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Numerical phase shift analysis of nucleon-nucleon
systems with Hellmann plus spin dependence

B. Khiralia,∗, B. Swainb, S. Lahab, D. Naikb and U.Lahab

aDepartment of Physics, Netaji Subhas University, Jamshedpur, 831012, India.
∗e-mail: b.khirali720@gmail.com; https://orcid.org/0000-0001-7200-1828

bDepartment of Physics, National Institute of Technology, Jamshedpur, 831014, India.
e-mails: biswanathswain73@gmail.com; https://orcid.org/0000-0002-9149-8857

lahas.bol@gmail.com
n.dibakar2001@gmail.com; https://orcid.org/0009-0001-1465-8511

ujjwal.laha@gmail.com; https://orcid.org/0000-0003-4544-2358

Received 9 October 2024; accepted 28 November 2024

The scattering phase shifts for quantum mechanical potential scattering by local interaction can be computed without solving the Schrödinger
equation. This can be done by numerically solving the phase equation from the origin to the asymptotic region. Phase Function Method
(PFM) is regarded as a resourceful method for calculating scattering phase shifts in quantum mechanics. We utilize the PFM to handle the
Hellmann plus spin-orbit interaction. Our approach uses a five-parameter potential model to compute the scattering phase shift. Our results
for nucleon-nucleon systems closely match previous findings.
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1. Introduction

In the early 1940s, the search was on for the needed cor-
rection in the potential to give proper magic numbers. Fi-
nally, success came from Mayer [1], Haxel [2], and others,
who showed in 1949 that separation of the subshells could be
generated by including spin-orbit potential. At first, atomic
physicists used the idea of a spin-orbit to explain the fine
structure of spectral lines. This arises from the electromag-
netic interaction between the magnetic field generated by
electrons moving around the nucleus and the electrons’ mag-
netic moment. Although electromagnetic spin-orbit effects
[3] are typically minimal, of the order of one part in105 in
the spacing of atomic levels, it is not strong enough to sup-
port adequate changes in nuclear level spacing, required to
generate the observed magic numbers. Therefore, we adopt a
similar form for the atomic spin-orbit concept but for nuclear
potential. One gluon exchange (OGE) [4] can be regarded
as a viable source for velocity-dependent potential like spin-
orbit coupling, which is exhibited by the strong polarization
found in the scattering of nucleons by nuclei as well as by the
substantial splitting between levels of a doublet explained in
terms of a shell model. The precise dynamical origin of the
strong nuclear spin-orbit force is not fully resolved [5], but
the atomic physics analogy of the force hints at a relativis-
tic effect. Empirical data implies the dominance of static-
type (velocity-independent) nuclear potentials at somewhat
low energies for the incident particles. However, at higher
energies, forces depend on the relative nucleonic momentum
P = P1 − P2. Here,P1 andP2 are the individual nucleons’
momenta, and according to Galilean invariance, the interac-

tion is determined solely by the relative motionP between
the two particles, not their absolute motion at any given time
during the interaction. To first order approximation inP , the
possible scalars that could be formed are(~r · ~P ), (~S · ~P ) and
(~r× ~P ) · ~S, out of what first violates time reversal invariance.
In contrast, the second one violates parity [3]. Therefore, for
two-body interactions, the only viable spin-orbit coupling is
VSO(r)((~r × ~P ) · ~S). Here,VSO(r) is the spin-orbit poten-
tial with the form factor of central potential with differing
parameters, andr is the relative inter-nucleon distance. The
expectation value of the spin-orbit interaction is proportional
to 2 < ~L · ~S >= J(J + 1) − L(L + 1) − S(S + 1) where
the notationsL, S andJ stand for the orbital angular mo-
mentum, spin angular momentum and the total angular mo-
mentum respectively. Although traditionally, the spin-orbit
potential is a surface term and is proportional to1/r(dV/dr)
[6-8], as its effect is piqued at the edge of the nucleus, and
the spin density vanishes inside the nucleus. However, we
adapt the Hellmann-like spin-orbit term, adding it to the cen-
tral Hellmann potential, hypothesizing that it will take care
of the varying effects of the interior and surface of the nu-
cleus with suitable parameterization of the potential. It is also
well known that the form of the potential in spin-orbit term
VSO(r)(~L · ~S) is not that vital [3], but it is the(~L · ~S) fac-
tor which contributes significantly to reordering the levels.
A significant spin-orbit coupling potential appears advanta-
geous in explaining high-energy data, according to Signell &
Marshak [9] and Gammel & Thaler analyses [10].

The Hellmann potential, first proposed by Hellmann [11-
13], is the superposition of the attractive electromagnetic
potential, and the Yukawa potential isV (r) = −a/r +
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b(e−cr/r). Here, c is the screening parameter [12], and
a and b are the strength parameters of the Coulomb and
Yukawa potentials. For the sake of the potential’s signif-
icance in atomic physics, many works [14-21] have been
carried out in all the limits of quantum mechanics. Rela-
tively recent studies [15-17,22-24] focus on treating the Hell-
mann potential in quantum mechanics with non-relativistic
and relativistic bound state problems. The Hellmann poten-
tial model finds many applications in physics, namely the
electron-ion inner-shell ionization problem [25], the electron-
core problem [26], solid-state physics [27], alkali hydride
molecules [28], etc. The present text addresses the study
of nucleon-nucleon phase shift analysis through the variable
phase method [29], briefly highlighted in Sec. 2. Section 3 is
for our results and discussion. We finally conclude in Sec. 4.

2. Methodology

The phase-function method (PFM) [29] is a powerful numer-
ical technique that works well as an alternative to the tra-
ditional Schr̈odinger equation approach. Recent works by
our group [30-32] deal with this methodology in a somewhat
lower energy region. The methodology is based on the possi-
ble reduction of second-order linear homogeneous equations
to first-order nonlinear Riccati or phase equations, as given
below.

δ′`(k, r) = −k−1V (r)[cos δ`(k, r)ĵ`(kr)

− sin δ`(k, r)η̂`(kr)]2, (1)

where ĵ`(kr) and η̂`(kr) are the Riccati-Bessel functions
[33]. The resulting Phase equations [29-32] for` = 0, 1 and
2 read as

δ′0(k, r) = −k−1V (r)[sin(δ0(k, r) + kr)]2, (2)

δ′1(k, r) = −V (r)
k3r2

[sin(δ1(k, r) + kr)

− kr cos(δ1(k, r) + kr)]2, (3)

and

δ′2(k, r) = −k−1V (r)
( [

3
k2r2

− 1
]

sin(δ2(k, r) + kr)

− 3
kr

cos[δ2(k, r) + kr]
)2

. (4)

Herek stands for centre of mass momentum and is related to
the centre of mass energyE as

√
2mE/~. The termδ`(k, r)

is called the phase function, which satisfies the phase equa-
tion given by Eq. (1). This has the meaning of the phase shift
of the wave function for scattering by the potential at each
point, finally truncated at a distancer. This implies that the
step size of the variable ‘r’ is crucial in accumulating phase
shifts within the interaction range. Thus, one needs to opti-
mize the step size judiciously to obtain close phase parame-
ters. With the initial conditionδ`(k, 0) = 0, phase equations

given by Eqs. (2)-(4) are solved numerically for the potential
under consideration to compute the phase shifts of the scat-
tering in different states in line with the established data. The
effective Hellmann potential [11-13,30] in all partial waves is
written as

VHM (r) = −a

r
+ b

(
e−cr

r

)
+

`(` + 1)
r2

, (5)

and the effective spin-orbit coupling is taken as

VSO(r) =
(
− a′

r
+ b′

[
e−c′r

r

] )
(~L · ~S). (6)

The effective equivalent nuclear potential under investigation
for uncharged hadrons is thus

V (r) = VHM (r) + VSO(r). (7)

All the five parametersa, b, c, a′ andb′ of the total potential
V (r) have the unit offm−1. In order to treat the charged
hadron systems, one needs to add an electromagnetic interac-
tion with the nuclear potential

V (r) = VHM (r) + VSO(r) + VC(r). (8)

We consider the electromagnetic potentialVC(r) = 2kη/r as
the long-range part of the effective interaction, which is theo-
retically extended to infinity. Here,η represents the Sommer-
feld parameter. The pure Coulomb potential, in theory, has
long-range limitless interaction. In practice, it screens out
after a certain distance, as the Coulomb potential becomes
trivial after a finite distance.

3. Results and discussion

By exploiting Eqs. (2)-(4) in conjunction with Eqs. (7)-(8),
we parameterize the nuclear Hellmann potential with the
spin-orbit term byR2 fitting method in our MATLAB pro-
gramme to reproduce the existing standard phase parameters
in the literature [34] of different states of the(n − p) and
(p−p) systems. The phase shifts reproduced by sophisticated
potential models, which yield an accurate fit to all experimen-
tal data currently accepted for elastic nucleon-nucleon scat-
tering, are regarded as standard phase parameters in the liter-
ature. The best-fitted potential parameters for various states
of the(n − p) and(p − p) systems are given in Table I. The
optimized step sizes have also been included in Table I.

For our scattering phase shift calculation, we have used
the exact values of~2/2m = 41.47 MeV fm2 for both(n−p)
and(p− p) systems, respectively. Here,m represents the re-
duced mass of the respective systems. This article studies the
neutron-proton(n− p) and proton-proton(p− p) scattering
phase shifts for̀ = 1 and 2. Figures 1-3 elucidate our values
of phase shifts against the established phase shift results [34]
for various(n − p) and (p − p) triplet scattering states, as
mentioned in Table I.
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TABLE I. List of parameters for(n− p) and(p− p) systems.

System States a(fm−1) b(fm−1) a′(fm−1) b′(fm−1) c(fm−1) Step-size
3P0 1.10 −4.0 0.50 −0.7 0.46 0.0034
3P1 0.80 −2.30 0.45 −0.6 0.6 0.0045

(n− p) 3P2 0.15 −3.30 0.07 −4.5 0.91 0.0200
3D1 0.90 0.20 0.20 1.2 0.30 0.0102
3D2 0.02 −5.5 0.26 11 0.52 0.0290
3D3 0.34 −7.5 0.35 −2.1 0.79 0.0340
3P0 1.10 −4.0 0.50 −0.7 0.44 0.0036

(p− p) 3P1 0.80 −2.3 0.45 −0.60 0.58 0.0052
3P2 0.15 −3.3 0.07 −4.5 0.90 0.0186

FIGURE 1. (n − p) P-wave scattering phase shifts as a function
of laboratory energy. Standard data are from [34] andhttps:
//nn-online.org/NN/ .

FIGURE 2. (n − p) D-wave scattering phase shifts as a function
of laboratory energy. Standard data are from [34] andhttps:
//nn-online.org/NN/ .

It is evident from Figs. 1-3 that, up to a laboratory energy
of 200 MeV, our phase parameters for various states of the P-

and D-wave of the(n−p) and(p−p) systems closely match
with those of Perezet al. [34]. Although the calculation in the
energy region 200- 350 MeV may need an energy-dependent
Hellmann-like spin-orbit interaction, we wish to check our
current model calculation in this energy range to see to what
extent our simplified model regenerates the scattering observ-
ables. The scattering phase shift data for P-waves in both the
(n− p) and(p− p) systems within the energy range of 200-
350 MeV, discern by approximately4◦ from other established
calculations [34]. However, they follow a trend similar to
those reported in Ref. [34] in this energy range. But our scat-
tering phase shift data for the D-wave of the(n − p) system
are in good agreement with the data of [34]. The goodness of
fit can be assessed from theR2 values for different states of
then− p andp− p systems. Finding phase shifts for differ-
ent states of then − p system up to 200 MeV, the respective
R2 values are3P0 (0.953), 3P1 (0.984), 3P2 (0.987), 3D1

(0.994),3D2 (0.990), and3D3 (0.923), whereas for the p-p
system, the values are3P0 (0.969), 3P1 (0.986), and3P2

(0.985).

FIGURE 3. (p − p) P-wave scattering phase shifts as a function
of laboratory energy. Standard data are from [34] andhttps:
//nn-online.org/NN/ .
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The R2 values for the mentioned fit, being very close to 1,
show our curves’ higher goodness of fit to the available data.
However, in the energy range 200−350 MeV, the respective
R2 values of all the states of P-waves of both systems are not
very close to 1. Still, these values also suggest our data agree
with available data [34]. On the other hand, theR2 values
for D-wave(n − p) scattering phase shifts are a little lower
than those in the energy region up to 200 MeV but close to
1, indicating our model reproduces the standard phase shift
data [34] in the higher energy region very well. The Hell-
mann plus Hellmann-like spin-orbit interaction successfully
regenerates the phase shifts with respect to the previously es-
tablished data [34] for then−p andp−p systems, suggesting
that our approach is robust and reliable. For(p − p) triplet
states3P0, 3P1 and 3P2, we keep all the strength parame-
ters identical as those of(n − p) states3P0, 3P1 and 3P2.
However, a slight adjustment has been made only in the in-
verse range parameterc, which affects both the central nu-
clear and spin-orbit terms slightly but not considerably. The
reason for not changing the strength values is that the nuclear
force does not distinguish between(n − p) and(p − p) in-
teractions, as neutrons and protons are treated the same as a
nucleon. Therefore, similar parameters for the strong nuclear
environment are expected for similar states of two-nucleon
interactions independent of their charge. However, Coulomb
force is associated with(p − p) interaction, which we have
taken care of by adding additional coulomb terms to existing
nuclear and spin-orbit terms as in Eq. (8). In the case of the
3P0 state of(p−p), we only changec = 0.44 instead of0.46
(in the case ofn− p), whereas for the(p− p) 3P1 state,c is
taken to be0.58 instead of0.6. For the(p− p) 3P2 state, we
adoptc = 0.9 instead of0.91 for the proper parameterization
of the nuclear and coulomb effects.

We have chosen the values of the strength parametersa
anda′ to be positive as we want the first terms of both the
central and spin-orbit terms of our potential in Eqs. (7)-(8)
to be attractive only, the other strength parametersb andb′

are allowed free run in the numerical routine for both posi-
tive and negative values to adjust the shape of the potential
for adequate parameterization properly. The range of any po-

FIGURE 4. (n− p) P-wave potentials as a function ofr.

FIGURE 5. (n− p) D-wave potentials as a function ofr.

FIGURE 6. (p− p) P-wave potentials as a function ofr.

tential has to be positive values only; thus, parameterc has
been assigned only positive values.

As nuclear potential depends on spin to a great extent and
thus on different states, therefore each one of the states of P
and D-waves of(n − p) interaction and states of the P-wave
of (p − p) interaction has to be singularly parameterized in
order to reproduce the actual inter-nucleon interaction field
as shown in Figs. 4-6.

Looking at Figs. 4-6, one observes that the higher the in-
verse range parameterc for a certain state, the sooner the po-
tential approaches zero for that state, as the interaction range
r for an individual state is given by1/c. For all states, we
draw the potential up tor = 5 fm in order to have a vivid
view of the extensive nature of the potential.

With high energy, the probability of the projectile pene-
trating the nuclear range of interaction gets higher, and it ad-
equately feels the spin-orbit effect, which helps in the correct
regeneration of the actual nuclear phenomenological field.
With even higher incident energy of the particles at about
200 MeV, we see a reversal of the phase shift for the3P0

state in both(n − p) and (p − p) scattering in Figs. 1 and
3, which suggests a repulsive hardcore is being encountered.

Rev. Mex. Fis.71031202
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Our equivalent nuclear potential has starkly addressed this
effect.

4. Conclusion

Phase shift analysis of the charged and uncharged funda-
mental nucleon-nucleon interactions for motion in the Hell-
mann [11-13] plus Hellmann-like spin-orbit interaction field
[Eq. (6)] for higher incident particles’ energy up to 350 MeV
in higher partial waves has been put to test using phase func-
tion methodology [29]. With five parameter potential, we ob-
serve very good fitting in phase shift parameters for all the
P-wave and D-wave triplet states of then− p scattering, and
the P-wave triplet states of thep− p scattering, have been re-
produced [34]. Our findings demonstrate that the high energy
scattering data up to 200 MeV can be explained if the nu-
clear interaction has two characteristics: a strong spin-orbit
coupling, possibly in the outer region, which bears the same
exchange character as that of pion theoretical potential, and a
hard-core-like repulsive force in the inner region. Typically,
np or pp data for various states are fitted to create nucleon-
nucleon potentials. Phase parameters up to 350 MeV are re-
produced using several sophisticated potential models, which
include spin-orbit and tensor interactions. Since our model
potential is essentially molecular, we should not claim that it

is better than the more complex models that exist in the liter-
ature. However, when used in the nuclear realm, this simple-
minded molecular potential may fairly accurately reproduce
phase shifts throughout a broad energy range. We have just
checked that our model has the capability of reproducing re-
quired scattering observables in the energy range of 200-350
MeV to a reasonable extent, which may excellently explain
these data if the energy-dependent Hellmann-like spin-orbit
interaction replaces the Hellmann-like spin-orbit interaction.
Having success in the present work, we are motivated to up-
grade to the polarization effect calculation of the scattered
particles for unpolarized incident and target particles. How-
ever, calculating polarization will require phase parameter
calculation for the triplet state (3S1 state), even though the
specified state cannot have any spin-orbit contribution. We
also look forward to working with spin-orbit coupling, in-
cluding second-order approximation of momentum.
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