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Analysis of errors in corneal topography evaluation caused by distortion
aberration in the camera lens of a cone corneal topographer
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We study the effects on corneal topography when the topographer camera is affected by distortion aberration, causing a nonuniform magni-
fication in the image recorded by the camera sensor. As a result, images present a size change which could mislead the interpretation of th
vertex position of the anterior corneal surface. Images numerically generated and distorted using the Seidel’s aberrations are used to carry ot
the analysis. According to the results presented in this paper, while the reconstruction algorithm accurately recovers the central region of the
surface, there are pronounced deviations between the retrieved surface and the actual surface towards the periphery. These deviations col
lead to the underestimation or overestimation of the parameters associated with the base surface for a contact lens, affecting the correctio
of refractive errors such as myopia, hyperopia or astigmatism. Moreover, if the corneal topography provided by a topographer affected by
distortion aberration is used for corneal reshaping via laser ablation, the refractive errors might be overcorrected or undercorrected. Thus
this paper highlights the importance of performing a proper calibration procedure for the distortion aberration of the corneal topographer

camera, in order to reliably recover an accurate corneal topography.
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1. Introduction the shape of the cornea in order to perform an appropriate
fitting of ophthalmic lenses or to reshape the corneal surface

. ' . through refractive surgery.
The cornea is the first optical element of the human eye to g gery

interact with incident light, providing about two-thirds of the Corneal topographers are the standard ophthalmic instru-
eye’s refractive power. The majority of this bending occuringments utilized for the evaluation of the anterior corneal sur-
at the air-cornea interface [1]. Two of the primary visual dis-face. These instruments are traditionally based on Placido’s
orders affecting humans, astigmatism and keratoconus, occdisc, consisting of a collection of alternating dark and bright
in the anterior surface of this transparent tissue. Astigmarings placed inside a concave surface [7-9]. At the center
tism, characterized by a degraded image on the retina, ref this surface, a camera is positioned in order to observe
sults from the lack of revolution symmetry of the anterior the projection of the rings onto the corneal surface. Cali-
corneal surface. In contrast, keratoconus is caused by a prbration of the corneal topographer is crucial for obtaining an
gressive corneal thinning and protrusion, resulting in an unaccurate representation of the anterior corneal surface topog-
even distribution of refractive power and blurred image at thaaphy. There are two principal stages comprising the cali-
retina [2]. For analyzing these visual defects, the corneal suibration procedure. First, the position and orientation of the
face can be modeled as a sphero-torical or biconical surfaderight rings must be computed on the concave surface in re-
in the first case and a freeform surface in the second castion to the camera sensor or detection plane. The second
The effects of astigmatism and keratoconus on vision can bstep addresses to the distortion aberration introduced by the
reduced through the use of spectacles or contact lenses [3Jamera lens used to record the images, in order to evaluate the
In certain cases, corneal refractive surgery may be a viableorneal surface. The camera of the corneal topographer con-
option [4—6]. However, it is essential to accurately determinesists of a set of lenses with a diaphragm, which can be closed
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to its minimum aperture to reduce the effects of optical aberpographer, allowing us to retrieve the corneal topography and
rations on the image. However, the distortion aberration stilcompare it to the actual corneal topography.
affects the image formed on the detection plane [10]. The The present paper is structured as follows. Secfon
distortion aberration does not degrade the image quality, byiresents a detailed description of the exact ray tracing
it causes radial displacements of image points with respect tmethodology employed in the design of the object pattern
the optical axis of the camera lens. This is due to a nonunier target, which is positioned within a truncated cone. Sec-
form magnification produced by the camera lens. Thereforetjon/3 outlines the calculation of synthetic images on the sen-
a calibration procedure must be implemented to reduce thsor plane when the surface under study deviates from the av-
effects of the distortion aberration on the image recorded byrage corneal surface. Sectiddescribes the reconstruction
the camera sensor [11, 12]. method and illustrates the process to calculate the sagittal and
In this work, we present a numerical simulation analysistangential maps of refractive power. Sect@@presents the
of how distortion aberration in the camera lens of the cornealesults corresponding to the numerical simulations. Finally,
topographer affects the assessment of the corneal topogr&ec!6 summarizes our conclusions based on the obtained re-
phy measurements. In previously published works [13-15]sults.
we proposed an inexpensive and portable corneal topogra-
pher, consisting of a smartphone and a truncated cone. V\f
have designed this particular device based on the Null Screen’

Method (NSM), which coqsuders an exact ray tracing to deqn 3 previously published work [14], we propose a corneal
sign a set of elongated ellipses displayed along the truncategdpographer that basically consists of a commercial smart-
cone denoted as the target or null-screen. Ideally, we assuM@one and a truncated cone, as depicted in/EigA set of

that the anterior corneal surface of the eye works as a CONVEright objects are designed inside the truncated cone and pro-
spherical mirror, reflecting the target projected onto it. The]ected onto the cornea. The reflected rays are collected by
reflected light is then collected by a positive lens and focuseghe smartphone camera lens and recorded on the detection
onto the detegtion plane, resulting in an image consisting Oﬁlane DP). A backward ray tracing is used to design the
an array of bright spots. When the test surface matches thgrget inside a truncated con,, the ray tracing starts in the
average corneal shape, a regular pattern of bright spots is prgatection plane and ends on the truncated cone, allowing us
jected onto the detection plane. Any deviation from this ideakq choose the image that should form on the detection plane

pattern indicates deviations or misalignments of the test SUkyhen the surface has certain previously defined characteris-
face from the actual corneal surface. Utilizing a spots pattergeg.

instead of a ringed one ensures a one-to-one correspondence
between the target and the image points, even for surfaces  The ideal image design
that are not rotationally symmetric avoiding the skew ray er-
ror [16-19]. As a starting point for designing the target, an array of small
Using numerical simulations, the synthetic image with-circles was selected as the ideal image. The distribution of the
out distortion that would be expected to be recorded on theircles on the detection plane corresponds to a quasi-radial
camera sensor, taking into account that the test surface coafray,i.e., a set of small circles is distributed on concentric
responds to a biconical surface, was computed. Third-ordeings, as shown in FigRa), whose area is limited by the ac-
Seidel's aberrations theory [20] was used to model the radidive region of the sensor, and the size of the circumferences
distortion aberration in the synthetic image, while other opti-is restricted to maximum resolution of pixels associated to
cal aberrations were neglected. The distortion aberration casifferent commercial smartphones. The ideal image is pre-
manifest as a barrel distortion (positive) or as a pincushiorsented in a square domair().5 mm, 0.5 mmk[—0.5 mm,
distortion (negative). In the first case, off-axis image points0.5 mm], as shown in Fi@2a),
displace inward with respect to the undistorted image, while
in the second case they displace outward. In practice, these
changes in image size might be wrongly interpreted as dis-
placements of the corneal surface along the instrument op-
tical axis or deviations of paraxial radius of curvature with
respect to the true value. In addition, our results indicated
that when the corneal surface is affected by astigmatism anc
the camera lens exhibits distortion aberration, the classical
hourglass or bow-tie pattern that appears in the axial and tan-
gential maps [21] does not change its orientation, provided
that the cornea is aligned with the instrument axis. This con-
clusion is obtained by applying a range of distortion values,
ranging from negative to positive. Each distorted image isFicure 1. Schematic diagram of the corneal topographer design
ideally considered as if it was obtained from the corneal to-used for the numerical analysis.

Corneal topographer

Truncated cone

Smartphone
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FIGURE 2. a) Ideal image used to design the target. b) Close-up of
the first two rings of the ideal image.

The number of circles per ring increases proportionally
with the radius of each ring. The Cartesian coordinates
131:(3;1, y1) of the circle centers in the image are given by FIGURE 3. Schematic diagram of ray tracing used in the design of

the target or null-screen.

z1 = p;cos (b)), y1 = p;cos(bi;), 1) .
The ray tracing starts at a poiftt=(z1,y1, —a — b) on
where subscripts andj make references to the radial coor- the detection plane, which is denoted Xy'Y.. The quan-
dinate and the azimuthal angle, respectively. In @).the tity a is the separation between t&e Y. plane and the pin-
polar coordinatesp;, 6;;) can be written as hole situated aE:(O, 0,—b) andb is the spacing between
the pinhole position and the vertex of the reflecting surface
pi=po + (i — 1) (PN - po) , 1<i<N+1, (2a) Se Whichisrepresenting the anterior corneal surfacand
N b are defined along thB-axis, as schematized in Fi8. The
o0 ' _ _ unit vectori:(Iz,Iy,Iz) denotes the direction of the inci-
{%Jr(il)ﬂ} J 0<j<mo+({@—1n (2b) dent ray that passes through the pinhole and is propagated up
to strike the reflecting spherical surfacg ) at P2, as shown
the quantities, j, IV, o andn are integer numbersV + 1 in Fig./3. An expression foZ can written as follows
is the number of ringsy, is the number of circles on the first (=21, —y1,0)
ring (i=1). n is the increase in the number of circles between I=—— 3)
two consecutive rings. The number of circles ondti ring Ity ta
is given byno + (i — 1)n. The radii corresponding to the whereS, is proposed to be a spherical surface aligned with
first and last rings arg, and py, respectively. In Tabl#,  the corneal topographer axis with its vertex located at the Ori-
we listed the values of each parameter that appear irZg}. ( 9in of the coordinates denoted i6y, as depicted in Fid3.
and Eq. [2b). Figures2a)shows the ideal image used to de- The analytical expression fdi. is given by
sign.t_he target.or null-screen, with axes scalec_i in millimeters. Su(z,y,2) = p? — 2rez + 22, (4)
Additionally, Fig.[2b) shows a close-up of the first two rings.

91'.7‘ =

wherep = (22 + y?) andr. is the radius of curvature corre-
2.2. Exact equations for the backward ray tracing sponding to the average spherical cornea. The rays after be-
ing reflected bys, hit the truncated cone dt. From Fig.3,
A schematic representation of the corneal topographer, in thihe propagation distanceof the incident ray front to P
YZ plane, is depicted in Fi@. Each ray is traced consider- can be calculated using the following expression
ing the pinhole camera model without taking into account the
lens distortion; therefore, all the rays pass through the camera §= (_B - VB? - AC) /4, ®)

inhole without deviation. -
P the parameterd, B andC' can be obtained in terms @f h

andr,, as follows

TABLE |. Parameters used for designing the ideal image. A=1, (6a)
Parameter Value B=T.(b—r.) (6b)
po (um) 31 9
o (mm) 0.35 C =0b"—2r.b. (6¢)
N 11 Considering the value faf, the pointﬁQ can be obtained
o 8 using the following vector equation of a straight line

" 8 ﬁ2=ﬁ+§j- )
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OnceP; is determined, we calculate the direction of the Cornes
reflected ray, denoted by the unit vec®=(R,, Ry, R.). 04
Using the vector law of the reflectidR is given by

R=—7-2 <I : N) N, @) s R R

A B . R \‘Q\M'W.&u!l'/
the unit vectorV' is the direction of the normal vector &. ““""'
N can be obtained from the gradient of E4). (Using Eq.[7) 2.5 05 40+ \\Q Y) M

and @), a point133 = (x3,ys,23) on the truncated cone can = 504 ‘
be written as 0 \w,/

By =B, + (R, © o N T

where( is defined as the propagation distance of the reflecte
ray from P, to P;. The truncated cone is represented by
means of the following expression

%GURE 4. a) Height map for the spherical surfaSg. b) Structure
of the pattern consisting of a set of elongated ellipses.

™

23 = tan (5 - dh:) P31 Zes (10)  TaBLE I1I. Parameters of the biconical surface under study.
wherez, is the axial position of the cone vertex along #ie Parameter Value
axis,ps = \/z3 + y3 and¢, is called the semi-vertical angle e (mm) 8.35
of the cone (see Fi@). For obtaining the Cartesian coordi-
nates ofP;, we substitute Eq9) into Eq. (10). As a result ry (Mm) 7.63
an equation of the second degre€ iis obtained. Its solution ko -0.43
has the same structure as the one obtained farEq. ), ky -0.25
with the modification thatd, B, andC' are replaced byl’, a () 17

B’ andC’, which are given as follows:

r_ 2 (12 2 2 domain 6.1 mm, 6.1 mmk[—6.1 mm,6.1 mm], as shown
A" = (tan ém) (RI * Ry) ~ Rz (11a) in Fig./4a). Applying the Null-Screen Method using the val-
B' = [(zc—22)R. ues listed in Tabldl, we obtain a set of elongated ellipses
) which are designed inside the truncated cone, as shown in
+ (tan ¢m)” (22Re + 42Ry) |, (11b)  Fig.4b). We must highlight that an advantage of the NSM is
O = (tan ¢ (I% +y2) — (22 — 2)?, (11c) its capacity to identify misalignments or deformations of the

surface under test after a qualitative inspection of the image

where ¢,,,=(7/2 — ¢.). Substituting Eqs.118-(11¢) into  recorded on the sensor camera.
Eqg. ®), the value for¢ can be calculated and the intersection

point Py can be determined from EcQ)( Taking into ac-

count the ideal image designed in SBd [see Fig2a)] and 3. Synthetic images

the equations deduced throughout this section, we can design

the object pattern inside the truncated cone. The separatiomroughout this section, we show how to calculate the syn-

between the pinhole and .Y . plane (detection plane) is  thetic images on the detection plane when the anterior corneal
a = 5.2 mm. The distance between the vertex of the surfacerface under study does not coincide with the spherical sur-
S. and the pinhole i$ = 70 mm. The radius of the cone f5ces.. We assume that the corneal surface under test can be

in the XY plane is denoted byt,, as shown in Fig3. The  modeled as a biconical surface, whose analytical expression
radius of curvature of the reflecting spherical surfékeis g s given by

re = 7.8 mm, its height map is plottedin a square domain

5 co (2 = w0)* + ¢y (yr — yo)* (12)
TABLE Il. Null-screen method parameters for designing the target 1+ \/1 — QuC2(wr — 20)? — chg (Yr — 0)?
in the truncated cone.
Spherical surface Truncated cone the vertex of the biconical surface coincides with the origin
Parameter Value Parameter Value of coordinate®. r,=1/c, andryzl/cy are the radii of cur-
. vature along the: andy axes, respectivelyQ,.=1 + k, and
re (mm) 8 ¢ () 10.79 Q,=1+ k,, wherek, andk, are the conic constants along
a (mm) 5.2 Ry (mm) 16 thez andy axes, respectively. Furthermore, we suppose that
b (mm) 70 ze (mm) 85.5 the biconical surface is rotated by the angle about the

Rev. Mex. Fis71051305
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Z-axis; therefore, the Cartesian coordinatesandy;., that 5 17 04

appear in Eq.12), can be written in the following form 25

T, = xcosa — ysina, (13a) 0 B

yr = xsina + ycosa. (13b) 2.5 0o 0.2

The ideal values corresponding to the parameters in- B 01 b)'“
volved in Egs.[12), (139 and (L3K) are listed in Tablall. g = 99 0 & #

\ 4

that should be recorded on the camera sensor. In practice
the biconical surface must be placed in front of the truncated
cone, as illustrated in Figll and Fig.3. As a result, a set

of bright spots forms on the detection plane, their positions
are denoted byx1,y1, —a — b). According to the scheme Figure 5. a) Height map for the corneal surface under test mod-
shown in Fig/3, the ray starts af’; and passes through eled as a biconical surface. b) Simulated synthetic image formed
the unknown is the poinP, on the biconical surface. The on the detection plane, assuming the test surface is a biconical sur-
normal vector atP,=(z,vy,S(z,y)) must satisfy the vector face. c) Parameters of the elliptical contour that encloses the image
law of reflection (see Eq8J). The unit vectorg, R and.A/, ~ Points. d) Undistorted image of a checkerboard.

involved in Eq. B), can be conveniently written as

A
3.1. Calculating of synthetic images 0.2
b\ | ae
In this section, we show how to calculate the synthetic images \ % Be 0

c) d)

shows the image obtained from EA4§j, that must form on

. B —h the detection plane when the surface under study corresponds
I=F—""7+ (14a) {0 the biconical surface given by E4.2) and Tabldll. Once
(H P —h ”) more, the synthetic image is treated as if it had been experi-
B _ P mentally obtained from the corneal topographer, as seen be-
R = %, (14b)  low. Additionally, Fig.5d) shows the undistorted chequer-
(H P;— P, H) board image, which will be used to qualitatively demonstrate
distortion effects. The dimensions of the checker board im-
N — (=S, =Sy, 11)/27 (14c) ageard.8 x 0.8 mrrf. o _
(5% + 82+ 1) Using the algorithm described in Ref. [24], the dots in

the image [see Figbb)] can be enclosed by an ellipse, the
whereS, andS, are the partial derivatives &f(z, y) withre-  equation of which is as follows

spect tar andy, respectively. Taking into account E8) @nd

after some algebraic manipulations, the Cartesian compo- <x€> _ <cosﬁe —sinﬁe> (ae cos ¢e> 17)

nents ofZ, R and\ satisfy the following expressions [22,23] Ye sin B, cos e besing, )’
where(.=17.0° is the angle of rotation corresponding to the

(Re —Zp)+ (R, —I.)S: =0, (15a) elliptical contoura.=0.3876 mm and.=0.3507 mm are the
semi-major and the semi-minor axes of the ellipse, respec-

(Ry —=Zy) + (R: —1.) S, = 0. (15b) tively, as illustrated in Fig5c)]. ¢. is the polar angle in the

Egs. (58 and (56 form a system of two nonlinear equa- polar coordinates. This ellipse is used in the next section for
tions in two unknowns: andy. This system of equations can quantifying the change in size of the images affected by sev-

be solved in numerical form using the Levenberg-Marquardferal dggfees of disto_rtion aberration. In this case, the area of
algorithm, which is implemented in the MATLAB toolbox. the elliptical contour ist. = 0.4270 mm.

Once this system of equations is solved, the incident point

Py=(z,y,S(z,y)) can be known. Therefore, the direction 3-2: _Synthetic images affected by the distortion aberra-

7 can be calculated by means of E@4§. Calculating the tion

intersection between the prolongation of the ray and the de-

tection plane (see Fi¢B), the Cartesian coordinates of the QS rtnenu?ne(cdj L?] Sed&,ﬂt}h? ray tracmgt.pl)'erfortrr:led .toholbtaln
image pointsP,—(z1, 1, 1) can be obtained as e target and the synthetic images utilizes the pinhole cam-

era model, which does not take into account the distortion
x1=—a(Z)T.); y1 = —a(Z,/I.); 21 = —a—b. (16) aberration associated with the camera lens [25]. However,
in practice, even when other aberrations are corrected, dis-

Figure 5a) shows a height map corresponding to thetortion aberration is always present in the optical system and
biconical surface or corneal surface undertest. Fi§b)e mustbe calibrated. The aim of this section is to obtain images
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affected by distortion aberration and to recover the corneasidered radial distortion; however, a more realistic model for
topography assuming that the distorted images were experihe distortion aberration must also take into account the tan-
mentally obtained. We propose to model the distortion abergential distortion [26, 27].

ration using the Seidel's Aberrations; therefore, the Cartesian For obtaining some images affected by radial distortion
coordinategz4, y4) affected by distortion aberration can be aberration, we assign valuesdavhich range from negative

conveniently written as [10]

g
Tqg=x1 + (]\Z[%) (.13? + y%) T, (183)
g
=+ (57) @rdm s
T

values to positive values. Tested values doare tabulated
in TablellV. The value for the transversal magnificatibfy
was extracted from a previously published work by the au-
thors in Ref. [14], the minus sign df/; implies that the im-
age recorded on the camera sensor was inverted.

Onthe one hand, Figéa)-6¢)show three images affected
by negative distortion also called pincushion distortion. On

where My ando are the transversal magnification and thethe other hand, Fig&d)-6f) show three images affected by

distortion coefficient, correspondingly. When=0, (x4, y4)
corresponds to the Cartesian coordindtes y; ) of the im-
age without distortion, which is shown in Figb). For the
sake of simplicity, in Eqs/18¢ and (L8k) we have only con-

TABLE IV. Tested values for the distortion coefficients and
transversal magnification.

Parameter Value Parameter Value
o (mm=2) —20x107* oz (mm?) 1.41x107°
oo (MM2)  —63x107° g (Mm?) 6.3x107°
o3 (mMm=2)  —141x107% o7 (mMm™2) 20x107*
o4 (Mm~2) 0 My —0.065

1
10.2

0.4
1

1
104
1
102
o
0.2
1

0.4
| B

0.4
0.2
0
-0.2
-0.4

positive distortion also known as barrel distortion. The im-
ages are shown in a square domai®5 mm, 0.5 mmk[-

0.5 mm, 0.5 mm]. The image without distortion correspond-
ing to the distortion coefficient, = 0 is the synthetic image
shown in Fig.5b). The value ofo increases from Fig6a)

to Figs.6f) and the dimensions corresponding to the ellipti-
cal contour that encloses the dots diminishes from 6&.
to|6f). The above effects can be easily appreciated from the
deformed checkerboards. By fitting E4.7{ to the bound-
ary points in Figs6a) - |6f), using the algorithm described

in Ref. [24], the parameters defining each elliptical contour
can be obtained. These parameters are listed in blde
paramete€ 4 shown in TableV) the percentage increase or
decrease in area for each elliptical contour. A negative value
for £4 signifies a decrease in area.

Before the corneal examination can be performed, ei-
ther ophthalmologist or optometrist should align the human
cornea with the instrument for obtaining a focused image on
the camera sensor. From the change in size of the images
shown in Figsi6a)6e), when the camera lens suffers from
distortion aberration in accordance with Tallewe can be
tempted to assume that the surface under test is displaced
with respect to the Origin of coordinaté} along the optical
axis of the corneal topographer. Another possible assump-
tion for the change in image size is that the paraxial radius
of curvature of the surface under test deviates from the av-
erage cornea curvature whose vertex should b@.aBoth
assumptions may lead to inaccurate results in corneal topog-
raphy assessment, which will be addressed in the following
sections.

0.4 IS e e :0.4

0.2 ++.:0_2 um
0 g !0 ceges

1
-0.2 L 0.2 o

0.4
0.2
0

-0.2
1
0.4 e 0.4 -0.4
-04:02 0 0204,y _ 0402 0 0204, -04-0.2 0 0204

FIGURE 6. Images affected by pincushion distortion: &) =
—2.0x 107%,b)o2 = —6.3 x 107° and c)o3 = —1.41 x 1075,
Images affected by barrel distortion: &) = 1.41 x 107°, e)
06 = 6.3 x 1075 and floy = 2.0 x 10~%. In all cases, the axes
units are expressed in mm.

TABLE V. Parameters corresponding to each elliptical contour plot-
ted in Figs/6a}{6f).

Fig.  [ac,bc] (mm) Be(°)  Area(mnt) Ea (%)

6a) [0.4301,0.3821] 17.0001 0.5163 20.89
6b) [0.4010,0.3606] 17.0000 0.4542 6.36
6c) [0.3879,0.3509] 17.0000 0.4276 0.14
6d) [0.3873,0.3505] 17.0000 0.4264 -0.14
6e) [0.3743,0.3408] 17.0000 0.4007 -6.16
6f) [0.3452,0.3193] 17.0003 0.3463 -18.90

Rev. Mex. Fis71051305
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4. Method for recovering the corneal topogra- this drawback, in order to enhance the calculation of the

phy slopes, the surfacej is positioned at several positions
along theZ-axis, denoted by,, until the closest surface to

In this section, we will briefly describe the implementation the test surface is obtained. The positiorgak in the inter-

of a numerical method to recover the corneal topography ofal denoted by(t1,ts,...,t,...,tx), taking the center of

the anterior corneal surface, based on the Zonal and Modahe interval as the position of the surface considered to design

reconstructions proposed by the authors in Ref. [23]. Furthe null-screen. This implies that a setlo$urfacesj(z,y)

thermore, we show how to calculate the axial and tangentiadre positioned along tH&-axis for obtaining a normal vector

powers corresponding to the recovered surface. field for each surface. In addition, we defifg=(—n/n.)
o andS,=(—n,/n.) as the slopes to the surface under study.
4.1. The shape retrieving of the surface under test The value of the sagitta for the test surface is obtained using

. . . ... the following line integral
The reconstruction algorithm takes as input the direction g g

fi=(ngy, ny, n.) of the normal vectors to the surface under
test. 7 can be written in terms of the directions of the re- z =1+ / (Sedz + Sydy) , (20)
flected and incident rays as follows

as we mentioned before, is the position oG along theZ-

R (R - I) axis. We use the trapezoidal rule [28] for calculating the defi-
n=————", (19)  nite integral in Eq.20). As a result, a point cloudlz, y, z} is
(” R-1 H) recovered for each surface positioned;atFurthermore, we

propose that each surface under test can be represented by a

in practice, only the directioff of the incident ray can be  [inear combination¥(z, ) of polynomial functionsy; (-, )
determined by means of Eq3)( However, in accordance zs follows

with Eq. (14L), the reflected ray cannot be obtained because N
the incidence poinf, is unknown. HoweverP; can be ap- U(z,y) =Y Bii(x,y), (21)
proximated by the intersection poift, between the ray and i=1
a surface represented By, y), as depicted in FidgZ.

We propose thaf(z, y) coincides with the spherical sur-
face S, that was considered to design the null-screen i

Sec.2. The intersection poinf?z’ can be calculated using ! : . .
Eq. 5) and Eq.[7). Substituting?, into Eq. (41, the direc- S and.S, using a modal reconstruction as Qescrlbed in Ref.
D e 2 Y 9]. As a result, the values of the coefficieds are ob-

Flon of the reflected ray canAtlJe approx!mately calculg/tgd aNfained. In addition, the normal vector ¥(z, y) can be cal-
is denoted by the unit vect®’ (see in Figi7). Finally, R’ is culated as

substituted into Eq/19) to compute the unit normal vectors

.

where;(x,y) will be taken as the Taylor monomials and
N = 55. The partial derivatives o (z,y), with respect
nto the Cartesian coordinatesandy, are fitted to the slopes

71— _ 2 2
In practice, either the ophthalmologist, or optometrist, U= Wy, Uy, —1) [y /93 + V5 +1, (22)

cannot perfectly align the human cornea with the corneal

topographer axis: therefore, the cornea vertex does not coifthere¥. and ¥, are the partial derivatives with respect to
cide with the Origin of coordinates or designed position.the Cartesian coordinatesandy, respectively. For determin-
ing how close the:-th reconstructed surface is to the actual

YA surface, we compare the normal vectarésee Eq/19) with

e U (see Eq22), i.e., we calculate the standard deviation of the
set of differences denoted by={|| &/ — @ |}, where the
subscriptk refers to thek-th reconstructed surfacelhere-
fore, a collection of values ford;, is obtained, whereas the
surface closest to the actual one corresponds to the minimum
Ay of these values. This surface is denoteddhy, and its
vertex position is aty. ldeally, A, should be zera,e., the

unit vectorsi and/ should coincide. This is because the
reconstructed surface must satisfy the reflection law and the
normal vectors to the surface must be equal, it does not matter

Truncated cone

A — i whether they were calculated using the directions of the rays
5 b (see Eq.19)) or the gradient [see Ed22)]. In order to refine
\ the result, a new interval can be definedias— At, ty +At)
and partitioned intd<’ equal parts, wherAt = t, —t;. The
FIGURE 7. Representation of surfadg(z,y), positioned atty, algorithm ends when the stopping criterion is satisfiead,
used for computing the normal vectors. A <TOL, where TOL =2 x 107". Figurel8 shows a
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. g T polyfit which is implemented in MATLAB toolbox and is
Dotinie & (2. 4) sttocs based on the least squares method [30]. Once the coefficients

¢; are determined, the axial and meridional curvatures along

Caleulate at ¢, value: the meridian defined b§ can be calculated as [2, 7, 31]
e R' -1
I, R, Am—e———
’ IR 7| F F
S_,:—n_,rh/n,y and S,=-—n,/ny ICU, == 7Pl7 K:m = %7 (24)
U=(Vs, Wy, -1) p(1+72)? (1+F72)2
k-th surface ¥ and 6;,»,:{” U—n H}

whereF, andF,, denote the first and second derivatives of
F with respect top. For the purpose of obtaining the cur-
vature values on the reconstructed surface, the calculation of
K, and KC,,, must be done for all meridians of a radial do-
main previously defined. From the values 64 and/C,,,, it

is possible to obtain the axial (sagittal) and meridional (tan-
gential) powers denoted by, and P,,, respectively. The
optical powers can be calculated as follows

Redefine T as:
(t1-At, tr+AL)

Calculate
Ayr=min({0x}) —>-
t;r and At=to—t;

FIGURE 8. Flowchart illustrating the reconstruction algorithm. Py = (ne — n’) Koy, Pm=(nc— n’) Ko, (25)

flowchart of the reconstruction algorithm. A more detailedwhere .. is the refractive of the cornea and is the re-
exposition about the reconstruction algorithm can be foundractive index of the surrounding medium. In practice,

in Ref. [23]. andn’ are considered as the keratometric refractive index
_ _ _ (n. = 1.3375) and the air refractive index.( ~ 1), respec-
4.2. Calculation of the axial and tangential maps tively. In addition, in Eq.25) the units of the optical powers

T it idel d to ch terize th teri must be inverse meters (th), also known as diopters (D).
Wo - quantities ‘widely used 10 characterize the anteror g spherical surface used to design the target inside the

corn_eal surface are the axial (sagittal) and meridio_nal (tant'runcated cone (see Fid), exhibits constant curvatures,,
gential) curvatures denoted by, and K, respectively. andK,, both equal t010v00/7.8 m~!. Therefore, the corre-

Both quantities are calculated along a corneal meridian, a?ponding power distributiors,, andP, remain constant at

will be discussed below. 43.26 D, as illustrated in Fig&d0a)and10b), respectively. In

In order to obtain the curvatures, and Kr,,, we use contrast, Figs10c) and10d) depict the power distributions

the analytical representation for the reconstructed surfac% andP. for the biconical surface under test. which is de-
VU (z,y), given by Eq. 21). We set the first three coefficients firTed by ng. 12). The contour maps oP,, and%% form a

o zero, as they do not affect the surface shapedisplaces pattern classically known as bow-tie or hourglass [21]. The

the sur{a;ceﬂ?g)(ng tg%ams. By andBf. t"f th(_a”? urfaclze W'th. | presence of the bow-tie in both power maps indicates that the
respect o an axes, respectively. 1he polynomial ., o a1 surface will produce the astigmatism aberration. The

function ¥'(x, y) is evaluated in a radial domain as schema-_ . - R . .-
. R - . orientation of the bow-tie coincides with the steeper meridian
tized in Fig.9a) and9b). Along a meridian defined by the P

angled, the sagitta of the surface is denoted by the function
F(p), asillustrated in Fig9c).

The curve(p, F(p)) can be described as a polynomial
function in the following form

8
Flp) = cip'. (23)
i=1

To obtain the coefficients; of the polynomial function
that best fits the data points, F(p)), we use the instruction

Meridians AZ Surface

b F(p)
K F(p)

p ¢
Y . - @ FIGURE 10. Spherical surface: a) Meridional pow&¥,, and b)
FIGURE 9. a) Radial domain. b) Surface representediyt, ). Axial power?P,. Biconical surface under test: c) Meridional power
c) Sagitta along a meridian defined by the argjle P and d) Axial powerP,.
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denoted by in Figs.10c) and10d), in this case the astig- close toO, as depicted in Fi@. This happens because the
matism is classified as with-the-rule astigmatism. But if thedistorted images are very similar to the image without distor-
steeper meridian is closer to the horizontal axis, the astigmation in the central region. The amount of distortion is pro-

tism is called against-the-rule astigmatism [1]. portional to the image size, as can be seen from the second
by t, are listed in Tabl&/1.

shown in Fig/5b) and Figs/6a) - 6f). Applying the recon- the effects of distortion aberration at the periphery of the re-

as a height map. In addition, in each case, a difference maf: - Bsizsi G ~ ™ Bidk ' hSes(umy T Tangential(D) "~ Amial(D) )

and Tablellll Furthermore, we fit Eq/12) to the Cartesian !

the point cloudz, , z), with the aim of carrying out @ com- - oa (|  Piffereneesliuny) - Tanzential(®) - Axia(®) (o

ing each image affected by distortion, a polynomial function

culated in accordance with the process described in&2c.

to distortion aberration, the position of the poifis, y.) on

therefore, the normal vectofiscalculated using Eql8) also

an incorrect position along tH&-axis or with a shape deviat- !

term on the right side of Eq18¢) and Eq. [18k). Thevertex

5. Results of numerical simulations
Throughout this section, we recover the corneal topographies The conical profiles along the principal axes of the re-
struction algorithm described in Sé&,. we retrieve in each covered surface. As the distortion coefficient increases and
is used to show the deviations between the reconstructed sur; . 25:

98 49 E

44 405:
coordinategz, y, z) corresponding to the recovered surface, 90 32

Height (mm) Tangential (D) Axial(D)

parison with the ideal values listed in TalbIE.
¥(x,y) given by Eq. [2]) is obtained for each recovered sur-
and both powers are shown in contour maps.
the detection plane deviates from the actual position. Asare-t----------------- -;-:_5_-':::;:::::::::_-::::
undergo changes in direction. The above discussion suggest
ing from the actual surface.

Axial (D)

positions of the recovered surfaces alongZhaxis, denoted
that should be generated by each image affected by distortidhieved surface are plotted in Figs2a) and12b), showing
case the shape of the surface under test which is represented
face and the ideal surface, which is represented by/E2). (
to obtain the parameters of the biconical surface that best fits- - - - - - - - - - ------=- =2 A R .
Whenever the reconstruction algorithm is applied, us-
face. Using¥(z, y), the axial and tangential powers are cal-
As mentioned before, from the change in image size due
sult, the unit vectof given by Eq. [8) changes its direction; T
that the reconstruction algorithm would recover a surface at :

Height (mm) Differences (nm)  Tangential (D) Axial (D)
1.4

0.7
0.4

5.1. Retrieving the corneal topography : (
: e) o5=1.41x10"° !

Applying the reconstruction algorithm to each image affected
by distortion, we obtain the height, and the difference and -
curvature maps, which are shown in rows in Fid. The
value for the coefficient, increasing from top to bottom,
appears at the bottom of Figkla)-[11g).

In Fig.[11, all contour maps are shown in a square domain
[-6.1 mm, 6.1 mm¥[—6.1 mm, 6.1 mm]. We must note
that the maps plotted in Fidg1d)correspond to the synthetic
image without distortion{ = 0) shown in Fig/5b). Further-
more, by fitting Eq./12) to the recovered surface using the
least squares method implemented in the MATLAB toolbox,
we obtain the values for the radii of curvature @ndr,), the
conic constantsk(, andk,) and the rotation anglewy. These

values are listed in Tablel. FIGURE 11. Heights, differences and diopter powers recovered
Once the reconstruction algorithm was applied to allgom |mages affected by different degrees of distortionoa)=
cases, the surfaces were recovered close to the Origin of ca-2.0 x 1074, b) 52 = —6.3 x 107, ¢) o3 = —1.41 x 1076,

ordinatesO. In order words, the closest surface to the ac-d) ¢, = 0, e) o5 = 1.41 x 1078, (f) o6 = 6.3 x 1077, g)
tual surface is obtained when the surfécis positioned very o7 = 2.0 x 107*.

Height (mm)
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6 "%
45 145 /

Percentage error in r, and ry

0.8 ‘ ’ J0.4
— € (%) —C. (% .
3 . 0.61 &, (B0) —&, (%) 153
15 15 i 10.2
' - 02F 10.1
o o, —0, —a o, —0,
’ o 7 A 1}
L, & 2775 15 2775 a) 1 2 3 4 5 6 7
3 % % i, % % Percentage error in k, and k,

4.5 -5 150 — &, (%) — &, (%) 1210

-6 1 -6 . L 7 ]40
0 15 3 a) |0 153 b) ]28 \ 470
0= . - : =0

FIGURE 12. Conical profiles along a) the-axis and b) thej-axis b) 1 2 3 4 5 6 7
of the retrieved surface. Percentage error in «
2f ' —E.(%) x 107 ]
1.5¢ 1
TABLE VI. Parameters corresponding to the biconical surface that 0% 3 ]
best fits the recovered surface. 0 " 1
- o) 1 2 3 4 5 6 7
Fig. [rz,ry] (mm) [k, Ky a(®) ty (pm) Deviation in puv,, and pv,
) . : : .
11a) [8.350,7.661] [-1.106,-0.774] 16.999 -3.636 | Fa. 0 —A0) 39
11b) [8.344,7.636] [-0.658,-0.425] 16.999 -1.188 6t ] g
11c) [8.349,7.629] [0.435,-0.254] 17.000 -0.311 i ' % o
11d) [8.349,7.629] [-0.429,-0.249] 17.000 -0.293 a ! 2 3 4 5 6 7

11e) [8-350,7.629] [0.424,-0.245] 17.000 0.274 FIGURE 13. Percentage errors in: a) radii of curvatuzeandr,,
11f) [8.360, 7.627] [-0.184,-0.062] 16.999 0.408 b) conic constants, andk, and c) the rotation angle. d) Devia-

11g) [8.415,7.641] [0.435,0.400] 16.999 1.757 tions ofpv,, andpv, with respect to the ideal values.

. . . . may be erroneously classified as against-the-rule astigma-
transitions from negative to positive, the periphery of thetism
pTOf“eS moves .closer to the horizontal axi_s, as shown in Another recovered parameter from the fitting is the an-
Fig. 12 Acco@ng on the value's. of the conic .constab,;s . gle of rotation corresponding to each reconstructed surface.
andk,, the profiles can be_cla55|f|_ed as follows: hyperbolmdFig. 13c) shows the graph for the percentage errors associ-
(ks y <—1), pr(_)late spheroid or ell'pSQ'H1<k17y<0)' gnd ated with the angles of rotation. The percentage errors,
oblate spheroidd<k. ) [32]. The profiles corresponding to represented bg,,, are less than810~5 %, i.e., in all cases

75, 04, ando; are overlapped. the anglex is very close to the true value. The latter can be

, The values for the rgdn of curvgtuvg andr, tabulated  54rip e to the proposed type of distortion aberration, since
in TablelVI}, corresponding to the biconical surface that bes it only affects the image in the radial direction. Addition-
fits to the reconstructed surface, are close to the actual valueaﬁy the vertex of the surface under test was proposed to be
listed in Tablellll The percentage errots, and&,, asso-  gligned with the coreal topographer axis. The difference be-

ciated withr, andr, are plotted in Figl3a)and are less 1 aen the recovered surface and the actual surface is defined
than0.8%. Nevertheless, in some cases, the percentage el

rors associated with the conic constahtsand k, become

greater than 208, as shown in Figl3b) As a consequence A S = ideal biconical surface recovered surface (26)
the periphery of the recovered surface deviates from the ac-

tual surface, in accordance with the difference maps shown The peak-to-valleyi{v) and root-mean-squarers) er-

in Figs.11a)g) and the profiles plotted in Figd.2. rors associated withS are given by
If the shape of the reconstructed surface is used in the .
adaptation of contact lenses, the corneal topographer may pv = max(AS) —min(AS), (279)
suggest a base curvature for the contact lens that does not fit N
properly to the anterior corneal surface. Furthermore, from Z(E — AS)?
TableVIl, k, andk, become increasingly positive as the dis- ‘
tortion coefficient increases. We can note that the values for Tms = 1#» (27b)

the conic constants, andk,, recovered using Fid.1g)(see

the last row of Table VI), have suffered a sign change. As avheremax() and min() calculate the maximum and mini-
consequence, from the powers maps shown in/Eig), the  mum of the values set in the parentheses, respectivsly.
bow tie apparently suffers a rotation of 90 degiie®, if the  represents the number of points that make up the recovered
camera distortion is not corrected, the corneal astigmtisnsurface, and\S denotes the mean value of the differences
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corneal topographer camera is affected by radial distortion
TaBLE VII. Parameters calculated from the difference and poweraberration. To carry out the analysis we used synthetic im-
maps shown in Figd 1a}11f). ages calculated in numerical form and distorted using Sei-
del's aberrations. These images theoretically correspond to
the images produced by the reflected light on a biconical
surface rotated about th&-axis, which is considered as the

Fig. pv Tms PUm PUs
11a) 206.65um  48.24um 23.06 D 15.64D

11b)  55.46pm  12.92um  16.37D 8.52D corneal surface under test. The corneal topographer in which
11c) 1.10pm 0.254uym  12.590D 6.97D the calculations are based consists essentially of a smart-
11d)  46.32 nm 12.86 nm 12.49D 6.93D phone and a truncated cone, while the target inside the cone
11e) 1.19,m 0.27um 12.40D 6.89D was designed using the Null Screen Method.

Several degrees of distortion, ranging from negative to
positive, were tested on the synthetic images, resulting in
changes in size. For example, pincushion and barrel distor-
, tions cause image expansion and contraction, respectively.
AS. Thepv andrms errors are tabulated in Table Vv \yhije qualitative inspection of the distorted images might
andrms can be up to a few hundred microns, however, whenyiia|ly suggest that the surface under test is displaced from
the distortion coefficient is zero [Fig.1d}, thenpv andrms e jgeal position, or that its radius of curvature deviates from
are of the order of some nanometers. The above highlight§,q 5yerage human corea, once the reconstruction algorithm
the importance of minimizing distortion effects in the image, a5 applied, the results showed that the surface retrieved by
to achieve reliable and consistent corneal topography megfe aigorithm was located very close to the true position of
surements. _ . the vertex. For the cases considered in this study, although

Additionally, we define the quantitigs),, andpv, asthe  yhe ra4ij of curvature exhibited minimal deviations (less than
peak-to_—valley of the meridional power and the axial power,ons%)’ the conic constants displayed significant errors (up
respectivelyThey can be calculated as follows: to 200%) due to the discrepancies between the reconstructed

P = Max(k,,) —min(ICp, ), (28a)  surface and the ideal surface particularly in the periphery. If
) the reconstructed surface is used in the adaptation of contact
pUm = Max(Kq) — min(Ky). (28b) lenses, this could lead to inaccurate contact lens fitting, as

The recovered values ofv,, andpv, are listed in Ta- the base surface would not be suitable. Moreover, in order
ble VII. The ideal values are 12.507 D and 6.938 D, correto reshape the anterior corneal surface via laser ablation, it
spondingly. The latter values were calculated from the poweis essential to conduct a preoperative assessment of the pa-
maps shown in Figl0a)and/10b). The discrepancies be- tient's corneal topography. However, as we have shown, if
tweenpv,, andpv, and their actual values are denoted bythe corneal topographer camera introduces distortion aberra-
A,, = 12.507 — pv,, andA, = 6.938 — pv,, respectively. tion, then the corneal topography deviates from the true val-
Figure13d) shows the plots corresponding £9,, and A, ues. As a consequence, the ablation laser may remove ma-
it is clear that the deviations increase proportionally to theterial from undesired regions of the anterior corneal surface,
magnitude of the distortion coefficients. which could result in overcorrection or undercorrection of the

As mentioned before, laser ablation technique can beefractive errors. Therefore, the results presented in this pa-
used to reshape the anterior corneal surface for treating rgper emphasize the critical importance of calibrating distortion
fractive errors such as myopia, hyperopia and astigmatismaberration in corneal topographer cameras to ensure accurate
The ablation laser uses the corneal topography to obtaiand reliable results in the assessment of human corneal to-
the optimal corneal curvature to reduce the refractive erpography.
rors [4—6]. However, if the corneal topographer uses images
affected by distortion aberration, the sagitta and the diopter
power deviates from the true values. As a consequence, tkﬁcknowledgments
ablation laser could remove undesired material from regions
of the anterior corneal surface, resulting in an overcorrectio

or undercorrection of the refractive errors. From the result%y CONAHCYT for the postdoctoral fellowship to Oliver
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