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Modeling the link between carbon emissions and ocean
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We study the possibility that the dynamics of carbon emissions and aragonite saturation in sea water can be modeled with a non-linear
coupled system of two Ordinary Differential Equations. In total, there are seven parameters plus two initial conditions that we fit in order to
adjust experimental data. For the fitting, we use two independent methods: Genetic Algorithms and Monte Carlo Markov Chains, both useful
at fitting in high-dimensional parameter spaces. The data for the carbon emissions we deal with is obtained from several sources dedicated to
monitoring the changes in these emissions over time. We calculated aragonite saturation using a combination of carbon chemistry measures
from two stations. Our findings show that with this combination of ODEs and the fitting methods chosen, these two phenomena can be
reproduced within an 8% error.
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1. Introduction

Since the beginning of industrialization, burning fossil fuels
were used to power emerging factories, the concentration of
atmosphericCO2 has been steadily increasing. At the on-
set of this period, the concentration ofCO2 was approxi-
mately 280 ppm. However, current measurements indicate
that the concentration has risen to∼ 425 ppm, a considerable
and important level when compared to historical geological
records. Analyzing ice cores from Antarctica provides an un-
derstanding of changes in carbon concentrations in the atmo-
sphere. For the last 800,000 years, the concentration ofCO2

has never surpassed 300 ppm [1]. To findCO2 concentration
levels similar to current levels, we must go back 3 million
years to the Pliocene epoch. During this period,CO2 con-
centrations ranged from 365 to 415 ppm [2].

Although the concentration ofCO2 in the Pliocene epoch
and the present day is similar, temperatures during the
Pliocene epoch were about 3 to 4◦C warmer than preindus-
trial levels. Additionally, sea levels were significantly higher,
ranging from 5-25 meters [3]. The combination of higher sea
levels and temperatures, along with elevatedCO2 concentra-
tions, occurred during a period in Earth’s history when the
planet was in a state of equilibrium. This is in contrast to
the current situation, where sea levels are still rising. The
Pliocene epoch serves as an example of this phenomenon, al-
though the mechanisms that led to those conditions are still
being studied.

In the context ofCO2, the oceans serve as an ally by ab-
sorbing approximately 30% of anthropogenicCO2 emissions
[4]. However, this process also leads to the acidification of
the oceans. To have a better explanation of this phenomenon,

it is necessary to use the basis of the carbon chemistry in sea-
water. This chemistry can be represented by the following
chemical reactions:

CO2(aq) + H2O ­ H2CO3, (1)

H2CO3 ­ HCO−3 + H+, (2)

HCO−3 ­ CO−2 + 2H+, (3)

when carbon dioxide in the atmosphere dissolves in water,
it forms carbonic acid (H2CO3), which quickly dissociates
by losing a hydrogen ion (H+) to form two ions: bicarbon-
ate (HCO−3 ) and carbonate (CO−2 ). These reactions are re-
versible and tend to reach equilibrium [5]. Under normal
conditions, the exchange ofCO2 between air and sea reaches
equilibrium within a year [6]. Adding moreCO2 to the atmo-
sphere and consequently to the ocean alters the equilibrium
and creates more hydrogen ions, this increase of hydrogen
ions results in the ocean becoming more acidic. This excess
of hydrogen ions disrupts the equilibrium in Eq. (3), and is
led towards the left side, which creates more (H+) by con-
suming more carbonate ions (CO−2 ).

Since the industrial era, the pH of the ocean surface wa-
ter has decreased by nearly 0.1 [7]. The saturation state (Ω)
determines whether the structures of carbonate minerals form
or dissolve, and can be represented by the following equation
[8]:

Ω =
[Ca2+]seawater[CO2−

3 ]seawater

[Ca2+]saturation[CO2−
3 ]saturation

, (4)

whereseawaterrepresents in situ concentrations andsatura-
tion refers to mineral saturation concentrations. The concen-
tration of calcium is relatively uniform and is not changing in
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the ocean, which means that the saturated state is determined
by the carbonate (CO−2 ), which leaves us with the following
equation:

Ωar =
[CO2−

3 ]seawater

[CO2−
3 ]saturation

. (5)

For supersaturated conditions (Ω > 1) CaCO3 will tend to
grow, whereas for undersaturated conditions (Ω < 1) will
decrease. The continuous decrease of[CO2−

3 ](seawater) pro-
vokes that the saturation state turns undersaturated. The satu-
ration of aragonite (Ωar), which is a mineral form ofCaCO3,
is a crucial component to the formation of shells and skele-
tons in marine organisms. Coral reefs are highly vulnerable
to changes in aragonite saturation levels. A decrease in sat-
uration can lead to coral bleaching, which is a significant is-
sue, because coral reefs are home to approximately one-third
of the world’s marine fish [9].

In this paper we model the dynamics of these two vari-
ables using first order differential equations coupled through
a term of interaction: 1) Carbon emissions derived from fossil
based fuels and land use changes, and 2) Ocean acidification.

The reminder of the paper is organized as follows. In
Sec. 2 we describe the data used and its pre-processing be-
fore fitting, as well as the mathematical model. In Sec. 3 we
describe the two methods used to fit the parameters of the
system, in Sec. 4 we present the fitting results, in Sec. 5 we
discuss such results and in Sec. 6 we compare the context of
our work with other studies and methodologies. Finally in
Sec. 7 we draw some conclusions.

2. Data and model

Nowadays the leading cause of increasing carbon dioxide
emissions released into the atmosphere is the use of fossil fu-
els. Before the industrial revolution, land-use changes were
the primary cause ofCO2 emissions [10]. Although this con-
tribution has decreased, it still remains a significant factor.
This contribution, estimated to be between 22 and 43 ppm
up to the year 2000 [11], is small compared to the use of
fossil fuels but not insignificant. Also by the year 2000, the
saturation state of aragonite has decreased to∼ 84% of pre-
industrial values [12], and this percentage is expected to con-
tinue to decrease. This trend is represented in Fig. 1.

2.1. Data ofCO2 emissions

The model incorporatesCO2 emission data in the form
of time series from two primary sources: fossil fuels and
land-use emissions, with each source using three distinct
datasets. Regarding the use of fossil fuels, the model inte-
grates time series data from the following sources: Global
Carbon Project (GCP), whose methodology and data are
outlined in Ref. [13]; Community Emissions Data System
(CEDS), detailed in Ref. [14] with accompanying data in
Ref. [15]; and Emissions Database for Global Atmospheric

FIGURE 1. CO2 emissions since the year 1850 from Global Car-
bon Project data due to land-use change, fossil fuels and the sum of
both.

Research (EDGAR), described in Ref. [16], with data
sourced from [17]. These datasets are shown in Fig. 2. There
are multiple estimates ofCO2 emissions due to various fac-
tors, including the emissions considered, the methodology
used, and the uncertainties associated with data collection
and processing. A comprehensive study in Ref. [18] dis-
cusses these factors in detail.

The flux of CO2 emissions associated with land use
change includes, but is not limited to, fluxes from deforesta-
tion, afforestation, logging and forest degradation. Two ap-
proaches for estimating the flux ofCO2 from land use change
are the following: OSCAR [19] and the work of Houghton
and Castanho [20], the third dataset is that of the GCP. The
data of the first two approaches are reported in the GCP, a
representation of these three datasets is shown in Fig. 2.

In summary, we have three sets of data of emissions due
to fossil fuels and three due to land-use change. We fit the
parameters of the model to the nine combinations of the data
sets in Fig. 2.

2.2. Aragonite saturation data

In our analysis we use the inorganic carbon chemistry to cal-
culate aragonite saturation data from surface seawater sam-
ples. The samples were collected from two programs: the
Bermuda Institute of Ocean Sciences (BIOS) and the Hawaii
Ocean Time-series (HOT) programs. BIOS encompasses two
stations: Hydrostation ’S’ and the Bermuda Atlantic Time-
series Study (BATS). Surface data used to fit our model
were obtained from [21], providing parameters such as to-
tal alkalinity (ALK), dissolved inorganic carbon (DIC), dis-
solved oxygen (DO), temperature, and salinity. Addition-
ally, long-term Oligotrophic Habitat Assessment (ALOHA)
data from the HOT station [22] supplied DIC, temperature,
salinity, as well as the reduced isotope ratioC13/C12 of DIC
(δ13C−DIC) and ALK.
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FIGURE 2. a) CO2 emissions due to fossil fuels from three sources EDGAR, GCP and CEDS datasets. b)CO2 emissions from the three
data bases OSCAR, GCP and Houghton & Castanho, due to land-use change.

FIGURE 3. The surface aragonite saturation (Ωar) is presented as a function of time. a) The saturation calculated for the HOT station data,
which has been monitoring seawater conditions since 1988. b) The resulting saturation for data from the BIOS station seawater chemistry
data, which has been monitored since 1983. In both instances, aragonite saturation data was calculated using the CO2SYS software tool.

A limitation of existing data on seawater chemistry is the
absence of a standardized, global time series. In contrast,
there is a wealth of data on carbon obtained from various
stations dedicated to this purpose, and the locations for the
ocean time-series are located in coastal regions, which com-
plicates the measurements. This challenge was further en-
hanced by the disruptions caused by the pandemic and the
nature of the ocean. Both the HOT and BATS programs are
regarded as the baseline for ocean measurements. A thor-
ough examination of these challenges and a more effective
approach to establishing a consistent ocean time series can
be found in Ref. [23].

The carbon chemistry data was analyzed and aragonite
saturation was determined using the CO2SYS tool. This soft-
ware was originally developed for MS-DOS [24] and has
since been adapted to other platforms, including MATLAB
[25] and Python [26]. The version used in this study is [27].
This tool is designed to calculate parameters related to the
marine carbonate system. The user inputs essential factors
such as temperature, salinity, alkalinity, DIC and pH. The

software uses equilibrium chemical processes and constants
to calculate the quantities of DIC species, includingCO2,
HCO−3 , andCO2−

3 . CO2SYS provides valuable information
on seawater pH, alkalinity, and carbonate chemistry, includ-
ing saturation states of calcium carbonate minerals, by con-
sidering the interactions among these species. The aragonite
saturation for the BATS and ALOHA datasets set are shown
in Fig. 3.

In our fitting process we use the nine combinations of
CO2 emissions, in turn combined with these two data sets for
aragonite saturation and finally have a total of eighteen data
set combinations.

2.3. Data filtering

The data presented above can be quite intricate, as they may
contain high-frequency modes that complicates modeling.
However, if the amplitudes of these high-frequency modes is
relatively small compared to those of the low-frequency ones,
it becomes useful to filter and focus only on high-amplitude
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FIGURE 4. At the top we show the Fourier Transform of data sets of aragonite saturation from Fig. 3. The main peak corresponds to the
dominant mode2πω > 1. We filter the modes with higher frequencies beyond this threshold. This filtering process eliminates subdominant
high-frequency components, and allows one to focus on the dominant modes of the signal. At the bottom we show the resulting filtered data
along with the original raw data from Fig. 3.

dominant modes. To achieve this, we decompose in Fourier
modes calculating the discrete Fourier Transform to data, fil-
ter high frequencies and retrieve the signal with the inverse
Fourier Transform.

On the top of Fig. 4 we show the Fourier Transform of
data in Fig. 3 in the frequency domain. Notice that the am-
plitudes for2πω > 1yr−1 are not as significant as those for
lower frequencies. We then use a low-pass filter that cancels
the Fourier modes of frequencies higher than the threshold
2πωthreshold = 1. The filtered data are shown in the bottom
part of Fig. 4.

2.4. The mathematical model

We propose a simple model based on a non-linear coupled
system of equations for the two variables and investigate
whether it serves to fit the data. The set of equations we
employ is a system similar to the Lotka-Volterra model as
follows:

d(CO2)
dt

= a(CO2) + b(CO2)2 + c(Ωar)(CO2), (6)

d(Ωar)
dt

= −d(Ωar) + e(Ωar)2 − f(Ωar)(CO2)

+ g sin(ωAt + φ), (7)

whereCO2 is the total carbon emissions andΩar is the arag-
onite saturation. The linear terms in each equation

are,a(CO2), the injection rate of carbon dioxide to the
oceans, and similarlyd(Ωar), the rate of aragonite saturation.
The non-linear terms,b(CO2)2 ande(Ωar)2, are non-linear
terms of logistic type, that prevent exponential growth or sud-
den decline. The non-linear terms,(Ωar)(CO2), on the right
hand side of each equation model the coupling between these
two variables,g andωA are coefficients that introduce an os-
cillatory component in the aragonite equation,g determines
the amplitude of the oscillation of angular frequencyωA. The
termsin(ωAt + φ) is a source with a phase lagφ.

System (6)-(7) contains the two non-linear crossed terms
with coefficientsc andf , however it is expected that arago-
nite does not affect the emissions ofCO2 and thereforec is
disregarded. In addition, it is necessary for the termsd(Ωar)
andf(Ωar)(CO2) to be negative due to the decreasing sat-
uration of aragonite. The terma(CO2) must be positive as
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CO2 emissions continue to increase. The model used is fi-
nally as follows:

d(CO2)
dt

= a(CO2) + b(CO2)2, (8)

d(Ωar)
dt

= −d(Ωar) + e(Ωar)2 − f(Ωar)(CO2)

+ g sin(ωAt + φ). (9)

This is the model we expect to serve as framework for under-
standing the correlation between climate change and ocean
acidification. Then what follows is the description of the fit-
ting method of the seven parameters in the equations and the
two initial conditions that work also as parameters to be fit-
ted.

3. Fitting methods

3.1. Genetic algorithm

The fitting consists in searching for the values of the con-
stantsa, b, d, e, f, g, φ and the initial conditions for the dy-
namical variablesCO2(0) andΩar(0) in the equations of the
model (8)-(9), such that the solutions have the smallest pos-
sible error.

The fact that this is a set of nine fitting parameters offers
certain difficulty, added to the complexity that the equations
are not fitting functions to be evaluated for each combina-
tion of trial parameters, but a system of coupled ODEs to be
solved for each combination of parameters. The first strategy
we implement to fit these parameters is a Genetic Algorithm
(GA), whose specifications are as follows.

1. First, each individual within the population is char-
acterized by itsDNA = (z1, z2, . . . , zNgenes), where
Ngenes represents the total number of genes. This
DNA comprises all the parameters in the model equa-
tions along with the initial conditions of the model
equation(a, b, d, e, f, g, φ, Ωar(0), CO2(0)).

2. We evaluate an individual’s suitability for solving the
presented problem by employing afitness function.
Each individual, with itsDNA will define a unique set
of Eqs. (8)-(9). This set of equations is then solved and
the resulting solution is compared with the observed
data from Secs. 2.1 and 2.2. Assuming experimental
data are the set~X = (X1, X2, . . . , XN ), and that the
solution of the equations of a given individual evalu-
ated at the same time as data are~x = (x1, x2, . . . , xN ),
we define the fitness function as the Mean Absolute
Percentage Error (MAPE):

f(~x, ~X) =
1
N

N∑

i=1

∣∣∣∣
Xi − xi

Xi

∣∣∣∣
−1

. (10)

3. An initial population is constructed as the initial gener-
ation. Once generated, for simplicity we apply adiffer-
ential mutationto the entire population since the first
generation on. This mutation involves the random se-
lection of three individuals from the population and
generating a new individual using the following for-
mula. AssumingDNA1, DNA2, andDNA3 repre-
sent theDNA of three individuals with solutions~x1,
~x2, and~x3 respectively, the new individual is defined as
znew,j = z1,j +α

∑Ngenes

i=1 (z2,i−z3,i), whereα is a scal-
ing factor with a value ofα = 0.5. This new individual
provides a solution~xnew. If f(~xnew, ~X) < f(~x1, ~X),
we replace the individualDNA1 with DNAnew; oth-
erwise, the population remains unchanged.

4. Once the original individuals have undergone muta-
tion, the next step is to select the succeeding genera-
tion. Given a population of sizeNpopulation, we choose
Nparents < Npopulation individuals, referred to as par-
ents, to constitute the next generation of individuals.
The selection process employs thetournament selec-
tion method, which involves picking a random group
of individuals who participate in a tournament of size
Ntournament. Once theNtournament individuals with the
highest adaptability have been determined (i.e., the in-
dividuals with the greatest fitness), they are chosen to
be part of the next generation. This process is repeated
until all Nparentsparents have been selected.

5. Once the parents have been selected, the subsequent
stepcrossoverand reproduce these individuals to ob-
tain the remainingNchildren = Npopulation− Nparentsin-
dividuals, referred to as children. The method for gen-
erating these children is straightforward: we randomly
select two individuals from the population without rep-
etition. From these two parents, we copy theDNA to
create a child using the following procedure: we gen-
erateNgenesrandom numbers between 0 and 1. If the
number in positionj is less than 0.5, then elementdj

is copied from the first parent; otherwise, it is copied
from the second parent forj = 1, 2, . . . , Ngenes. This
process is repeated until allNchildren children are gen-
erated.

6. Now, the children have the opportunity to acquire traits
that their parents do not possess through the process of
mutation. Mutation is carried out in a manner similar
to reproduction. Specifically,Ngenesrandom numbers
are generated. If the number at positionj is less than
0.5, then the elementdj is modified by replacing it with
βdj , whereβ is a random number within the range of
-1.1 to 1.1 forj = 1, 2, . . . , Ngenes.

7. Finally, we evolve the population duringNgenerationsby
repeating steps 1 to 6.
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3.2. MCMC method

A second strategy we use for estimating the parameters is the
use of Monte Carlo Markov Chain methods. For this purpose,
the Python libraryemcee, which implements an affine invari-
ant ensemble sampling method is employed [28,29]. The
specifications of the MCMC are the following:

1. Initialization of walkers: The walkers are initialized at
random points around an initial guess. This process in-
volves defining the number of walkers to use, ensuring
a broad exploration of the parameter space. Walkers
are split into two equal sets.

2. Walker updates: To update the position of a walkerθ(n)

in one subset, a walkerθ(j) is randomly selected from
the complementary set, proposing a new position using
the scheme:

Y = θ(j) + Z · (θ(n) − θ(j)), (11)

whereZ is a random variable from a distribution func-
tion g(z) satisfying:

g(z−1) = z · g(z). (12)

This distribution dictates the step size and direction.

3. Acceptance probability: The probability of accepting
the new position is computed as:

α = min
(

1, ZDθ−1 π(Y )
π(θ(n))

)
, (13)

whereDθ denotes the number of parameters to esti-
mate, andπ is the log-posterior probability, computed
as:

π = ` + p0, (14)

with ` representing the likelihood, which is:

` = −1
2

∑ (
Xi − xi

xerr

)2

. (15)

Here,xerr accounts for measurement errors in the data,
and is defined arbitrarily as 5% of the average values
of the measured variables; this term adjusts the weight
of each data point according to its measurement error,
ensuring that the model parameters are adjusted appro-
priately in response to the reliability of each measure-
ment.

4. Prior density function: The prior density,p0(θ), criti-
cal for constraining parameter values within a plausible
range, is defined as:

p0(θ) =

{
0 if θ ∈ Θ,

−∞ otherwise,
(16)

whereΘ represents the expected range of parameter
values. This function assigns a zero prior probability
to parameter values outsideΘ, effectively excluding
them from consideration in the model fitting process.

5. Random number generation and walker movement: A
random numberU is generated from a uniform distri-
bution. If U ≤ α the walker moves to the proposed
positionY .

6. Steps 2 to 5 are repeated for a defined number of it-
erations, discarding an initial percentage as the burn-in
phase to ensure convergence to the stationary distribu-
tion.

4. Results

Determination of model parameters.To start with, notice
that the value obtained for the natural frequency of arago-
nite saturation oscillation is related to the period, denoted
asTA = 2π/ωA = 1 yr. Essentially, this implies that the
oscillation frequency of aragonite precisely covers one year,
a parameter with a direct correlation to ocean temperatures.
Consequently, we initially setωA = 2π yr−1, the remaining
coefficients and initial conditions are determined using the
methods described above.

In the GA method, we employ a population of
Npopulation = 200 individuals, with a subgroup ofNparents=
50 individuals designated as parents. We set parental selec-
tion using the tournament mechanism with sizeNtournament=
10. The iterative evolution of the population was spanned a
total of 2000 generations.

For the estimation with the MCMC method, a variable
number of walkers, ranging from 32 to 50, were allowed to
explore the parameter space across 2400 iterations. The fol-
lowing parameter constraints were applied to ensure that the
sampled values remain within plausible ranges. Reflecting
the normalized nature of these parameters, the range for pa-
rametersa, d andf were set between 0 and 1, while parame-
tersb, e, andg were allowed to vary between -1 and 1. Con-
straints forφ and the initial conditions were set reasonably
according to visual references and graphical analyses of the
data.CO2(0) was set to range from 18 to 32, whileΩar(0)
was constrained between 3.4 and 4.8;φ was set between -
1980 and -1992. The constraints for the initial conditions
andφ varied according to the dataset,e.g., in some cases it
was more appropriate to use a range of 18 to 26 forCO2(0),
while in others a range of 24 to 32 was used, since applying
the same restrictions and initial points for all datasets would
not be meaningful.
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TABLE I. List of the eighteen combinations of the six datasets of carbon emissions with the two calculated datasets of aragonite saturation.
These scenarios represent the data sets fitted with the GA and MCMC methods.

Scenario Fossil Land-use Aragonite

1 EDGAR OSCAR BATS

2 EDGAR H & C BATS

3 EDGAR GCP BATS

4 GCP OSCAR BATS

5 GCP H & C BATS

6 GCP GCP BATS

7 CEDS OSCAR BATS

8 CEDS H & C BATS

9 CEDS GCP BATS

10 EDGAR OSCAR ALOHA

11 EDGAR H & C ALOHA

12 EDGAR GCP ALOHA

13 GCP OSCAR ALOHA

14 GCP H & C ALOHA

15 GCP GCP ALOHA

16 CEDS OSCAR ALOHA

17 CEDS H & C ALOHA

18 CEDS GCP ALOHA

TABLE II. Parameters and initial conditions for the eighteen scenarios ofCO2 emissions and aragonite saturation determined with the GA
method.

Parameters

Scenario a×10−2 b×10−5 d×10−4 e×10−4 f ×10−11 g φ CO2(0) Ωar(0)

1 1.78062 -6.71319 14.1911 -2.37143 89.08946 -0.38604 -1983.7758 25.39637 4.1386

2 1.92565 -5.37623 0.51377 -6.12854 35.70578 -0.38707 -1983.77506 22.71628 4.14274

3 1.06685 14.67125 0.132 -6.19577 2.62082 -0.38734 -1983.77521 25.27551 4.14179

4 1.641 -4.17001 21.9954 -0.33098 0.12335 -0.38638 -1983.77461 25.52286 4.13918

5 1.7381 -1.1915 0.67985 -6.07091 0.14086 -0.38763 -1983.77507 22.85301 4.1427

6 1.2548 6.61093 12.84953 -2.76727 6.24815 -0.38772 -1983.77526 25.39623 4.14075

7 2.11332 -19.5204 4.85694 -4.94869 80.11934 -0.38752 -1983.77616 25.87321 4.14211

8 1.5541 1.16003 16.18303 -1.92939 0.21685 -0.38779 -1983.77477 22.81704 4.14185

9 1.1141 9.20088 12.4778 -2.9088 0.26758 -0.38728 -1983.7751 25.14678 4.14123

Scenario a×10−2 b×10−4 d×10−3 e×10−3 f ×10−4 g φ CO2(0) Ωar(0)

10 1.3652 1.4411 3.49188 2.46133 2.3697 -0.1535 -1988.33277 26.56956 3.79583

11 0.16077 5.68478 0.48754 0.003015 0.66757 -0.15688 -1988.34453 24.81157 3.82175

12 1.37276 1.41645 6.22063 2.06561 1.13056 -0.15677 -1988.33436 26.18308 3.8062

13 1.08842 1.98012 2.3986 0.85305 0.9621 -0.15714 -1988.34043 26.7974 3.8125

14 0.04962 5.9923 2.2185 0.99352 1.26365 -0.1546 -1988.3489 25.06447 3.8112

15 1.61054 0.38942 6.59092 2.22466 1.22588 -0.15627 -1988.35184 26.30771 3.81151

16 1.6427 0.43744 7.17167 5.18125 4.34882 -0.14928 -1988.30317 25.87427 3.76532

17 1.61833 0.86618 29.61073 7.46365 0.00000771 -0.15613 -1988.34528 23.89070 3.81352

18 1.62703 0.43333 0.0000408 -0.56901 0.15869 -0.1567 -1988.31606 25.51681 3.824
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TABLE III. The parameters and initial conditions for the eighteen scenarios ofCO2 emissions and aragonite saturation, determined with the
MCMC method.

Parameters

Scenario a×10−2 b×10−4 d×10−3 e×10−4 f ×10−6 g φ CO2(0) Ωar(0)

1 1.99887 -1.14315 0.77254 -4.565 2.41097 -0.9803 -1983.56757 24.96869 4.06022

2 2.16043 -1.21597 3.04979 1.58082 3.79969 -0.99025 -1983.63779 22.5052 4.0653

3 1.60143 -0.001003 11.6424 24.41474 3.68914 -0.99929 -1983.63153 24.83085 4.0547

4 2.0119 -1.44896 1.10916 -2.9652 4.68091 -0.9983 -1983.56689 25.18491 4.05418

5 2.26516 -1.84192 7.51611 13.95453 2.2774 -0.99733 -1983.71097 22.65008 4.03752

6 1.68305 -0.49783 5.23518 9.49898 21.87696 -0.99431 -1983.56459 24.9861 4.05041

7 1.41426 0.187367 7.49769 15.47677 4.94975 -0.99544 -1983.64748 25.08936 4.00907

8 1.58831 0.15385 4.18502 6.61714 15.52485 -0.9848 -1983.63816 22.60821 4.03491

9 0.99975 1.44601 11.09472 24.15899 3.2664 -0.99539 -1983.67777 24.91599 4.03878

Scenario a×10−4 b×10−4 d×10−2 e×10−3 f ×10−5 g φ CO2(0) Ωar(0)

10 14.28837 4.89799 2.35865 6.41611 5.78787 0.48753 -1986.9857 27.07203 3.77466

11 0.06799 6.18215 0.66379 2.07707 11.67232 -0.59398 -1990.33776 24.82025 3.8124

12 0.10755 5.42964 1.97458 5.3414 8.0648 -0.58278 -1984.0429 26.66822 3.82702

13 0.51715 5.0431 4.57584 12.13521 2.70195 -0.4858 -1990.30553 27.27379 3.78831

14 0.08591 5.88433 7.89313 21.06526 0.33066 -0.60438 -1990.1263 24.98474 3.78982

15 0.87211 5.12049 0.58529 1.77675 9.00662 -0.56443 -1990.07467 26.84374 3.79556

16 17.33548 4.68801 1.8036 5.44236 13.27927 0.5708 -1986.98291 26.51143 3.79849

17 0.33356 6.08583 4.22089 1.19433 10.68011 -0.54074 -1990.02713 24.27306 3.76326

18 1.15345 5.29483 1.76315 5.37265 14.43337 -0.60101 -1984.04978 26.11156 3.81525

Data set to fit.The combination of the six datasets related
to CO2 emissions, three of which are attributed to fossil fu-
els and the remaining three to land-use change, results in a
total of nine combinations. Furthermore, the incorporation of
the two datasets for aragonite saturation expands the combi-
nation to eighteen scenarios for the Lotka-Volterra model, as
explicitly described in Table I.

Finally, the results obtained from the fittings with the GA
are presented in Table II, whereas those using the MCMC
method are contained in Table III. We discuss the results in
the following section.

5. Discussion of the results

The first expectation from a problem with nine parameters is
that the chances to be a degenerate problem are high. This
means that various combinations of the parameters can imply
fittings of data with similar error but different combinations
of the fitting parameters. The plots of how the fittings look
like for a few cases, specifically the combinations 3, 7, 12, 16
from the Tables, are shown in Fig. 5. The errors achieved by
the two methods are of the same order and the fitting curves
are very similar. Notice from Tables II and III, that fitting
parameters differ, even though the two methods have similar
errors.

The evolution of error of the fitting with the GA appears
in Fig. 6 for the 18 combinations of data sources. In all cases

the error approaches a minimum with values lower than 8%.
On the other hand, the convergence of the MCMC method

toward attractor values of the fitting parameters is shown in
Fig. 7, where the walker trajectories for Scenario 2 are por-
trayed.

Concerning the values of the parameters, what calls the
attention more is the discrepancy of the constantf , that cou-
ples CO2 andΩar in the evolution Eq. (9). Using the GA it
happens that using data from BATS and those from ALOHA,
this parameter changes by seven orders of magnitude. This
indicates that data from ALOHA allow a better coupling, at
least using the GA method found this local minimum in the
parameter space. This discrepancy is of one order of mag-
nitude when fitting the data with the MCMC method. Other
than that, the values of other parameters do not change as
dramatically.

6. Context of our model and approach

Before describing our conclusions, we describe where our
analysis can be located within the state of the art in the sub-
ject. As mentioned before, the lack of a uniform and consis-
tent global time series of ocean trends leads to most studies
focusing on specific regions.

Another aspect to consider is the methodologies em-
ployed, since the use of ordinary differential equations
(ODEs) is not the norm.
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FIGURE 5. As a sample of the fittings, from top to bottom we show data and fittings of scenarios 3, 7, 12 and 16. Dotted black lines
correspond to data, blue/red to the fitting models with the GA/MCMC methods.
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FIGURE 6. Error of the fitting using the GA method as function of
time, as the reciprocal of fitness of the most fitted member of each
generation. We show the normalized reciprocal fitness for the 18
combinations of data sources.

FIGURE 7. Each panel shows the value of each parameter as func-
tion of time and demonstrate how it stabilizes. The lines appear
thick because they represent the trajectories of all the walkers to-
gether. This figure, corresponding to Scenario 2, also highlights
the burn-in stage of the process, characterized by the spiky behav-
ior before approximately 800 steps.

The following are some examples of the previously men-
tioned statements. One approach uses biogeochemical mod-
els, which prioritize NPZD in conjunction with carbon mod-
ules. This integration correlates the interaction between
ocean dynamics and a more biological approach, with the

incorporation of carbon modules enabling the modeling of
ocean acidification. Illustrative examples of this methodol-
ogy can be found in a study conducted in the Northwestern
Pacific [30], and another one in the Bering Sea [31]. It is
interesting that both the NPZD and the carbon modules are
modeled with uncoupled differential equations.

Concerning numerical methods, a multi-linear regression
is applied to the BATS data to forecast ocean acidification up
to the year 2100, for a number of scenarios [32]. The use of
deep learning to estimate changes related to ocean acidifica-
tion in the Atlantic Ocean is presented in Ref. [33]. In these
last two cases, no differential equations are used.

The framework we propose lies within the context of
the above-mentioned examples, centered in the use of ordi-
nary differential equations (ODEs) to model data in conjunc-
tion with two optimization techniques. This approach offers
a distinct advantage over NPZD models, which necessitate
the estimation of numerous biological parameters. Further-
more, the Lotka-Volterra system we use, can be applied to
any ocean time series, irrespective of its geographical loca-
tion.

7. Conclusions

We have proposed a system of coupled ODEs as a model that
can simultaneously fit data for the evolution ofCO2 emis-
sions and the aragonite saturationΩar. In order to test the
model, we used data from various sources of these quanti-
ties and fitted the combined data using two different meth-
ods. First using a Genetic Algorithm with a set of general
evolution rules that approaches a minimum of the error, and
second, using a Markov Chain Monte Carlo method that also
finds a local minimum of the error.

We show the model is a suitable candidate for explaining
the data and the future behavior of these two variables. De-
spite of its simplicity, it is able to find a corelation between
CO2 emissions and aragonite saturation makes, which makes
it a usable framework for analyzing their behavior.

Concerning most of the parameters of the system of
ODEs, apparently the two quantities can be ruled by indepen-
dent equations, namely (8) and (9), as long as the coefficient
f is pretty small, because it represents the only coupling be-
tween the two variables modeled. The result of this study in-
dicates that the modeling of each variable as an independent
entity is advantageous. While this finding is beneficial, it is a
consequence of the parameter estimation and the degenerate
nature of the problem under analysis.

The GA method found a local minimum where the cou-
pling is important, seven orders of magnitude higher when
using data from ALOHA than when using data from BATS.

We believe that the model, tested as we have done, is in-
teresting and can be generalized to include models of other
quantities that characterize the global climate on Earth.
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8. Data availability

This document does not provide the data directly. Instead, the
tables contain the fitting parameters that can be used to solve
the equations of the model8-9 and recreate the charts.

Regarding the data utilized in this work, we wish to
inform the reader that the data employed in this study
is available at the following URLs:https://edgar.
jrc.ec.europa.eu/report 2023 and https://
edgar.jrc.ec.europa.eu/dataset ghg80 . The
CEDS data is accessible via the Zenodo repository at
the following URL:https://zenodo.org/records/
4741285 . Additional datasets pertinent to carbon emis-

sions can be obtained as supplementary files in Ref. [13].
The supplementary file [21] contains the observed sea-
water data for the BATS and Hydrostation ‘S’. In-
formation regarding the ALOHA station can be ac-
cessed athttps://scrippsco2.ucsd.edu/data/
seawater carbon/ocean time series.html .
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