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Analysis of errors in corneal topography evaluation caused by distortion
aberration in the camera lens of a cone corneal topographer
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J. Ocampo-Ĺopez-Escalera
Department of Health, El Colegio de La Frontera Sur,
San Crist́obal de Las Casas, 29290 Chiapas, Mexico.
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We study the effects on corneal topography when the topographer camera is affected by distortion aberration, causing a nonuniform magni-
fication in the image recorded by the camera sensor. As a result, images present a size change which could mislead the interpretation of the
vertex position of the anterior corneal surface. Images numerically generated and distorted using the Seidel’s aberrations are used to carry out
the analysis. According to the results presented in this paper, while the reconstruction algorithm accurately recovers the central region of the
surface, there are pronounced deviations between the retrieved surface and the actual surface towards the periphery. These deviations could
lead to the underestimation or overestimation of the parameters associated with the base surface for a contact lens, affecting the correction
of refractive errors such as myopia, hyperopia or astigmatism. Moreover, if the corneal topography provided by a topographer affected by
distortion aberration is used for corneal reshaping via laser ablation, the refractive errors might be overcorrected or undercorrected. Thus,
this paper highlights the importance of performing a proper calibration procedure for the distortion aberration of the corneal topographer
camera, in order to reliably recover an accurate corneal topography.
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1. Introduction

The cornea is the first optical element of the human eye to
interact with incident light, providing about two-thirds of the
eye’s refractive power. The majority of this bending occuring
at the air-cornea interface [1]. Two of the primary visual dis-
orders affecting humans, astigmatism and keratoconus, occur
in the anterior surface of this transparent tissue. Astigma-
tism, characterized by a degraded image on the retina, re-
sults from the lack of revolution symmetry of the anterior
corneal surface. In contrast, keratoconus is caused by a pro-
gressive corneal thinning and protrusion, resulting in an un-
even distribution of refractive power and blurred image at the
retina [2]. For analyzing these visual defects, the corneal sur-
face can be modeled as a sphero-torical or biconical surface
in the first case and a freeform surface in the second case.
The effects of astigmatism and keratoconus on vision can be
reduced through the use of spectacles or contact lenses [3].
In certain cases, corneal refractive surgery may be a viable
option [4–6]. However, it is essential to accurately determine

the shape of the cornea in order to perform an appropriate
fitting of ophthalmic lenses or to reshape the corneal surface
through refractive surgery.

Corneal topographers are the standard ophthalmic instru-
ments utilized for the evaluation of the anterior corneal sur-
face. These instruments are traditionally based on Placido’s
disc, consisting of a collection of alternating dark and bright
rings placed inside a concave surface [7–9]. At the center
of this surface, a camera is positioned in order to observe
the projection of the rings onto the corneal surface. Cali-
bration of the corneal topographer is crucial for obtaining an
accurate representation of the anterior corneal surface topog-
raphy. There are two principal stages comprising the cali-
bration procedure. First, the position and orientation of the
bright rings must be computed on the concave surface in re-
lation to the camera sensor or detection plane. The second
step addresses to the distortion aberration introduced by the
camera lens used to record the images, in order to evaluate the
corneal surface. The camera of the corneal topographer con-
sists of a set of lenses with a diaphragm, which can be closed
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to its minimum aperture to reduce the effects of optical aber-
rations on the image. However, the distortion aberration still
affects the image formed on the detection plane [10]. The
distortion aberration does not degrade the image quality, but
it causes radial displacements of image points with respect to
the optical axis of the camera lens. This is due to a nonuni-
form magnification produced by the camera lens. Therefore,
a calibration procedure must be implemented to reduce the
effects of the distortion aberration on the image recorded by
the camera sensor [11,12].

In this work, we present a numerical simulation analysis
of how distortion aberration in the camera lens of the corneal
topographer affects the assessment of the corneal topogra-
phy measurements. In previously published works [13–15],
we proposed an inexpensive and portable corneal topogra-
pher, consisting of a smartphone and a truncated cone. We
have designed this particular device based on the Null Screen
Method (NSM), which considers an exact ray tracing to de-
sign a set of elongated ellipses displayed along the truncated
cone denoted as the target or null-screen. Ideally, we assume
that the anterior corneal surface of the eye works as a convex
spherical mirror, reflecting the target projected onto it. The
reflected light is then collected by a positive lens and focused
onto the detection plane, resulting in an image consisting of
an array of bright spots. When the test surface matches the
average corneal shape, a regular pattern of bright spots is pro-
jected onto the detection plane. Any deviation from this ideal
pattern indicates deviations or misalignments of the test sur-
face from the actual corneal surface. Utilizing a spots pattern
instead of a ringed one ensures a one-to-one correspondence
between the target and the image points, even for surfaces
that are not rotationally symmetric avoiding the skew ray er-
ror [16–19].

Using numerical simulations, the synthetic image with-
out distortion that would be expected to be recorded on the
camera sensor, taking into account that the test surface cor-
responds to a biconical surface, was computed. Third-order
Seidel’s aberrations theory [20] was used to model the radial
distortion aberration in the synthetic image, while other opti-
cal aberrations were neglected. The distortion aberration can
manifest as a barrel distortion (positive) or as a pincushion
distortion (negative). In the first case, off-axis image points
displace inward with respect to the undistorted image, while
in the second case they displace outward. In practice, these
changes in image size might be wrongly interpreted as dis-
placements of the corneal surface along the instrument op-
tical axis or deviations of paraxial radius of curvature with
respect to the true value. In addition, our results indicated
that when the corneal surface is affected by astigmatism and
the camera lens exhibits distortion aberration, the classical
hourglass or bow-tie pattern that appears in the axial and tan-
gential maps [21] does not change its orientation, provided
that the cornea is aligned with the instrument axis. This con-
clusion is obtained by applying a range of distortion values,
ranging from negative to positive. Each distorted image is
ideally considered as if it was obtained from the corneal to-

pographer, allowing us to retrieve the corneal topography and
compare it to the actual corneal topography.

The present paper is structured as follows. Section2
presents a detailed description of the exact ray tracing
methodology employed in the design of the object pattern
or target, which is positioned within a truncated cone. Sec-
tion 3 outlines the calculation of synthetic images on the sen-
sor plane when the surface under study deviates from the av-
erage corneal surface. Section4 describes the reconstruction
method and illustrates the process to calculate the sagittal and
tangential maps of refractive power. Section5 presents the
results corresponding to the numerical simulations. Finally,
Sec.6 summarizes our conclusions based on the obtained re-
sults.

2. Corneal topographer

In a previously published work [14], we propose a corneal
topographer that basically consists of a commercial smart-
phone and a truncated cone, as depicted in Fig.1. A set of
bright objects are designed inside the truncated cone and pro-
jected onto the cornea. The reflected rays are collected by
the smartphone camera lens and recorded on the detection
plane (DP). A backward ray tracing is used to design the
target inside a truncated cone,i.e., the ray tracing starts in the
detection plane and ends on the truncated cone, allowing us
to choose the image that should form on the detection plane
when the surface has certain previously defined characteris-
tics.

2.1. The ideal image design

As a starting point for designing the target, an array of small
circles was selected as the ideal image. The distribution of the
circles on the detection plane corresponds to a quasi-radial
array, i.e., a set of small circles is distributed on concentric
rings, as shown in Fig.2a), whose area is limited by the ac-
tive region of the sensor, and the size of the circumferences
is restricted to maximum resolution of pixels associated to
different commercial smartphones. The ideal image is pre-
sented in a square domain [−0.5 mm, 0.5 mm]×[−0.5 mm,
0.5 mm], as shown in Fig.2a).

FIGURE 1. Schematic diagram of the corneal topographer design
used for the numerical analysis.
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FIGURE 2. a) Ideal image used to design the target. b) Close-up of
the first two rings of the ideal image.

The number of circles per ring increases proportionally
with the radius of each ring. The Cartesian coordinates
~P1=(x1, y1) of the circle centers in the image are given by

x1 = ρi cos (θij) , y1 = ρi cos (θij) , (1)

where subscriptsi andj make references to the radial coor-
dinate and the azimuthal angle, respectively. In Eq. (1), the
polar coordinates(ρi, θij) can be written as

ρi=ρ0 + (i− 1)
(

ρN − ρ0

N

)
, 1 ≤ i ≤ N + 1, (2a)

θij=
[

2π

η0 + (i− 1)η

]
j, 0 ≤ j < η0 + (i− 1)η, (2b)

the quantitiesi, j, N , η0 andη are integer numbers.N + 1
is the number of rings.η0 is the number of circles on the first
ring (i=1). η is the increase in the number of circles between
two consecutive rings. The number of circles on thei-th ring
is given byη0 + (i − 1)η. The radii corresponding to the
first and last rings areρ0 andρN , respectively. In TableI,
we listed the values of each parameter that appear in Eq. (2a)
and Eq. (2b). Figures2a)shows the ideal image used to de-
sign the target or null-screen, with axes scaled in millimeters.
Additionally, Fig.2b)shows a close-up of the first two rings.

2.2. Exact equations for the backward ray tracing

A schematic representation of the corneal topographer, in the
YZ plane, is depicted in Fig.3. Each ray is traced consider-
ing the pinhole camera model without taking into account the
lens distortion; therefore, all the rays pass through the camera
pinhole without deviation.

TABLE I. Parameters used for designing the ideal image.

Parameter Value

ρ0 (µm) 31

ρN (mm) 0.35

N 11

η0 8

η 8

FIGURE 3. Schematic diagram of ray tracing used in the design of
the target or null-screen.

The ray tracing starts at a point~P1=(x1, y1,−a − b) on
the detection plane, which is denoted byXcYc. The quan-
tity a is the separation between theXcYc plane and the pin-
hole situated at~h=(0, 0,−b) and b is the spacing between
the pinhole position and the vertex of the reflecting surface
Se, which is representing the anterior corneal surface.a and
b are defined along theZ-axis, as schematized in Fig.3. The
unit vectorÎ=(Ix, Iy, Iz) denotes the direction of the inci-
dent ray that passes through the pinhole and is propagated up
to strike the reflecting spherical surface (Se) at ~P2, as shown
in Fig. 3. An expression for̂I can written as follows

I =
(−x1,−y1, a)√
x2

1 + y2
1 + a2

, (3)

whereSe is proposed to be a spherical surface aligned with
the corneal topographer axis with its vertex located at the Ori-
gin of the coordinates denoted byO, as depicted in Fig.3.
The analytical expression forSe is given by

Se(x, y, z) = ρ2 − 2rez + z2, (4)

whereρ = (x2 + y2) andre is the radius of curvature corre-
sponding to the average spherical cornea. The rays after be-
ing reflected bySe hit the truncated cone at~P3. From Fig.3,
the propagation distanceξ of the incident ray from~h to ~P2

can be calculated using the following expression

ξ =
(
−B −

√
B2 −AC

)
/A, (5)

the parametersA, B andC can be obtained in terms of̂I, ~h
andre, as follows

A = 1, (6a)

B = Iz(b− re), (6b)

C = b2 − 2reb. (6c)

Considering the value forξ, the point~P2 can be obtained
using the following vector equation of a straight line

~P2 = ~h + ξÎ. (7)
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Once ~P2 is determined, we calculate the direction of the
reflected ray, denoted by the unit vectorR̂=(Rx,Ry,Rz).
Using the vector law of the reflection̂R is given by

R̂ = Î − 2
(
Î · N̂

)
N̂ , (8)

the unit vectorN̂ is the direction of the normal vector at~P2.
N̂ can be obtained from the gradient of Eq. (4). Using Eq. (7)
and (8), a point ~P3 = (x3, y3, z3) on the truncated cone can
be written as

~P3 = ~P2 + ζR̂, (9)

whereζ is defined as the propagation distance of the reflected
ray from ~P2 to ~P3. The truncated cone is represented by
means of the following expression

z3 = tan
(π

2
− φc

)
ρ3 + zc, (10)

wherezc is the axial position of the cone vertex along theZ-
axis,ρ3 =

√
x2

3 + y2
3 andφc is called the semi-vertical angle

of the cone (see Fig.3). For obtaining the Cartesian coordi-
nates of~P3, we substitute Eq. (9) into Eq. (10). As a result
an equation of the second degree inζ is obtained. Its solution
has the same structure as the one obtained forξ in Eq. (5),
with the modification thatA, B, andC are replaced byA′,
B′ andC ′, which are given as follows:

A′ = (tan φm)2
(R2

x +R2
y

)−R2
z, (11a)

B′ =
[
(zc − z2)Rz

+ (tan φm)2 (x2Rx + y2Ry)
]
, (11b)

C ′ = (tan φm)2
(
x2

2 + y2
2

)− (z2 − zc)
2
, (11c)

whereφm=(π/2− φc). Substituting Eqs. (11a)-(11c) into
Eq. (5), the value forζ can be calculated and the intersection
point ~P3 can be determined from Eq. (9). Taking into ac-
count the ideal image designed in Sec.2.1 [see Fig.2a)] and
the equations deduced throughout this section, we can design
the object pattern inside the truncated cone. The separation
between the pinhole and theXcYc plane (detection plane) is
a = 5.2 mm. The distance between the vertex of the surface
Se and the pinhole isb = 70 mm. The radius of the cone
in theXY plane is denoted byRb, as shown in Fig.3. The
radius of curvature of the reflecting spherical surfaceSe is
re = 7.8 mm, its height map is plotted in a square domain

TABLE II. Null-screen method parameters for designing the target
in the truncated cone.

Spherical surface Truncated cone

Parameter Value Parameter Value

re (mm) 7.8 φc (◦) 10.79

a (mm) 5.2 Rb (mm) 16

b (mm) 70 zc (mm) 85.5

FIGURE 4. a) Height map for the spherical surfaceSe. b) Structure
of the pattern consisting of a set of elongated ellipses.

TABLE III. Parameters of the biconical surface under study.

Parameter Value

rx (mm) 8.35

ry (mm) 7.63

kx -0.43

ky -0.25

α (◦) 17

domain [−6.1 mm, 6.1 mm]×[−6.1 mm,6.1 mm], as shown
in Fig. 4a). Applying the Null-Screen Method using the val-
ues listed in TableII , we obtain a set of elongated ellipses
which are designed inside the truncated cone, as shown in
Fig. 4b). We must highlight that an advantage of the NSM is
its capacity to identify misalignments or deformations of the
surface under test after a qualitative inspection of the image
recorded on the sensor camera.

3. Synthetic images

Throughout this section, we show how to calculate the syn-
thetic images on the detection plane when the anterior corneal
surface under study does not coincide with the spherical sur-
faceSe. We assume that the corneal surface under test can be
modeled as a biconical surface, whose analytical expression
S is given by

S =
cx(xr − x0)2 + cy(yr − y0)2

1 +
√

1−Qxc2
x(xr − x0)2 −Qyc2

y(yr − y0)2
, (12)

the vertex of the biconical surface coincides with the origin
of coordinatesO. rx=1/cx andry=1/cy are the radii of cur-
vature along thex andy axes, respectively.Qx=1 + kx and
Qy=1 + ky, wherekx andky are the conic constants along
thex andy axes, respectively. Furthermore, we suppose that
the biconical surfaceS is rotated by the angleα about the
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Z-axis; therefore, the Cartesian coordinatesxr andyr, that
appear in Eq. (12), can be written in the following form

xr = x cos α− y sin α, (13a)

yr = x sin α + y cos α. (13b)

The ideal values corresponding to the parameters in-
volved in Eqs. (12), (13a) and (13b) are listed in TableIII .

3.1. Calculating of synthetic images

In this section, we show how to calculate the synthetic images
that should be recorded on the camera sensor. In practice,
the biconical surface must be placed in front of the truncated
cone, as illustrated in Fig.1 and Fig.3. As a result, a set
of bright spots forms on the detection plane, their positions
are denoted by(x1, y1,−a − b). According to the scheme
shown in Fig.3, the ray starts at~P3 and passes through~h,
the unknown is the point~P2 on the biconical surface. The
normal vector atP2=(x, y,S(x, y)) must satisfy the vector
law of reflection (see Eq. (8)). The unit vectorŝI, R̂ andN̂ ,
involved in Eq. (8), can be conveniently written as

Î =
~P2 − ~h(

‖ ~P2 − ~h ‖
) , (14a)

R̂ =
~P3 − ~P2(

‖ ~P3 − ~P2 ‖
) , (14b)

N̂ =
(−Sx,−Sy, 1)

(S2
x + S2

y + 1
)1/2

, (14c)

whereSx andSy are the partial derivatives ofS(x, y) with re-
spect tox andy, respectively. Taking into account Eq. (8) and
after some algebraic manipulations, the Cartesian compo-
nents of̂I, R̂ andN̂ satisfy the following expressions [22,23]

(Rx − Ix) + (Rz − Iz)Sx = 0, (15a)

(Ry − Iy) + (Rz − Iz)Sy = 0. (15b)

Eqs. (15a) and (15b) form a system of two nonlinear equa-
tions in two unknownsx andy. This system of equations can
be solved in numerical form using the Levenberg-Marquardt
algorithm, which is implemented in the MATLAB toolbox.
Once this system of equations is solved, the incident point
P2=(x, y,S(x, y)) can be known. Therefore, the direction
Î can be calculated by means of Eq. (14a). Calculating the
intersection between the prolongation of the ray and the de-
tection plane (see Fig.3), the Cartesian coordinates of the
image points~P1=(x1, y1, z1) can be obtained as

x1 = −a (Ix/Iz) ; y1 = −a (Iy/Iz) ; z1 = −a− b. (16)

Figure 5a) shows a height map corresponding to the
biconical surface or corneal surface under test. Figure5b)

FIGURE 5. a) Height map for the corneal surface under test mod-
eled as a biconical surface. b) Simulated synthetic image formed
on the detection plane, assuming the test surface is a biconical sur-
face. c) Parameters of the elliptical contour that encloses the image
points. d) Undistorted image of a checkerboard.

shows the image obtained from Eq. (16), that must form on
the detection plane when the surface under study corresponds
to the biconical surface given by Eq. (12) and TableIII . Once
more, the synthetic image is treated as if it had been experi-
mentally obtained from the corneal topographer, as seen be-
low. Additionally, Fig. 5d) shows the undistorted chequer-
board image, which will be used to qualitatively demonstrate
distortion effects. The dimensions of the checker board im-
age are0.8× 0.8 mm2.

Using the algorithm described in Ref. [24], the dots in
the image [see Fig.5b)] can be enclosed by an ellipse, the
equation of which is as follows

(
xe

ye

)
=

(
cos βe − sin βe

sinβe cosβe

)(
ae cosφe

be sinφe

)
, (17)

whereβe=17.0◦ is the angle of rotation corresponding to the
elliptical contour,ae=0.3876 mm andbe=0.3507 mm are the
semi-major and the semi-minor axes of the ellipse, respec-
tively, as illustrated in Fig.5c)]. φe is the polar angle in the
polar coordinates. This ellipse is used in the next section for
quantifying the change in size of the images affected by sev-
eral degrees of distortion aberration. In this case, the area of
the elliptical contour isAe = 0.4270 mm2.

3.2. Synthetic images affected by the distortion aberra-
tion

As mentioned in Sec.2, the ray tracing performed to obtain
the target and the synthetic images utilizes the pinhole cam-
era model, which does not take into account the distortion
aberration associated with the camera lens [25]. However,
in practice, even when other aberrations are corrected, dis-
tortion aberration is always present in the optical system and
must be calibrated. The aim of this section is to obtain images
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affected by distortion aberration and to recover the corneal
topography assuming that the distorted images were experi-
mentally obtained. We propose to model the distortion aber-
ration using the Seidel’s Aberrations; therefore, the Cartesian
coordinates(xd, yd) affected by distortion aberration can be
conveniently written as [10]

xd = x1 +
(

σ

M3
T

) (
x2

1 + y2
1

)
x1, (18a)

yd = y1 +
(

σ

M3
T

) (
x2

1 + y2
1

)
y1, (18b)

whereMT andσ are the transversal magnification and the
distortion coefficient, correspondingly. Whenσ=0, (xd, yd)
corresponds to the Cartesian coordinates(x1, y1) of the im-
age without distortion, which is shown in Fig.5b). For the
sake of simplicity, in Eqs. (18a) and (18b) we have only con-

TABLE IV. Tested values for the distortion coefficients and
transversal magnification.

Parameter Value Parameter Value

σ1 (mm−2) −2.0× 10−4 σ5 (mm−2) 1.41× 10−6

σ2 (mm−2) −6.3× 10−5 σ6 (mm−2) 6.3× 10−5

σ3 (mm−2) −1.41× 10−6 σ7 (mm−2) 2.0× 10−4

σ4 (mm−2) 0 MT −0.065

FIGURE 6. Images affected by pincushion distortion: a)σ1 =

−2.0× 10−4, b) σ2 = −6.3× 10−5 and c)σ3 = −1.41× 10−6.
Images affected by barrel distortion: d)σ5 = 1.41 × 10−6, e)
σ6 = 6.3 × 10−5 and f)σ7 = 2.0 × 10−4. In all cases, the axes
units are expressed in mm.

sidered radial distortion; however, a more realistic model for
the distortion aberration must also take into account the tan-
gential distortion [26,27].

For obtaining some images affected by radial distortion
aberration, we assign values toσ which range from negative
values to positive values. Tested values forσ are tabulated
in TableIV. The value for the transversal magnificationMT

was extracted from a previously published work by the au-
thors in Ref. [14], the minus sign ofMT implies that the im-
age recorded on the camera sensor was inverted.

On the one hand, Figs.6a)-6c)show three images affected
by negative distortion also called pincushion distortion. On
the other hand, Figs.6d)-6f) show three images affected by
positive distortion also known as barrel distortion. The im-
ages are shown in a square domain [−0.5 mm, 0.5 mm]×[-
0.5 mm, 0.5 mm]. The image without distortion correspond-
ing to the distortion coefficientσ4 = 0 is the synthetic image
shown in Fig.5b). The value ofσ increases from Fig.6a)
to Figs.6f) and the dimensions corresponding to the ellipti-
cal contour that encloses the dots diminishes from Fig.6a)
to 6f). The above effects can be easily appreciated from the
deformed checkerboards. By fitting Eq. (17) to the bound-
ary points in Figs.6a) - 6f), using the algorithm described
in Ref. [24], the parameters defining each elliptical contour
can be obtained. These parameters are listed in TableV. The
parameterEA shown in TableV, the percentage increase or
decrease in area for each elliptical contour. A negative value
for EA signifies a decrease in area.

Before the corneal examination can be performed, ei-
ther ophthalmologist or optometrist should align the human
cornea with the instrument for obtaining a focused image on
the camera sensor. From the change in size of the images
shown in Figs.6a)-6e), when the camera lens suffers from
distortion aberration in accordance with TableV, we can be
tempted to assume that the surface under test is displaced
with respect to the Origin of coordinatesO, along the optical
axis of the corneal topographer. Another possible assump-
tion for the change in image size is that the paraxial radius
of curvature of the surface under test deviates from the av-
erage cornea curvature whose vertex should be atO. Both
assumptions may lead to inaccurate results in corneal topog-
raphy assessment, which will be addressed in the following
sections.

TABLE V. Parameters corresponding to each elliptical contour plot-
ted in Figs.6a)-6f).

Fig. [ae , be] (mm) βe (◦) Area (mm2) EA (%)

6a) [0.4301, 0.3821] 17.0001 0.5163 20.89

6b) [0.4010, 0.3606] 17.0000 0.4542 6.36

6c) [0.3879, 0.3509] 17.0000 0.4276 0.14

6d) [0.3873,0.3505] 17.0000 0.4264 -0.14

6e) [0.3743, 0.3408] 17.0000 0.4007 -6.16

6f) [0.3452, 0.3193] 17.0003 0.3463 -18.90

Rev. Mex. Fis.71051305



ANALYSIS OF ERRORS IN CORNEAL TOPOGRAPHY EVALUATION CAUSED BY DISTORTION ABERRATION IN THE CAMERA LENS. . .7

4. Method for recovering the corneal topogra-
phy

In this section, we will briefly describe the implementation
of a numerical method to recover the corneal topography of
the anterior corneal surface, based on the Zonal and Modal
reconstructions proposed by the authors in Ref. [23]. Fur-
thermore, we show how to calculate the axial and tangential
powers corresponding to the recovered surface.

4.1. The shape retrieving of the surface under test

The reconstruction algorithm takes as input the direction
n̂=(nx, ny, nz) of the normal vectors to the surface under
test. n̂ can be written in terms of the directions of the re-
flected and incident rays as follows

n̂ =

(
R̂ − Î

)
(
‖ R̂ − Î ‖

) , (19)

in practice, only the direction̂I of the incident ray can be
determined by means of Eq. (3). However, in accordance
with Eq. (14b), the reflected ray cannot be obtained because
the incidence point~P2 is unknown. However,~P2 can be ap-
proximated by the intersection point~P ′2 between the ray and
a surface represented byG(x, y), as depicted in Fig.7.

We propose thatG(x, y) coincides with the spherical sur-
face Se that was considered to design the null-screen in
Sec.2. The intersection point~P ′2 can be calculated using
Eq. (5) and Eq. (7). Substituting~P ′2 into Eq. (14b), the direc-
tion of the reflected ray can be approximately calculated and
is denoted by the unit vector̂R′ (see in Fig.7). Finally, R̂′ is
substituted into Eq. (19) to compute the unit normal vectors
n̂.

In practice, either the ophthalmologist, or optometrist,
cannot perfectly align the human cornea with the corneal
topographer axis; therefore, the cornea vertex does not coin-
cide with the Origin of coordinates or designed position.

FIGURE 7. Representation of surfaceG(x, y), positioned attk,
used for computing the normal vectors.

this drawback, in order to enhance the calculation of the
slopes, the surfaceG is positioned at several positions
along theZ-axis, denoted bytk, until the closest surface to
the test surface is obtained. The position ofG is in the inter-
val denoted by(t1, t2, . . . , tk, . . . , tK), taking the center of
the interval as the position of the surface considered to design
the null-screen. This implies that a set ofk surfacesG(x, y)
are positioned along theZ-axis for obtaining a normal vector
field for each surface. In addition, we defineSx=(−nx/nz)
andSy=(−ny/nz) as the slopes to the surface under study.
The value of the sagitta for the test surface is obtained using
the following line integral

z = tk +
∫

(Sxdx + Sydy) , (20)

as we mentioned before,tk is the position ofG along theZ-
axis. We use the trapezoidal rule [28] for calculating the defi-
nite integral in Eq. (20). As a result, a point cloud{x, y, z} is
recovered for each surface positioned attk. Furthermore, we
propose that each surface under test can be represented by a
linear combinationΨ(x, y) of polynomial functionsψi(x, y)
as follows

Ψ(x, y) =
N∑

i=1

Biψi(x, y), (21)

whereψi(x, y) will be taken as the Taylor monomials and
N = 55. The partial derivatives ofΨ(x, y), with respect
to the Cartesian coordinatesx andy, are fitted to the slopes
Sx andSy using a modal reconstruction as described in Ref.
[29]. As a result, the values of the coefficientsBi are ob-
tained. In addition, the normal vector toΨ(x, y) can be cal-
culated as

Û = (Ψx,Ψy,−1) /
√

Ψ2
x + Ψ2

y + 1, (22)

whereΨx andΨx are the partial derivatives with respect to
the Cartesian coordinatesx andy, respectively. For determin-
ing how close thek-th reconstructed surface is to the actual
surface, we compare the normal vectorsn̂ (see Eq.19) with
Û (see Eq.22), i.e., we calculate the standard deviation of the
set of differences denoted byδk={‖ Û − û ‖}k, where the
subscriptk refers to thek-th reconstructed surface.There-
fore, a collection ofk values forδk is obtained, whereas the
surface closest to the actual one corresponds to the minimum
∆k′ of these values. This surface is denoted byΨk′ , and its
vertex position is attk′ . Ideally,∆k′ should be zero,i.e., the
unit vectorsn̂ and Û should coincide. This is because the
reconstructed surface must satisfy the reflection law and the
normal vectors to the surface must be equal, it does not matter
whether they were calculated using the directions of the rays
(see Eq. (19)) or the gradient [see Eq. (22)]. In order to refine
the result, a new interval can be defined as(tk′−∆t, tk′+∆t)
and partitioned intoK ′ equal parts, where∆t = t2− t1. The
algorithm ends when the stopping criterion is satisfied,i.e.,
∆k′ ≤ TOL, where TOL = 2× 10-7. Figure 8 shows a
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FIGURE 8. Flowchart illustrating the reconstruction algorithm.

flowchart of the reconstruction algorithm. A more detailed
exposition about the reconstruction algorithm can be found
in Ref. [23].

4.2. Calculation of the axial and tangential maps

Two quantities widely used to characterize the anterior
corneal surface are the axial (sagittal) and meridional (tan-
gential) curvatures denoted byKa and Km, respectively.
Both quantities are calculated along a corneal meridian, as
will be discussed below.

In order to obtain the curvaturesKa andKm, we use
the analytical representation for the reconstructed surface,
Ψ(x, y), given by Eq. (21). We set the first three coefficients
to zero, as they do not affect the surface shape.B1 displaces
the surface along theZ-axis. B2 andB3 tilt the surface with
respect to theX andY axes, respectively. The polynomial
functionΨ(x, y) is evaluated in a radial domain as schema-
tized in Fig.9a) and9b). Along a meridian defined by the
angleθ, the sagitta of the surface is denoted by the function
F(ρ), as illustrated in Fig.9c).

The curve(ρ,F(ρ)) can be described as a polynomial
function in the following form

F(ρ) =
8∑

i=1

ciρ
i. (23)

To obtain the coefficientsci of the polynomial function
that best fits the data points(ρ,F(ρ)), we use the instruction

FIGURE 9. a) Radial domain. b) Surface represented byΨ(x, y).
c) Sagitta along a meridian defined by the angleθ.

polyfit which is implemented in MATLAB toolbox and is
based on the least squares method [30]. Once the coefficients
ci are determined, the axial and meridional curvatures along
the meridian defined byθ can be calculated as [2,7,31]

Ka =
Fρ

ρ
(
1 + F2

ρ

) 1
2
, Km =

Fρρ(
1 + F2

ρ

) 3
2
, (24)

whereFρ andFρρ denote the first and second derivatives of
F with respect toρ. For the purpose of obtaining the cur-
vature values on the reconstructed surface, the calculation of
Ka andKm must be done for all meridians of a radial do-
main previously defined. From the values forKa andKm, it
is possible to obtain the axial (sagittal) and meridional (tan-
gential) powers denoted byPa andPm, respectively. The
optical powers can be calculated as follows

Pa = (nc − n′)Ka, Pm = (nc − n′)Km, (25)

wherenc is the refractive of the cornea andn′ is the re-
fractive index of the surrounding medium. In practice,nc

and n′ are considered as the keratometric refractive index
(nc = 1.3375) and the air refractive index (n′ ≈ 1), respec-
tively. In addition, in Eq. (25) the units of the optical powers
must be inverse meters (m−1), also known as diopters (D).

The spherical surface used to design the target inside the
truncated cone (see Fig.4), exhibits constant curvaturesKm

andKa, both equal to1000/7.8 m−1. Therefore, the corre-
sponding power distributionsPm andPa remain constant at
43.26 D, as illustrated in Figs.10a)and10b), respectively. In
contrast, Figs.10c) and10d) depict the power distributions
Pm andPa for the biconical surface under test, which is de-
fined by Eq. (12). The contour maps ofPm andPa form a
pattern classically known as bow-tie or hourglass [21]. The
presence of the bow-tie in both power maps indicates that the
corneal surface will produce the astigmatism aberration. The
orientation of the bow-tie coincides with the steeper meridian

FIGURE 10. Spherical surface: a) Meridional powerPm and b)
Axial powerPa. Biconical surface under test: c) Meridional power
Pm and d) Axial powerPa.
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denoted byL in Figs.10c) and10d), in this case the astig-
matism is classified as with-the-rule astigmatism. But if the
steeper meridian is closer to the horizontal axis, the astigma-
tism is called against-the-rule astigmatism [1].

5. Results of numerical simulations

Throughout this section, we recover the corneal topographies
that should be generated by each image affected by distortion
shown in Fig.5b) and Figs.6a) - 6f). Applying the recon-
struction algorithm described in Sec.4, we retrieve in each
case the shape of the surface under test which is represented
as a height map. In addition, in each case, a difference map
is used to show the deviations between the reconstructed sur-
face and the ideal surface, which is represented by Eq. (12)
and TableIII . Furthermore, we fit Eq. (12) to the Cartesian
coordinates(x, y, z) corresponding to the recovered surface,
to obtain the parameters of the biconical surface that best fits
the point cloud(x, y, z), with the aim of carrying out a com-
parison with the ideal values listed in TableIII .

Whenever the reconstruction algorithm is applied, us-
ing each image affected by distortion, a polynomial function
Ψ(x, y) given by Eq. (21) is obtained for each recovered sur-
face. UsingΨ(x, y), the axial and tangential powers are cal-
culated in accordance with the process described in Sec.4.2,
and both powers are shown in contour maps.

As mentioned before, from the change in image size due
to distortion aberration, the position of the points(xc, yc) on
the detection plane deviates from the actual position. As a re-
sult, the unit vector̂I given by Eq. (3) changes its direction;
therefore, the normal vectorŝn calculated using Eq. (19) also
undergo changes in direction. The above discussion suggests
that the reconstruction algorithm would recover a surface at
an incorrect position along theZ-axis or with a shape deviat-
ing from the actual surface.

5.1. Retrieving the corneal topography

Applying the reconstruction algorithm to each image affected
by distortion, we obtain the height, and the difference and
curvature maps, which are shown in rows in Fig.11. The
value for the coefficientσ, increasing from top to bottom,
appears at the bottom of Figs.11a)- 11g).

In Fig.11, all contour maps are shown in a square domain
[−6.1 mm, 6.1 mm]×[−6.1 mm, 6.1 mm]. We must note
that the maps plotted in Fig.11d)correspond to the synthetic
image without distortion (σ = 0) shown in Fig.5b). Further-
more, by fitting Eq. (12) to the recovered surface using the
least squares method implemented in the MATLAB toolbox,
we obtain the values for the radii of curvature (rx andrx), the
conic constants (kx andky) and the rotation angle (α). These
values are listed in TableVI .

Once the reconstruction algorithm was applied to all
cases, the surfaces were recovered close to the Origin of co-
ordinatesO. In order words, the closest surface to the ac-
tual surface is obtained when the surfaceG is positioned very

close toO, as depicted in Fig.7. This happens because the
distorted images are very similar to the image without distor-
tion in the central region. The amount of distortion is pro-
portional to the image size, as can be seen from the second
term on the right side of Eq. (18a) and Eq. (18b). Thevertex
positions of the recovered surfaces along theZ-axis, denoted
by tk, are listed in TableVI .

The conical profiles along the principal axes of the re-
trieved surface are plotted in Figs.12a)and12b), showing
the effects of distortion aberration at the periphery of the re-
covered surface. As the distortion coefficient increases and

FIGURE 11. Heights, differences and diopter powers recovered
from images affected by different degrees of distortion: a)σ1 =
−2.0 × 10−4, b) σ2 = −6.3 × 10-5, c) σ3 = −1.41 × 10−6,
d) σ4 = 0, e) σ5 = 1.41 × 10−6, (f) σ6 = 6.3 × 10−5, g)
σ7 = 2.0× 10−4.
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FIGURE 12. Conical profiles along a) thex-axis and b) they-axis
of the retrieved surface.

TABLE VI. Parameters corresponding to the biconical surface that
best fits the recovered surface.

Fig. [rx, ry] (mm) [kx, ky] α (◦) tk (µm )

11a) [8.350, 7.661] [-1.106, -0.774] 16.999 -3.636

11b) [8.344, 7.636] [-0.658, -0.425] 16.999 -1.188

11c) [8.349, 7.629] [-0.435, -0.254] 17.000 -0.311

11d) [8.349, 7.629] [-0.429, -0.249] 17.000 -0.293

11e) [8.350, 7.629] [-0.424, -0.245] 17.000 0.274

11f) [8.360, 7.627] [-0.184, -0.062] 16.999 0.408

11g) [8.415, 7.641] [0.435, 0.400] 16.999 1.757

transitions from negative to positive, the periphery of the
profiles moves closer to the horizontal axis, as shown in
Fig. 12. According on the values of the conic constantskx

andky, the profiles can be classified as follows: hyperboloid
(kx,y<−1), prolate spheroid or ellipsoid (−1<kx,y<0), and
oblate spheroid (0<kx,y) [32]. The profiles corresponding to
σ3, σ4, andσ5 are overlapped.

The values for the radii of curvaturerx andry tabulated
in TableVI , corresponding to the biconical surface that best
fits to the reconstructed surface, are close to the actual values
listed in TableIII . The percentage errorsErx andEry asso-
ciated withrx and ry are plotted in Fig.13a) and are less
than0.8%. Nevertheless, in some cases, the percentage er-
rors associated with the conic constantskx andky become
greater than 200%, as shown in Fig.13b). As a consequence
the periphery of the recovered surface deviates from the ac-
tual surface, in accordance with the difference maps shown
in Figs.11a)-g) and the profiles plotted in Fig.12.

If the shape of the reconstructed surface is used in the
adaptation of contact lenses, the corneal topographer may
suggest a base curvature for the contact lens that does not fit
properly to the anterior corneal surface. Furthermore, from
TableVII , kx andky become increasingly positive as the dis-
tortion coefficient increases. We can note that the values for
the conic constantskx andky, recovered using Fig.11g)(see
the last row of Table VI), have suffered a sign change. As a
consequence, from the powers maps shown in Fig.11g), the
bow tie apparently suffers a rotation of 90 degree,i.e., if the
camera distortion is not corrected, the corneal astigmtism

FIGURE 13. Percentage errors in: a) radii of curvaturerx andry,
b) conic constantskx andky and c) the rotation angleα. d) Devia-
tions ofpvm andpva with respect to the ideal values.

may be erroneously classified as against-the-rule astigma-
tism.

Another recovered parameter from the fitting is the an-
gle of rotation corresponding to each reconstructed surface.
Fig. 13c) shows the graph for the percentage errors associ-
ated with the angles of rotationα. The percentage errors,
represented byEα, are less than 3×10−5 %, i.e., in all cases
the angleα is very close to the true value. The latter can be
attributed to the proposed type of distortion aberration, since
it only affects the image in the radial direction. Addition-
ally, the vertex of the surface under test was proposed to be
aligned with the corneal topographer axis. The difference be-
tween the recovered surface and the actual surface is defined
as

∆S = ideal biconical surface− recovered surface. (26)

The peak-to-valley (pv) and root-mean-square (rms) er-
rors associated with∆S are given by

pv = max(∆S)−min(∆S), (27a)

rms =

√√√√√√
N∑

i

(∆S −∆S)2

N
, (27b)

wheremax() and min() calculate the maximum and mini-
mum of the values set in the parentheses, respectively.N
represents the number of points that make up the recovered
surface, and∆S denotes the mean value of the differences
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TABLE VII. Parameters calculated from the difference and power
maps shown in Figs.11a)-11f).

Fig. pv rms pvm pvs

11a) 206.65µm 48.24µm 23.06 D 15.64 D

11b) 55.46µm 12.92µm 16.37D 8.52D

11c) 1.10µm 0.254µm 12.590 D 6.97 D

11d) 46.32 nm 12.86 nm 12.49 D 6.93 D

11e) 1.19µm 0.27µm 12.40 D 6.89 D

11f) 47.30µm 10.97µm 7.917 D 6.03 D

11g) 122.50µm 28.27µm 14.23 D 11.29 D

∆S. Thepv andrms errors are tabulated in Table VII.pv
andrms can be up to a few hundred microns, however, when
the distortion coefficient is zero [Fig.11d)], thenpv andrms
are of the order of some nanometers. The above highlights
the importance of minimizing distortion effects in the image
to achieve reliable and consistent corneal topography mea-
surements.

Additionally, we define the quantitiespvm andpva as the
peak-to-valley of the meridional power and the axial power,
respectively.They can be calculated as follows:

pvm = max(Km)−min(Km), (28a)

pvm = max(Ka)−min(Ka). (28b)

The recovered values ofpvm and pva are listed in Ta-
ble VII. The ideal values are 12.507 D and 6.938 D, corre-
spondingly. The latter values were calculated from the power
maps shown in Fig.10a) and 10b). The discrepancies be-
tweenpvm andpva and their actual values are denoted by
∆m = 12.507 − pvm and∆a = 6.938 − pva, respectively.
Figure13d) shows the plots corresponding to∆m and∆a,
it is clear that the deviations increase proportionally to the
magnitude of the distortion coefficients.

As mentioned before, laser ablation technique can be
used to reshape the anterior corneal surface for treating re-
fractive errors such as myopia, hyperopia and astigmatism.
The ablation laser uses the corneal topography to obtain
the optimal corneal curvature to reduce the refractive er-
rors [4–6]. However, if the corneal topographer uses images
affected by distortion aberration, the sagitta and the diopter
power deviates from the true values. As a consequence, the
ablation laser could remove undesired material from regions
of the anterior corneal surface, resulting in an overcorrection
or undercorrection of the refractive errors. From the results
obtained throughout this section, the importance of carrying
out a calibration procedure of the distortion aberration, as-
sociated with the optical system of the corneal topographer
camera, is highlighted.

6. Conclusions

Throughout this paper, we have presented an analysis of
the effects on corneal topography measurements when the

corneal topographer camera is affected by radial distortion
aberration. To carry out the analysis we used synthetic im-
ages calculated in numerical form and distorted using Sei-
del’s aberrations. These images theoretically correspond to
the images produced by the reflected light on a biconical
surface rotated about theZ-axis, which is considered as the
corneal surface under test. The corneal topographer in which
the calculations are based consists essentially of a smart-
phone and a truncated cone, while the target inside the cone
was designed using the Null Screen Method.

Several degrees of distortion, ranging from negative to
positive, were tested on the synthetic images, resulting in
changes in size. For example, pincushion and barrel distor-
tions cause image expansion and contraction, respectively.
While qualitative inspection of the distorted images might
initially suggest that the surface under test is displaced from
the ideal position, or that its radius of curvature deviates from
the average human cornea, once the reconstruction algorithm
was applied, the results showed that the surface retrieved by
the algorithm was located very close to the true position of
the vertex. For the cases considered in this study, although
the radii of curvature exhibited minimal deviations (less than
0.8%), the conic constants displayed significant errors (up
to 200%) due to the discrepancies between the reconstructed
surface and the ideal surface particularly in the periphery. If
the reconstructed surface is used in the adaptation of contact
lenses, this could lead to inaccurate contact lens fitting, as
the base surface would not be suitable. Moreover, in order
to reshape the anterior corneal surface via laser ablation, it
is essential to conduct a preoperative assessment of the pa-
tient’s corneal topography. However, as we have shown, if
the corneal topographer camera introduces distortion aberra-
tion, then the corneal topography deviates from the true val-
ues. As a consequence, the ablation laser may remove ma-
terial from undesired regions of the anterior corneal surface,
which could result in overcorrection or undercorrection of the
refractive errors. Therefore, the results presented in this pa-
per emphasize the critical importance of calibrating distortion
aberration in corneal topographer cameras to ensure accurate
and reliable results in the assessment of human corneal to-
pography.
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7. Y. MejÃa-Barbosa and D. Malacara-Hernández, A Review of
Methods for Measuring Corneal Topography,Optometry and
Vision Science78 (2001) 240.

8. J. M. Jalife-Chavira, G. Trujillo-Schiaffino, P. G. Mendoza-
Villegas, D. P. Salas-Peimbert, M. Anguiano-Morales and L. F.
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