0 and T2(rb) > 0, T2(rc) > 0. The segments
on the figure labeled with the rootsra andrb cross the point
representing the three masses, with one extreme on the left
side, corresponding tom1 = 0, and the other extreme on the
horizontal side, corresponding tom2 = 0. The third root
rc determines a segment connecting the left and right sides,
corresponding tom1 = 0 andm3 = 0, respectively.

6. The masses in terms of the roots of the three
quintics

We extract from equations (42-44) those including the three
factionsT2(ra), T2(rb) andT2(rc), to form a linear system
of three equations for the fractions of massesmi/m namely




1 0 −ra

−rb 1 0
0 −rc 1


 1

m




m1

m2

m3


 =




T2(ra)
T2(rb)
T2(rc)


 . (58)

Assuming the determinant of the matrix of the system
1− rarbrc to be different from zero, we solve for the masses
in terms of the three roots
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FIGURE 1. In the space of mass fractions we represent three masses and the masses corresponding to the same configuration for a given root
of the Euler’s quintic. The segment of mass ratios corresponding to a particular configuration has been identified by the name of the root.

1
m




m1

m2

m3


 =

1
1− rarbrc




1 rcra ra

rb 1 rarb

rbrc rc 1




×



T2(ra)
T2(rb)
T2(rc)


 . (59)

In the previous section, assuming one root we determine
the fractions of masses up to an open interval. Here, if we
know the three roots, the mass fractions are uniquely deter-
mined.

In fact only two of the three roots are independent. To
prove it we note the sum of the mass fractions is equal to 1.
It comes to the restriction on the three roots

(1 + rb + rbrc)T2(ra) + (1 + rc + rcra)T2(rb)

+ (1 + ra + rarb)T2(rc) = 1− rarbrc. (60)

Which has been written independent from of the masses. It
is a quintic equation for any root in terms of the other two.
Actually, it is a compact form of writing the three quintics
when we permute the masses.

Cancelling the rootra between the last two equations we
write the fractions of mass in terms of two roots of the Euler’s
quintics

1
m




m1

m2

m3


 =

1
1 + rb + rbrc

[
T2(rc)




−1
−rb

rb + 1




− T2(rb)




rc + 1
−1
−rc


 +




1
rb

rbrc




]
. (61)

7. Conclusions

We have presented a review of the Euler’s case of the
collinear three-body problem from different perspectives. We
present first the coordinates where the problem is more ac-
cessible. We prove the motion is in a fixed plane if it is not
in a fixed line. We find the solutions are conics by using
the Lagrangian formalism. We introduce the initial positions
relative to the center of mass as characteristic constants of
motion, that are determined by the root of a quintic, when
substituted in the three polynomials, multiplying the masses
in the Euler’s quintic. We use a symmetric polynomial, our
P4(x), that appears also in Marchal’s book [8]. We relate this
polynomial to the three polynomials of the Euler’s quintic:
we remark in our Eq. (47) the vector formed by the polyno-
mials of the Euler’s quintic computed for the value of their
real root times the axis of rotation is that polynomial multi-
plying the vector of directed distances. Other auxiliar vector
with entries((x + 1)2,−x2, x2(1 + x)2) times the vector of
directed distances produces the vector of three polynomials
of the Euler’s quintic. The scalar product of the same vector
with the axis of rotation gives the symmetric polynomial.

The inverse problem for the masses as a function of the
configuration is written as a linear combination of the previ-
ous vectors. This reproduces the same equation in our refer-
ence [9]. A new presentation of the same equation is modi-
fied to express the masses as acompound central configura-
tion [10] of two2+1 configurations, each one with a different
zero mass.

Last in this paper we find the three roots of the Euler quin-
tic, obtained by permutation of the masses are not indepen-
dent. Given two, the third is determined by the first two. The
masses are now fixed by two of the roots.
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