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Modeling the link between carbon emissions and ocean
acidification using a Lotka-Volterra dynamical system
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We study the possibility that the dynamics of carbon emissions and aragonite saturation in sea water can be modeled with a non-lineatr
coupled system of two Ordinary Differential Equations. In total, there are seven parameters plus two initial conditions that we fit in order to
adjust experimental data. For the fitting, we use two independent methods: Genetic Algorithms and Monte Carlo Markov Chains, both useful
at fitting in high-dimensional parameter spaces. The data for the carbon emissions we deal with is obtained from several sources dedicated t
monitoring the changes in these emissions over time. We calculated aragonite saturation using a combination of carbon chemistry measure
from two stations. Our findings show that with this combination of ODEs and the fitting methods chosen, these two phenomena can be
reproduced within an 8% error.
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1. Introduction it is necessary to use the basis of the carbon chemistry in sea-

_ o . o _ _ water. This chemistry can be represented by the following
Since the beginning of industrialization, burning fossil fuels chemical reactions:

were used to power emerging factories, the concentration of

atmospheridCO, has been steadily increasing. At the on- COy(aq) + H20 = H2CO;, @)
set of this period, the concentration 600, was approxi- HyCO; = HCO; + HY, )
mately 280 ppm. However, current measurements indicate

that the concentration has risenta425 ppm, a considerable HCO; = CO;, +2H™, ©))

and important level when compared to historical geologicalyhen carbon dioxide in the atmosphere dissolves in water,
records. Analyzing ice cores from Antarctica provides an uUns; forms carbonic acidi{»CO3), which quickly dissociates
derstanding of changes in carbon concentrations in the atm%-y losing a hydrogen ionH{*) to form two ions: bicarbon-
sphere. For the last 800,000 years, the concentrati@(pf ate (ICO;3) and carbonate({O;). These reactions are re-
has never surpassed 300 ppm [1]. To firid, concentration  yersiple and tend to reach equilibrium [5]. Under normal
levels similar to current levels, we must go back 3 million conditions, the exchange 610, between air and sea reaches
years to the Pliocene epoch. During this peridd), con-  equilibrium within a year [6]. Adding mor€0, to the atmo-
centrations ranged from 365 to 415 ppm [2]. sphere and consequently to the ocean alters the equilibrium
Although the concentration 6O, in the Pliocene epoch  ang creates more hydrogen ions, this increase of hydrogen

and the present day is similar, temperatures during thgyns results in the ocean becoming more acidic. This excess
Pliocene epoch were about 3 toGtwarmer than preindus- ¢ hydrogen ions disrupts the equilibrium in E8),(and is

trial levels. Additionally, sea levels were significantly higher, |oq towards the left side. which creates mokE ] by con-
ranging from 5-25 meters [3]. The combination of higher S$€85uming more carbonate ion€Q;)
levels and temperatures, along with elevaj(féh!z concentra- Since the industrial era, the pH of the ocean surface wa-
tions, occurred during a period in Earth's history when theter has decreased by nearly 0.1 [7]. The saturation sfjte (

planet was in a state of equilibrium. This is in contrast 10getermines whether the structures of carbonate minerals form

the current situation, where sea levels are still rising. The, gissolve, and can be represented by the following equation
Pliocene epoch serves as an example of this phenomenon, Yé]
ill

though the mechanisms that led to those conditions are still o 9
being studied. 0= [Ca ]seawater[cog ]seawater , (4)
In the context 0fCO,, the oceans serve as an ally by ab- [Ca*Jsaturation[CO3~ Jsaturation
sorbing approximately 30% of anthropogefii®, emissions  whereseawaterepresents in situ concentrations aadura-
[4]. However, this process also leads to the acidification otion refers to mineral saturation concentrations. The concen-
the oceans. To have a better explanation of this phenomenotration of calcium is relatively uniform and is not changing in
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the ocean, which means that the saturated state is determine
by the carbonate({O; ), which leaves us with the following a0t P
equation: A
35 /1 //-’
Qor = [Cog_]w. (5) § 30} ) /'\"/ /J

COQ?]Saturation &5 Fossil and Lam-d _____ /ﬂ/ /

[CO3 2.l Fossil ———-- ;o /
For supersaturated conditior@ ¢ 1) CaCO3 will tend to g LS £ 7
grow, whereas for undersaturated conditiofis € 1) will g 20T / o
decrease. The continuous decreas{e(]@g‘](seawater) pro- ® 15 adl ,//
vokes that the saturation state turns undersaturated. The sattS 7/
ration of aragonitef¢,,), which is a mineral form o€aCO3, 1or N Ay
is a crucial component to the formation of shells and skele- s} e oo a
tons in marine organisms. Coral reefs are highly vulnerable e - . . . . .
to changes in aragonite saturation levels. A decrease in sat 1860 1880 1900 1920 1940 1960 1980 2000 2020
uration can lead to coral bleaching, which is a significant is- tiyn
sue, because coral reefs are home to approximately one-thiflcure 1. CO, emissions since the year 1850 from Global Car-
of the world’s marine fish [9]. bon Project data due to land-use change, fossil fuels and the sum of

In this paper we model the dynamics of these two vari-both.
ables using first order differential equations coupled through _ ) )
aterm of interaction: 1) Carbon emissions derived from fossifRésearch (EDGAR), described in Ref. [16], with data
based fuels and land use changes, and 2) Ocean acidificatictpurced from [17]. These datasets are shown in Fig. 2. There
The reminder of the paper is organized as follows. [n@'e multlplg estimates .(ﬁ_Og emissions due to various fac-
Sec. 2 we describe the data used and its pre-processing H8rs. including the emissions considered, the methodology
fore fitting, as well as the mathematical model. In Sec. 3 wdised, and the uncertainties associated with data collection
describe the two methods used to fit the parameters of th@nd processing. A comprehensive study in Ref. [18] dis-
system, in Sec. 4 we present the fitting results, in Sec. 5 weusses these factors in detail.
discuss such results and in Sec. 6 we compare the context of The flux of CO, emissions associated with land use
our work with other studies and methodologies. Finally inchange includes, but is not limited to, fluxes from deforesta-
Sec. 7 we draw some conclusions. tion, afforestation, logging and forest degradation. Two ap-
proaches for estimating the flux 6f0- from land use change
are the following: OSCAR [19] and the work of Houghton
and Castanho [20], the third dataset is that of the GCP. The

Nowadays the leading cause of increasing carbon dioxidgata of the _f|rst two approaches are rgported n th? GCP, a
epresentation of these three datasets is shown in Fig. 2.

emissions released into the atmosphere is the use of fossil flf S

els. Before the industrial revolution, land-use changes were !N Summary, we have three sets of data of emissions due
the primary cause afO, emissions [10]. Although this con- to fossil fuels and three due to Ignd-use (_:hal_wge. We fit the
tribution has decreased, it still remains a significant factor_paramet_ers of the model to the nine combinations of the data
This contribution, estimated to be between 22 and 43 ppnyets In Fig. 2.

up to the year 2000 [11], is small compared to the use of

fossil fuels but not insignificant. Also by the year 2000, the2-2. Aragonite saturation data

saturation state of aragonite has decreased &% of pre- ) , . .
industrial values [12], and this percentage is expected to cor|l our analysis we use the inorganic carbon chemistry to cal-

2. Data and model

tinue to decrease. This trend is represented in Fig. 1. culate aragonite saturation data from surface seawater sam-
ples. The samples were collected from two programs: the
2.1. Data ofCO, emissions Bermuda Institute of Ocean Sciences (BIOS) and the Hawaii

Ocean Time-series (HOT) programs. BIOS encompasses two
The model incorporate€ O, emission data in the form stations: Hydrostation 'S’ and the Bermuda Atlantic Time-
of time series from two primary sources: fossil fuels andseries Study (BATS). Surface data used to fit our model
land-use emissions, with each source using three distinatere obtained from [21], providing parameters such as to-
datasets. Regarding the use of fossil fuels, the model inteal alkalinity (ALK), dissolved inorganic carbon (DIC), dis-
grates time series data from the following sources: Globakolved oxygen (DO), temperature, and salinity. Addition-
Carbon Project (GCP), whose methodology and data arally, long-term Oligotrophic Habitat Assessment (ALOHA)
outlined in Ref. [13]; Community Emissions Data Systemdata from the HOT station [22] supplied DIC, temperature,
(CEDS), detailed in Ref. [14] with accompanying data in salinity, as well as the reduced isotope rati¢’ /C'? of DIC
Ref. [15]; and Emissions Database for Global Atmospheriq§!*C — DIC) and ALK.
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FIGURE 2. a) CO2 emissions due to fossil fuels from three sources EDGAR, GCP and CEDS dataséf9, k)nissions from the three
data bases OSCAR, GCP and Houghton & Castanho, due to land-use change.
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FIGURE 3. The surface aragonite saturatidn.) is presented as a function of time. a) The saturation calculated for the HOT station data,
which has been monitoring seawater conditions since 1988. b) The resulting saturation for data from the BIOS station seawater chemistry
data, which has been monitored since 1983. In both instances, aragonite saturation data was calculated using the CO2SY'S software tool.

A limitation of existing data on seawater chemistry is thesoftware uses equilibrium chemical processes and constants
absence of a standardized, global time series. In contradh calculate the quantities of DIC species, includid®-,
there is a wealth of data on carbon obtained from varioudICO; , andCO3~. CO2SYS provides valuable information
stations dedicated to this purpose, and the locations for then seawater pH, alkalinity, and carbonate chemistry, includ-
ocean time-series are located in coastal regions, which coning saturation states of calcium carbonate minerals, by con-
plicates the measurements. This challenge was further esidering the interactions among these species. The aragonite
hanced by the disruptions caused by the pandemic and theaturation for the BATS and ALOHA datasets set are shown
nature of the ocean. Both the HOT and BATS programs arén Fig. 3.
regarded as the baseline for ocean measurements. A thor- In our fitting process we use the nine combinations of
ough examination of these challenges and a more effectiv€Q, emissions, in turn combined with these two data sets for
approach to establishing a consistent ocean time series camnagonite saturation and finally have a total of eighteen data
be found in Ref. [23]. set combinations.

The carbon chemistry data was analyzed and aragonite
saturation was determined using the CO2SYS tool. This soft2 3. Data filtering
ware was originally developed for MS-DOS [24] and has
since been adapted to other platforms, including MATLAB The data presented above can be quite intricate, as they may
[25] and Python [26]. The version used in this study is [27].contain high-frequency modes that complicates modeling.
This tool is designed to calculate parameters related to thelowever, if the amplitudes of these high-frequency modes is
marine carbonate system. The user inputs essential factorslatively small compared to those of the low-frequency ones,
such as temperature, salinity, alkalinity, DIC and pH. Theit becomes useful to filter and focus only on high-amplitude
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FIGURE 4. At the top we show the Fourier Transform of data sets of aragonite saturation from Fig. 3. The main peak corresponds to the

dominant mod@rw > 1. We filter the modes with higher frequencies beyond this threshold. This filtering process eliminates subdominant

high-frequency components, and allows one to focus on the dominant modes of the signal. At the bottom we show the resulting filtered data

along with the original raw data from Fig. 3.

dominant modes. To achieve this, we decompose in Fourier
modes calculating the discrete Fourier Transform to data, fil-

ter high frequencies and retrieve the signal with the inverse d(Sar) = —d(Qar) + e(Qar)?® = f(Qar)(COy)
Fourier Transform. dt
On the top of Fig. 4 we show the Fourier Transform of + gsin(wat + ¢), (7)

data in Fig. 3 in the frequency domain. Notice that the am- i . _
plitudes for2rw > 1yr—! are not as significant as those for WNereCOz is the total carbon emissions afid, is the arag-
lower frequencies. We then use a low-pass filter that cancef@Nit€ saturation. The linear terms in each equation

the Fourier modes of frequencies higher than the threshold a'€:a(COz), the injection rate of carbon dioxide to the
rwinresnos = 1. The filtered data are shown in the bottom 2¢€ans, a_nd similarly(€2,. ), the rate of aragonite saturation.
part of Fig. 4. The non-linear termg)(CO,)? ande(£2,,.)?, are non-linear

terms of logistic type, that prevent exponential growth or sud-

den decline. The non-linear tern$2,,.)(CO2), on the right

. hand side of each equation model the coupling between these

2.4.  The mathematical model two variablesy andw 4 are coefficients that introduce an os-
cillatory component in the aragonite equatigrgetermines

We propose a simple model based on a non-linear coupleghe amplitude of the oscillation of angular frequengy. The

system of equations for the two variables and investigateéermsin(wat + ¢) is a source with a phase lag

whether it serves to fit the data. The set of equations we System[6)-(7) contains the two non-linear crossed terms

employ is a system similar to the Lotka-Volterra model aswith coefficientsc and f, however it is expected that arago-

follows: nite does not affect the emissions©6- and therefore: is

disregarded. In addition, it is necessary for the teti{3,,.)

and f(Q.,)(CO3) to be negative due to the decreasing sat-

uration of aragonite. The teriaCO,) must be positive as

d(CO2)

o = a(CO2) + b(CO2)? + ¢(Qar)(COz),  (6)

Rev. Mex. Fis71051401
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CO5 emissions continue to increase. The model used is fi-
nally as follows:

= = a(C02) + b(CO2)?, ®
U __0,) 4 (6,1 $(0)(CO
+ gsin(wat + ¢). ®)

This is the model we expect to serve as framework for under-
standing the correlation between climate change and ocean
acidification. Then what follows is the description of the fit-
ting method of the seven parameters in the equations and the
two initial conditions that work also as parameters to be fit-
ted.

3. Fitting methods
3.1. Genetic algorithm

The fitting consists in searching for the values of the con-
stantsa, b, d, e, f, g, ¢ and the initial conditions for the dy-
namical variable€ O, (0) andf2,,-(0) in the equations of the
model B8)-(9), such that the solutions have the smallest pos-
sible error.

The fact that this is a set of nine fitting parameters offers
certain difficulty, added to the complexity that the equations
are not fitting functions to be evaluated for each combina-
tion of trial parameters, but a system of coupled ODEs to be
solved for each combination of parameters. The first strategy
we implement to fit these parameters is a Genetic Algorithm
(GA), whose specifications are as follows.

1. First, each individual within the population is char-
acterized by itsSDNA = (21,22, .., ZNyns)» Where
Ngenes represents the total number of genes. This
DN A comprises all the parameters in the model equa-
tions along with the initial conditions of the model
equation(a, b, d, e, f, g, ¢, Qar(0), CO2(0)).

2. We evaluate an individual’s suitability for solving the
presented problem by employing féiness function
Each individual, with itsD N A will define a unique set
of Egs. B)-(9). This set of equations is then solved and
the resulting solution is compared with the observed
data from Secs. 2.1 and 2.2. Assuming experimental
data are the seX = (X1,Xs,...,XxN), and that the
solution of the equations of a given individual evalu-
ated at the same time as datad@re (z1,22,...,2ZN),
we define the fithess function as the Mean Absolute
Percentage Error (MAPE):

—1

(10)

X —
X

. 1 X
F@EX) =5
1=1

3.

7.

An initial population is constructed as the initial gener-
ation. Once generated, for simplicity we applglitier-
ential mutationto the entire population since the first
generation on. This mutation involves the random se-
lection of three individuals from the population and
generating a new individual using the following for-
mula. AssumingDN A, DN Ay, and DN A3 repre-
sent theDN A of three individuals with solution$,

29, andx’s respectively, the new individual is defined as
Znewj = 21,5+« Zl{v:geln%(z% —z3,;), wherea is a scal-
ing factor with a value o = 0.5. This new individual
provides a solutiomnew. If f(Znew X) < f(Z1,X),
we replace the individuaD N A; with DN Apey; oth-
erwise, the population remains unchanged.

. Once the original individuals have undergone muta-

tion, the next step is to select the succeeding genera-
tion. Given a population of siz&gpyiation W Choose
Nparents < Npopulation individuals, referred to as par-
ents, to constitute the next generation of individuals.
The selection process employs tteeirnament selec-
tion method, which involves picking a random group
of individuals who participate in a tournament of size
Niournament  ONce theNiournamentindividuals with the
highest adaptability have been determiniegl,(the in-
dividuals with the greatest fitness), they are chosen to
be part of the next generation. This process is repeated
until all Nparentsparents have been selected.

. Once the parents have been selected, the subsequent

stepcrossoverand reproduce these individuals to ob-
tain the remainingVenigren = Npopulation— Vparentsin-
dividuals, referred to as children. The method for gen-
erating these children is straightforward: we randomly
select two individuals from the population without rep-
etition. From these two parents, we copy &/ A to
create a child using the following procedure: we gen-
erate Ngenesfandom numbers between 0 and 1. If the
number in positiory is less than 0.5, then elemefit

is copied from the first parent; otherwise, it is copied
from the second parent fgr= 1,2,..., Ngenes This
process is repeated until &lniigren Children are gen-
erated.

. Now, the children have the opportunity to acquire traits

that their parents do not possess through the process of
mutation Mutation is carried out in a manner similar

to reproduction. SpecificallyNgenesrandom numbers
are generated. If the number at positipis less than

0.5, then the element; is modified by replacing it with
Bd;, wheref is a random number within the range of
-1.1tol.1forj =1,2,..., Ngenes

Finally, we evolve the population durin§jgenerationddy
repeating steps 1 to 6.

Rev. Mex. Fis71051401
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3.2. MCMC method

use of Monte Carlo Markov Chain methods. For this purpose, po(0) =
the Python libranemceewhich implements an affine invari-
ant ensemble sampling method is employed [28,29]. The
specifications of the MCMC are the following:

A second strategy we use for estimating the parameters is the {0 if 9 €O, (16)

—oo otherwise

where © represents the expected range of parameter
values. This function assigns a zero prior probability
to parameter values outside, effectively excluding

1. Initialization of walkers The walkers are initialized at . o 2.
them from consideration in the model fitting process.

random points around an initial guess. This process in-
volves defining the number of walkers to use, ensuring
a broad exploration of the parameter space. Walkers
are split into two equal sets.

5. Random number generation and walker movemant
random numbet/ is generated from a uniform distri-
bution. If U < « the walker moves to the proposed

2. Walker updatesTo update the position of a walkéf® positionY”.
in one subset, a walkéf?) is randomly selected from
the complementary set, proposing a new position using 6. Steps 2 to 5 are repeated for a defined number of it-

the scheme: erations, discarding an initial percentage as the burn-in
phase to ensure convergence to the stationary distribu-
. . tion.
Y =9 4 7. (g(n) — 9(])), (11)

whereZ is a random variable from a distribution func-

tion g(z) satisfying: 4. Results

Determination of model parameterslo start with, notice

that the value obtained for the natural frequency of arago-
9(z7") = z-g(2). (12)  nite saturation oscillation is related to the period, denoted
asTy = 2r/wa = 1yr. Essentially, this implies that the
oscillation frequency of aragonite precisely covers one yeatr,

3. Acceptance probabilityThe probability of accepting @ parameter with a direct correlation to ocean temperatures.

This distribution dictates the step size and direction.

the new position is Computed as: Consequently, we |n|t|a”y seby = 27 yril, the remaining
coefficients and initial conditions are determined using the
(V) methods described above.
a = min (1, ZDG_lﬂg@))) ) (13) In the GA method, we employ a population of

Npopulation = 200 individuals, with a subgroup aNparents =
where Df denotes the number of parameters to esti-50 individuals designated as parents. We set parental selec-
mate, andr is the log-posterior probability, computed tion using the tournament mechanism with si¥gyrnament=
as: 10. The iterative evolution of the population was spanned a
total of 2000 generations.
S (14) For the estimation Wi_th the MCMC method, a variable
Po; number of walkers, ranging from 32 to 50, were allowed to
with ¢ representing the likelihood, which is: explore the parameter space across 2400 iterations. The fol-
lowing parameter constraints were applied to ensure that the
5 sampled values remain within plausible ranges. Reflecting
(= 1 Z (Xi — ml) . (15) the normalized nature of these parameters, the range for pa-
2 rameters:, d and f were set between 0 and 1, while parame-

$€7'7'
Here, ... accounts for measurement errors in the datal€S?: & andg were allowed to vary between -1 and 1. Con-
traints for¢ and the initial conditions were set reasonably

and is defined arbitrarily as 5% of the average values : i ;
of the measured variables; this term adjusts the Weigh:flccordlng to visual references and graphical analyses of the
a.CO5(0) was set to range from 18 to 32, whilg,,.(0)

of each data point according to its measurement error‘fiat

ensuring that the model parameters are adjusted appr§@s constrained between 3.4 and 4s8was set between -
priately in response to the reliability of each measure-1980 and -1992. The constraints for the initial conditions

and ¢ varied according to the datasetg, in some cases it

ment. was more appropriate to use a range of 18 to 260 (0),

4. Prior density function The prior densitypy(6), criti-  while in others a range of 24 to 32 was used, since applying
cal for constraining parameter values within a plausiblethe same restrictions and initial points for all datasets would
range, is defined as: not be meaningful.

Rev. Mex. Fis71051401
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TABLE |. List of the eighteen combinations of the six datasets of carbon emissions with the two calculated datasets of aragonite saturation.
These scenarios represent the data sets fitted with the GA and MCMC methods.

Scenario Fossil Land-use Aragonite
1 EDGAR OSCAR BATS
2 EDGAR H&C BATS
3 EDGAR GCP BATS
4 GCP OSCAR BATS
5 GCP H&C BATS
6 GCP GCP BATS
7 CEDS OSCAR BATS
8 CEDS H&C BATS
9 CEDS GCP BATS
10 EDGAR OSCAR ALOHA
11 EDGAR H&C ALOHA
12 EDGAR GCP ALOHA
13 GCP OSCAR ALOHA
14 GCP H&C ALOHA
15 GCP GCP ALOHA
16 CEDS OSCAR ALOHA
17 CEDS H&C ALOHA
18 CEDS GCP ALOHA

TaBLE Il. Parameters and initial conditions for the eighteen scenari6&Bf emissions and aragonite saturation determined with the GA
method.

Parameters
Scenario  ax107?  bx107° dx107* ex107*  fx107M g @ CO2(0)  Q-(0)
1 1.78062  -6.71319 14.1911  -2.37143  89.08946  -0.38604  -1983.7758  25.39637  4.1386
2 1.92565  -5.37623  0.51377  -6.12854 3570578  -0.38707 -1983.77506 22.71628  4.14274
3 1.06685  14.67125 0.132 -6.19577 2.62082 -0.38734  -1983.77521  25.27551  4.14179
4 1.641 -417001  21.9954  -0.33098 0.12335 -0.38638  -1983.77461 25.52286  4.13918
5 1.7381 -1.1915 0.67985  -6.07091 0.14086 -0.38763  -1983.77507 22.85301  4.1427
6 1.2548 6.61093  12.84953  -2.76727 6.24815 -0.38772  -1983.77526  25.39623  4.14075
7 211332  -19.5204  4.85694  -4.94869  80.11934  -0.38752 -1983.77616 25.87321 4.14211
8 1.5541 1.16003  16.18303  -1.92939 0.21685 -0.38779  -1983.77477  22.81704  4.14185
9 1.1141 9.20088 12.4778 -2.9088 0.26758 -0.38728  -1983.7751  25.14678  4.14123
Scenario  ax107?  bx107* dx107* ex107? f x107* g @ CO2(0)  Q-(0)
10 1.3652 1.4411 3.49188 2.46133 2.3697 -0.1535  -1988.33277 26.56956  3.79583
11 0.16077  5.68478 0.48754  0.003015 0.66757 -0.15688 -1988.34453  24.81157 3.82175
12 1.37276  1.41645 6.22063 2.06561 1.13056 -0.15677 -1988.33436  26.18308  3.8062
13 1.08842  1.98012 2.3986 0.85305 0.9621 -0.15714  -1988.34043  26.7974  3.8125
14 0.04962 5.9923 2.2185 0.99352 1.26365 -0.1546  -1988.3489  25.06447  3.8112
15 1.61054  0.38942 6.59092 2.22466 1.22588 -0.15627 -1988.35184  26.30771 3.81151
16 1.6427 0.43744 7.17167 5.18125 4.34882 -0.14928  -1988.30317 25.87427  3.76532
17 1.61833  0.86618  29.61073  7.46365  0.00000771 -0.15613 -1988.34528 23.89070 3.81352
18 1.62703  0.43333  0.0000408  -0.56901 0.15869 -0.1567  -1988.31606 2551681  3.824
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TaBLE Ill. The parameters and initial conditions for the eighteen scenari@®gfemissions and aragonite saturation, determined with the
MCMC method.

Parameters
Scenario  ax107?  bx10™* dx107® ex107* fx107° g @ CO2(0)  Qar(0)

1 1.99887  -1.14315  0.77254 -4.565 2.41097  -0.9803  -1983.56757  24.96869  4.06022
2 2.16043  -1.21597  3.04979 158082  3.79969  -0.99025  -1983.63779  22.5052  4.0653

3 1.60143  -0.001003  11.6424  24.41474  3.68914  -0.99929  -1983.63153 24.83085  4.0547

4 2.0119 -1.44896 1.10916 -2.9652 468091  -0.9983  -1983.56689  25.18491  4.05418
5 2.26516  -1.84192  7.51611  13.95453  2.2774  -0.99733  -1983.71097 22.65008  4.03752
6 1.68305  -0.49783  5.23518  9.49898  21.87696  -0.99431  -1983.56459  24.9861  4.05041
7 1.41426  0.187367  7.49769  15.47677  4.94975  -0.99544  -1983.64748  25.08936  4.00907
8 1.58831 0.15385 4.18502 6.61714 1552485  -0.9848  -1983.63816 22.60821  4.03491
9 0.99975 1.44601  11.09472 24.15899  3.2664  -0.99539  -1983.67777 24.91599  4.03878

Scenario  ax10™*  bx10™* dx107%? ex107®  fx107° g @ CO2(0)  Qar(0)

10 14.28837  4.89799 2.35865  6.41611 578787  0.48753  -1986.9857  27.07203  3.77466
11 0.06799 6.18215 0.66379  2.07707  11.67232 -0.59398  -1990.33776  24.82025  3.8124

12 0.10755 5.42964 1.97458 5.3414 8.0648  -0.58278  -1984.0429  26.66822  3.82702
13 0.51715 5.0431 457584 1213521  2.70195  -0.4858  -1990.30553 27.27379  3.78831
14 0.08591 5.88433 7.89313  21.06526  0.33066  -0.60438  -1990.1263  24.98474  3.78982
15 0.87211 5.12049 0.58529 1.77675  9.00662  -0.56443  -1990.07467  26.84374  3.79556
16 17.33548  4.68801 1.8036 544236  13.27927  0.5708  -1986.98291  26.51143  3.79849
17 0.33356 6.08583 4.22089 1.19433  10.68011 -0.54074  -1990.02713  24.27306  3.76326
18 1.15345 5.29483 176315  5.37265  14.43337 -0.60101 -1984.04978  26.11156  3.81525

Data set to fit. The combination of the six datasets relatedthe error approaches a minimum with values lower than 8%.
to CO, emissions, three of which are attributed to fossil fu- On the other hand, the convergence of the MCMC method
els and the remaining three to land-use change, results intaward attractor values of the fitting parameters is shown in
total of nine combinations. Furthermore, the incorporation ofFig. 7, where the walker trajectories for Scenario 2 are por-
the two datasets for aragonite saturation expands the comhiayed.
nation to eighteen scenarios for the Lotka-Volterra model, as Concerning the values of the parameters, what calls the
explicitly described in Table I. attention more is the discrepancy of the consggrihat cou-

Finally, the results obtained from the fittings with the GA ples CQ and(2,.. in the evolution Eq.9). Using the GA it
are presented in Table Il, whereas those using the MCM@appens that using data from BATS and those from ALOHA,
method are contained in Table Ill. We discuss the results itthis parameter changes by seven orders of magnitude. This

the following section. indicates that data from ALOHA allow a better coupling, at
least using the GA method found this local minimum in the
5 Discussion of the results parameter space. This discrepancy is of one order of mag-

nitude when fitting the data with the MCMC method. Other

The first expectation from a problem with nine parameters ighan that, the values of other parameters do not change as
that the chances to be a degenerate problem are high. THiamatically.
means that various combinations of the parameters can imply
fittings of data with similar error but different combinations 6. Context of our model and approach
of the fitting parameters. The plots of how the fittings look
like for a few cases, specifically the combinations 3, 7, 12, 1@8efore describing our conclusions, we describe where our
from the Tables, are shown in Fig. 5. The errors achieved bynalysis can be located within the state of the art in the sub-
the two methods are of the same order and the fitting curvegect. As mentioned before, the lack of a uniform and consis-
are very similar. Notice from Tables Il and lll, that fitting tent global time series of ocean trends leads to most studies
parameters differ, even though the two methods have similaiocusing on specific regions.
errors. Another aspect to consider is the methodologies em-

The evolution of error of the fitting with the GA appears ployed, since the use of ordinary differential equations
in Fig. 6 for the 18 combinations of data sources. In all case$ODES) is not the norm.
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FIGURE 5. As a sample of the fittings, from top to bottom we show data and fittings of scenarios 3, 7, 12 and 16. Dotted black lines
correspond to data, blue/red to the fitting models with the GA/MCMC methods.
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incorporation of carbon modules enabling the modeling of

ocean acidification. lllustrative examples of this methodol-

ogy can be found in a study conducted in the Northwestern
Pacific [30], and another one in the Bering Sea [31]. ltis

interesting that both the NPZD and the carbon modules are
modeled with uncoupled differential equations.

Concerning numerical methods, a multi-linear regression
is applied to the BATS data to forecast ocean acidification up
to the year 2100, for a number of scenarios [32]. The use of
e - deep learning to estimate changes related to ocean acidifica-
0.05 + R tion in the Atlantic Ocean is presented in Ref. [33]. In these

last two cases, no differential equations are used.
1 10 100 1000

Generations The framework we propose lies within the context of
E 6. E  the fitt ing the GA method as function of the above-mentioned examples, centered in the use of ordi-
|GURE 6. Error of the fitting using the GA method as function o nary differential equations (ODESs) to model data in conjunc-
time, as the reciprocal of fitness of the most fitted member of each,[i n with tw timization techni Thi ; h offer
generation. We show the normalized reciprocal fitness for the 18 0 L 0 op ation techniques. S app oach o ?S
combinations of data sources. a distinct advantage over NPZD models, which necessitate
the estimation of numerous biological parameters. Further-

more, the Lotka-Volterra system we use, can be applied to

h' . . any ocean time series, irrespective of its geographical loca-
22.00 4 - - . _ .
tion.

7. Conclusions

0.65
0.5 N\,

0.35 |

1/ fbest

€02(0)

Qurl0)

We have proposed a system of coupled ODEs as a model that
can simultaneously fit data for the evolution @O, emis-
sions and the aragonite saturatidp,. In order to test the
model, we used data from various sources of these quanti-
ties and fitted the combined data using two different meth-
ods. First using a Genetic Algorithm with a set of general
evolution rules that approaches a minimum of the error, and
second, using a Markov Chain Monte Carlo method that also
finds a local minimum of the error.

We show the model is a suitable candidate for explaining
the data and the future behavior of these two variables. De-
spite of its simplicity, it is able to find a corelation between
CO, emissions and aragonite saturation makes, which makes
it a usable framework for analyzing their behavior.

Wi Concerning most of the parameters of the system of
» M_. I ——— ODEs, apparently the two quantities can be ruled by indepen-
dent equations, namelg)and ), as long as the coefficient
’ T e f is pretty small, because it represents the only coupling be-
FIGURE 7. Each panel shows the value of each parameter as funciween the two variables modeled. The result of this study in-
tion of time and demonstrate how it stabilizes. The lines appeardicates that the modeling of each variable as an independent

thick because they represent the trajectories of all the walkers toentity is advantageous. While this finding is beneficial, it is a

gethel’. This ﬁgure, Corresponding to Scenario 2, also hlghllghtSConsequence Of the parameter estlmatlon and the degenerate
the burn-in stage of the process, characterized by the spiky behavs 5t re of the problem under analysis.
ior before approximately 800 steps.

The GA method found a local minimum where the cou-

The following are some examples of the previously men-Pling is important, seven orders of magnitude higher when
tioned statements. One approach uses biogeochemical mo¢sing data from ALOHA than when using data from BATS.
els, which prioritize NPZD in conjunction with carbon mod- We believe that the model, tested as we have done, is in-
ules. This integration correlates the interaction betweeneresting and can be generalized to include models of other
ocean dynamics and a more biological approach, with thguantities that characterize the global climate on Earth.
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8. Data availability sions can be obtained as supplementary files in Ref. [13].
The supplementary file [21] contains the observed sea-
This document does not provide the data directly. Instead, theater data for the BATS and Hydrostation ‘S’. In-
tables contain the fitting parameters that can be used to solfermation regarding the ALOHA station can be ac-

the equations of the mod®@{9 and recreate the charts. cessed aihttps://scrippsco2.ucsd.edu/data/

Regarding the data utilized in this work, we wish to S€awater _carbon/ocean __time _series.html
inform the reader that the data employed in this study
is available at the following URLs:https://edgar. Acknowledgments
jrc.ec.europa.eu/report _2023| and |https://
edgar.jrc.ec.europa.eu/dataset _ghg80. The LFMM and IAR receive support from CONAHCyT grad-
CEDS data is accessible via the Zenodo repository atiate scholarship program. FZCLA receives support from

the following URL:https://zenodo.org/records/
4/(41285 .

CONAHCYyT through the SNI3 scholarship program. This
Additional datasets pertinent to carbon emis-research is supported by grant CIC-UMSNH-4.9.
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