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A regularization strategy for inverse source problems with applications in optics
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In this work, we provide a stable algorithm for the inverse source problem where the region corresponds with a circle centered on the origin.
The algorithm is obtained using an operational equation, which is ill-posed in the Hadamard sense due to the following points: firstly, many
sources produce the same measurement and, secondly, due to the presence of numerical instability. If the operational equation is restricted to
the Hilbert space of harmonic functions, the inverse source problem’s uniqueness is guaranteed. The algorithm considers two regularization
parameters to handle the numerical instability: the Tikhonov regularization parameter and the termN , where the series expansion is truncated.
To illustrate the proposed algorithm, we developed one numerical example. Furthermore, we apply the algorithm to solve one inverse optical
problem associated with the Intensity Transport Equation when the intensity distribution is considered almost uniform for the case in which
the wavefront, which propagates in the direction of the optical axis, is considered within the paraxial approximation. The case where the
source is not harmonic has no unique solution without a priori information. This work presents the case where the source belongs to functions
that take two values. For this type, it is possible to recover the source completely. We give examples of the same application considering two
cases for the source of the right side of the Intensity Transport Equation: when the source is a harmonic function and when it belongs to the
above-mentioned type.
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1. Introduction

Source identification problems are widely studied in many re-
search fields, such as tomography, geophysics, inverse elec-
trocardiography, inverse electroencephalography, industrial
processes, etc. The inverse source identification problems
determine the sources that produce a given measurement
recorded on the region’s boundary. These inverse problems
are ill-posed in the Hadamard sense due to the following two
points: many sources can produce the same measurement,
and the problem of source recovering presents a numerical
instability, i.e., small changes in the measurement can pro-
duce substantial variations in the sought source. Regulariza-
tion techniques must be applied to handle this instability. In
particular, we consider the Tikhonov regularization, which
depends on a parameter that must be chosen in terms of the
measurement’s error. The forward problem is associated with
the inverse problem, which consists of determining the mea-
surements when the source is known. As the first step in
studying inverse problems, the forward problem is studied
since we get information on both the uniqueness of the so-
lution and numerical instability. Furthermore, some inverse
problems can be expressed as an operational equation of the
form Ax = y, and the study of the forward and inverse prob-
lems can be done by considering the properties of the oper-
ator A. More precisely, an operational equationAx = y is
well-posed if ( [1])

1. A solution to the problem exists (existence).

2. There is at most one solution to the problem (unique-
ness).

3. The solution depends continuously on the data (stabil-
ity).

A problem is well-posed in modern language if the op-
erator A is bijective and bicontinuous. A problem is ill-
posed if it is not well-posed. In particular, when the oper-
atorA−1 is not continuous, numerical instability is present.
Small changes in the measurement (right side of the equa-
tion) are inherent in the measurement devices. We emphasize
that many application problems can be written as operational
equations with operators whose inverses are not continuous.

This work considers the inverse source problem defined
in a circular region. The relationships between the sources
and measurements are established by an elliptic boundary
value problem. Considering the geometry, the circular har-
monics are used to express the sources, the solution of the
boundary value problem, and the measurements. We get the
regularized solution solving the normal equations from where
we proposed the algorithm, which considers two parameters
to handle the numerical instability: the Tikhonov regulariza-
tion parameter and a parameter associated with a cut-off of
the series used to represent the source, potentials, and mea-
surements. In this work, we have the following original re-
sults:

• A regularization strategy, which depends on two pa-
rameters. First, it is the Tikhonov regularization pa-
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rameter. Second, it is the parameter associated with the
truncation of the series in which the source and mea-
surement are expanded. This strategy (Algorithm1)
can be applied to recover harmonic sources defined in
Ω.

• Algorithm 2 allows us to recover sources different to
zero in a closed subset ofΩ or the case in which the
source depends on a finite number of parameters. From
the measurement on∂Ω, we recover the harmonic
component using Algorithm1. Then, we define some
functionals to recover the source completely,i.e., the
non-harmonic component of the source is recovered,
considering prior information about the total source.
Inverse source problems, it is usually considered apri-
ori information about the source since those inverse
problems are ill-posed in the Hadamard sense. That
information about the source can be obtained from the
knowledge of the studied problem, which guarantees
uniqueness and finds stable algorithms to recover the
sought source.

In [2] the author considers the following:

– The sourcef ∈ L2(Ω) has compact support (the
set of points where the function is not zero is
closed and bounded) in a subdomainΩ∗, which
is contained in the regionΩ where the problem is
studied.

– The sourcef is piecewise constant.

In [3], the authors consider the following:

– The source has the form:

f(x1, x2) = ϕ1(x2)g1(x1) + ϕ2(x2)g2(x1).

– For the first step, they supposed that the functions
g1 andg2 are known.

– Then, they proposed an iterative algorithm for the
general case.

– They consider the full data on the boundary,i.e.,
they do not consider the case of a finite number
of points in which the measurement is taken.

Other examples of these points can be found in
Refs. [4–7]. The assumptions correspond to informa-
tion about the sources. In this work, we follow this idea
and consider two cases for the sources:

– Harmonic sources inΩ.

– Sources that are different from zero in a closed
and bounded subset (compact) ofΩ or the case in
which the source depends on a finite number of
parameters.

• Original synthetic examples were developed to show
the feasibility of the proposed Algorithms.

• Original MATLAB programs were specifically devel-
oped to implement and execute Algorithms1 and 2
efficiently. These programs are designed to consider
the two key parameters in the regularization strategy
proposed (Algorithm 1), ensuring accurate computa-
tion and reliable results. Also, Algorithm2 is imple-
mentedfmincon routine to find the maximum of the
approximated harmonic component on∂Ω, with a tol-
erance of10−14.

• The application to the following inverse optical prob-
lem:

To find the irradiance from the wavefront measurement
on the boundary of one circular region if the intensity
distribution is considered to be almost uniform.Algo-
rithms 1 and 2 were applied to solve, in stable form,
this inverse problem.

According to [8], there is a considerable amount of
work to get the wavefront, but there is none for the in-
verse problem of finding the intensity from the wave-
front. In that work, the authors used the ray count-
ing method to get some values of the wavefront and
then applied one discretization of the Laplace opera-
tor to find the irradiance. This work provides another
approach.

In summary, this work gives a stable algorithm that con-
siders two regularization parameters for the inverse source
problem defined in a circular region centered in the origin.

This work is divided as follows: In Sec.1, the Introduc-
tion provides the basic ideas, among which we can find the
ill-posedness of the inverse source problem studied. Also, an
optical application is presented. In Sec.2 presents the math-
ematical model used to find an operational equation acting
between Hilbert spaces, which allows us to study the inverse
source problem. In Sec.3, the forward and inverse prob-
lems are solved using the circular harmonics expansion, and
the proposed stable algorithm is presented. In Sec.4 shows
numerical examples of the proposed algorithm for the case
where the source is a harmonic function. In Sec.5 presents
an inverse source problem in optics, considering that the
source is harmonic. In Sec.6 studies the same inverse source
problem in optics considering a priori information about the
source. Finally, the conclusions are given in Sec.7.

2. Mathematical model

The problem that concerns us is related to the following
boundary value problem.

∆u = f in Ω,

∂u

∂n
= 0 on ∂Ω,

(1)

whereΩ is a bounded region sufficiently smooth,∆ repre-
sents the Laplace operator,f is called thesourceandu is the
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potentialdefined inΩ. The boundary condition on∂Ω can be
interpreted as a null flux condition. The Laplace operator is
also denoted by∇2.

There are two problems associated with problem (1),
which are given in the following definitions: The first one
is called theforward problem, which consists of determin-
ing the potentialu (measurement) on the boundary when the
source is known. The second one is called theinverse prob-
lem, which is defined as follows:

Given a measurementV , the inverse problem consists of
determining a source such that the solutionu of the boundary
value problem(1) satisfies thatu|∂Ω = V .

From the Green formulas, we get the following compati-
bility condition.

∫

Ω

fdΩ = 0. (2)

2.1. Weak solution and operational statement

The following definitions can be found in Ref. [9].

Let L2(Ω) andL2(∂Ω) be the spaces of square integrable
functions defined onΩ and∂Ω, respectively, that take real
values.H1(Ω) is the Sobolev space consisting of functions
in L2(Ω) whose generalized first derivatives are also square
integrable, whereΩ is a bounded domain inRn, with bound-
ary ∂Ω sufficiently smooth.L2(Ω) is a normed vector space
with the following norm

‖f‖L2(Ω) =
(∫

Ω

f2dΩ
)1/2

.

This norm arises from the scalar product

〈f, g〉L2(Ω) =
∫

Ω

fgdΩ.

Thus, L2(Ω) is a Hilbert space. Analogously, we get that
L2(∂Ω) is a Hilbert space.
H1(Ω) is a normed vector space with the following norm

‖f‖H1(Ω) = ‖f‖L2(Ω) + ‖D1f‖L2(Ω), (3)

whereD1f = (D1
1f,D1

2f) andD1
i is the operator of gen-

eralized first derivatives (see Appendix B). This norm arises
from the scalar product

〈f, g〉H1(Ω) = 〈f, g〉L2(Ω) + 〈D1f, D1g〉L2(Ω),

from whereH1(Ω) is also a Hilbert space. The spaceH1(Ω)
also is the completeness of theC1(Ω) when we consider the
norm (3). This result can be found in [9], p.p. 59-60.
So, we consider the following spaces:

U =
{

f ∈ L2(Ω) :
∫

Ω

f dΩ = 0
}

,

V =
{

u ∈ H1(Ω) :
∫

Ω

u dΩ = 0
}

,

W =
{

v ∈ L2(∂Ω) :
∫

∂Ω

v d∂Ω = 0
}

.

The spaceW is called the spaces of measurement func-
tions. In this space is the image of the operatorA, which
relates the sourcesf with the measurementV , i.e., given a
sourcef , the solution of the forward problem gives an ideal
measurementA(f) = V ∈ W. This ideal measurement is
defined on∂Ω, and the real measurement is recorded in a
finite number of points on the same∂Ω, which can be inter-
polated to get an element of theL2(W), which must be close
to the ideal measurement (i.e., an element ofW). Since the
real measurement contains errors, we have to interpolate in
a stable form. We can use different interpolation methods to
get an element ofW. In this work, we consider that the mea-
surement is expressed as Fourier series and that we know the
Fourier coefficients.

Using the Green formulas, the following definition is ob-
tained, which can be found in [10], p. 171.
Definition 1. Givenf ∈ U , the functionu ∈ V is called the
weak solution of the problem (1) if it satisfies

∫

Ω

∇u · ∇vdΩ =
∫

Ω

fvds, (4)

for all v ∈ H1(Ω).
The following Theorem can be found in Ref. [10]:

Theorem 1. Given f ∈ U , the problem (1) has a unique
solutionu ∈ V, which satisfies

‖u‖H1(Ω) ≤ C(Ω) ‖f‖L2(Ω) , (5)

where the constantC(Ω) does not depend onf .
We can define the operatorT : U → V such that

T (f) = u whereu ∈ V is the solution of the problem (1).
As well, we define the operator tracetr : V → W such that
tr(u) = V whereu ∈ V is the weak solution of the problem
(1), i.e., the operator trace is the generalization of the restric-
tion of the functionu on∂Ω (see Appendix B). The operator
trace evaluated inu is also denoted byu|∂Ω = V . The op-
eratorA = tr ◦ T , which is composition ofT with the trace
tr : V → W, is compact sincetr is compact, which relates
the sourcef with the measurementV = u|∂Ω. In terms of
the operatorA, the inverse problem can be stated as follows:

Given a functionV ∈ W find a sourcef ∈ U such that

A(f) = V. (6)
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The operatorA is not injective, which is a consequence
of the Theorem2, which can be found in Ref. [11]. In this
Theorem, it was proved thatker(A) 6= {0}. SinceA is linear,
it is not injective.
Theorem 2.ker(A) = [Harm(Ω)]⊥, whereHarm(Ω) rep-
resents the space of harmonic functions defined inΩ.

We denote byH⊥(Ω)={g ∈ Harm(Ω) : 〈g, 1〉L2(Ω)

= 0}. We haveU = ker(A)
⊕

H⊥(Ω). This Theorem
shows that the spaceU can be decomposed in a direct sum
of the space of harmonic functions and its orthogonal space,
which is the kernel of the operatorA. This decomposition
is a consequence of the Theorem1 given in Ref. [12] p. 53
since the space of harmonic functions is closed. From Theo-
rem2, the restrictionÂ of the operatorA to H⊥(Ω) is injec-
tive, i.e., we can recover uniquely the harmonic component
fh of the source from the measurementV . SinceÂ is com-
pact, the inversêA−1 is not continuous, which is related to
the ill-posedness of the problem. More precisely, the no con-
tinuity of the operatorÂ−1 is associated with the numerical
instability (see Appendix D).

To recover the whole sourcef ∈ U , we have to impose
a priori information to find its non-harmonic component. In
Ref. [4], the source is given by a product of two functions that
depend on different variables, one of them is known consider-
ing a cylindrical geometry. In Ref. [5], the authors recover the
non-harmonic component of the source using a priori infor-
mation and an iterative algorithm for some particular classes
of sources. For example, the authors consider the case when
the whole source is harmonic in a subdomain of the region.
Synthetic examples are developed in circular (simple) and ir-
regular (complex) regions to validate the numerical method-
ology.

For simplicity of the notation, in what follows, we will
use the symbolA to denote the operator̂A.

2.2. Tikhonov regularization

In practice, we knowVδ insteadV with ‖V −Vδ‖L2(∂Ω) < δ
whereδ > 0 is called the measurement error. To handle the
numerical instability of the operational equationA(f) = V ,
the Tikhonov regularization method is used, which consists
of adding a regularization (penalization) term to the least
square problemJ(f) = 1

2‖A(f) − V ‖2L2(∂Ω), that is, the
method minimizes the regularized functional

Jα(f) =
1
2
‖A(f)− V ‖2L2(∂Ω) +

α

2
‖f‖2L2(Ω), (7)

whereα(δ) > 0 is the Tikhonov regularization parameter,
which must be chosen appropriately in terms of the error
δ [1,13].

Let fα(δ) = RαVδ be an approximation offh where
Rα = (A∗A + αI)−1A∗ is the operator associated with
the Tikhonov regularization strategy, which has the proper-
ties described in the following theorems ( [1,13]):
Theorem 3. Rα : H⊥(Ω) → L2(∂Ω) is boundedly in-
vertible, andfα(δ) = RαVδ is the unique solution of the

normal equation(A∗A + αI)fα(δ) = A∗Vδ. Furthermore,
‖Rα‖ ≤ 1/

√
α.

Theorem 4. Any choiceα(δ) such thatlim
δ→0

α(δ) = 0 and

lim
δ→0

δ2 /α(δ) = 0 ensures that

sup
{‖RαVδ −A−1V ‖L2(Ω) : Vδ ∈ L2(∂Ω),

‖V − Vδ‖L2(∂Ω) ≤ δ
} → 0,

whenδ → 0. In this case,Rα is called ‘admissible’ and

lim
δ→0

fα(δ) = fh in L2(Ω). (8)

There are different methods for determining a suitable
regularization parameter that should balance the two terms of
the functionalJα. The discrepancy principle and the L-curve
are examples of these methods. The name L-curve comes
from the shape of the curve and is a log-log plot of the norm
of a regularized solution versus the norm of the correspond-
ing residual norm [14].

In this work, we consider two regularization parameters:
The first one is the Tikhonov parameter, and the second one
is the term where the expansion series is truncated.

We will denote the operator̂A by A.

3. Solving the forward and inverse problems

3.1. Circular regions

We consider that the regionΩ is a circular region of radiusR
centered in the origin. The source can be expressed by

f(r, θ) =
∞∑

k=1

f1
kAkrk cos kθ + f2

kAkrk sin kθ, (9)

where Ak =
√

2k + 2/(Rk+1
√

π) is a normaliza-
tion factor, and f1

k = 〈f,Akrk cos kθ〉L2(Ω), f2
k =

〈f, Akrk sin kθ〉L2(Ω) are the Fourier coefficients,k =
1, 2 . . ..

The solution of the problem (1) is sought in the form

u(r, θ) =
∞∑

k=1

akAkrk cos kθ + bkAkrk sin kθ

+
∞∑

k=1

ckBkrk+2 cos kθ + dkBkrk+2 sin kθ,

(10)

whereBk =
√

2k + 6/(Rk+3
√

π) is a normalization factor.
After some calculations, we found (see Appendix A):

ak = Γkf1
k , bk = Γkf2

k ,

ck = Λkf1
k , dk = Λkf2

k .
(11)

where Γk = −(k + 2)R2/(4k(k + 1)) and Λk =
R
√

k + 1/(4(k + 1)
√

k + 2).
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The solution of the forward problem is given by (see Ap-
pendix A):

A(f)(θ) = V (θ) =
∞∑

k=1

Ck
cos kθ√

π
+ Dk

sin kθ√
π

, (12)

where Ck =
√

π
(
akAkRk + ckBkRk+2

)
and Dk =√

π
(
bkAkRk + dkBkRk+2

)
.

For the inverse problem, we consider that the exact mea-
surement is given by

V (θ) =
∞∑

k=1

V 1
k

cos kθ√
π

+ V 2
k

sin kθ√
π

, (13)

where the Fourier coefficientsV 1
k andV 2

k of V are known.
To find the minimum ofJα(δ) we have to solve the normal

equations:
[A∗A + α(δ)I] (f) = A∗V,

whereA∗ : W → U is the adjoint operator ofA, which is
given byA∗(ψ) = −ϕ whereϕ is the solution of the adjoint
boundary value problem [5,11]

∆ϕ = 0 in Ω,

∂ϕ

∂n
= ψ on ∂Ω.

(14)

WhenΩ is a circle of radiusR centered in the origin, the
operatorA∗ is given by (see Appendix A) [6]:

A∗(ψ)(r, θ) = −
∞∑

k=1

Ek

× [
ψ1

kAkrk cos kθ + ψ2
kAkrk sin kθ

]
, (15)

where

ψ(θ) =
∞∑

k=1

ψ1
k

cos kθ√
π

+ ψ2
k

sin kθ√
π

and

Ek =
R√

πkAkRk
.

Instead ofV , we consider the measurement with error

Vδ(θ) =
∞∑

k=1

V 1
k,δ

cos kθ√
π

+ V 2
k,δ

sin kθ√
π

, (16)

with ‖V − Vδ‖L2(∂Ω) ≤ δ. After substituting in the normal
equations, we get the regularized solution:

fα(δ) =
∞∑

k=1

AkAk

[
V 1

k,δ rk cos kθ + V 2
k,δ rk sin kθ

]
, (17)

where

Ak =
Ek√

πEkΦk − α
, (18)

andΦk = ΓkAkRk + ΛkBkRk+2.

4. Algorithm to recover the harmonic function

From (17), we obtain the following stable algorithm to re-
cover the source from the measurement with errorsVδ:

Algorithm 1: To identify the harmonic source we pro-
ceed as follows:

Step 1. We take some values for the parametersσ1, σ2,
R1, R2 and we take a sourceg defined onΩ.

Step 2. We solve the boundary value problem (1).

Step 3. We compute theV = u|∂Ω, the exact measure-
ment, using Eq. (12) for N = 30, which was chosen
by numerical tests.

Step 4. To emulate the measurement with error, we
aggregate an appropriate random error, using therand
function of MATLAB, to the coefficientsV 1

k andV 2
k ,

wherek = 1, 2.... Hence, we get the coefficientsV 1
k,δ

andV 2
k,δ, k = 1, 2... of the measurement with errorVδ,

which satisfies‖Vδ − V ‖L2(∂Ω) ≤ δ.

Step 5. Then, we get the regularized solution to the
inverse problem by

fN
α(δ) =

N∑

k=1

AkAk

[
V 1

k,δ rk cos kθ + V 2
k,δ rk sin kθ

]
, (19)

takingα(δ) = 10−5 andN = 16.

According to the numerical results obtained in this work, we
propose the following values for the regularization parame-
ters:α = 10−5 andN = 16, which is an original result.

Considering a prior information, we can get estimates
about the convergence of the regularized solution (see Ap-
pendix C). A prior information is obtained from the specialist
on the topic studied.

5. Numerical example

In this section, we illustrate the algorithm proposed by syn-
thetic examples proceeding as in the following:
Example 1. We consider the sourcef(x, y) = ex cos y,
defined in the circular regionΩ =

{
(x, y) : x2 + y2 < 1

}
.

In polar coordinates,f(r, θ) = er cos θ cos (r sin θ). In
Figs.1 and2 show the exact source and its approximations
by Fourier series usingN = 16 terms in (9). The error be-
tween the approximated and exact source is0.0872. In Fig. 3
shows the potential obtained using (10) and the measurement
with and without error. In Fig.5 shows the recovered source
using the Algorithm1, which takeN = 16 andα = 10−5. In
Figs.6 and7 show the importance of the two regularization
parameters. In Fig.6, we takeα = 10−5 and N = 100.
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FIGURE 1. Exact source.

FIGURE 2. Approximated source obtained takingN = 16 terms
in (9).

FIGURE 3. Potential obtained using (10) takingN = 16 terms.

In Fig. 7, we takeα = 0 andN = 16. Similar results are ob-
tained for other values of the two regularization parameters
α andN . TableI shows the regularized solution for different
parameter valuesα and for different values of the errorδ.

TABLE I. Relative errors for different values ofδ and Tikhonov
regularization parameter takingN = 16 for the truncation of the
series.

α δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.001

10−3 0.1128 0.6765 0.0103 0.0076

10−4 0.1332 0.0467 0.0112 0.0041

10−5 0.0890 0.0580 0.0142 0.0031

10−6 0.0879 0.0645 0.0100 0.0030

10−7 0.1089 0.0535 0.0138 0.0039

TABLE II. Absolute errors for different values of the Tikhonov reg-
ularization parameterα and different values of the truncation pa-
rameterN , with δ = 0.1.

α N = 16 N = 30 N = 60 N = 100

10−3 0.3810 0.5375 0.5813 0.7628

10−4 0.3064 0.4095 0.8857 0.9052

10−5 0.2879 0.5586 0.7544 1.0085

10−6 0.3350 0.4025 1.0836 1.1301

10−7 0.3106 0.6872 0.5617 0.8671

FIGURE 4. Measurements without and with error in red and blue,
respectively.

We can observe that the parametersα = 10−6 andN = 16
give good results. TableII shows the numerical results for
other values ofN andα. The optimal values areN = 16 and
α = 10−5, for δ = 0.1.

6. Application to one optical problem

It has been shown in previous works that if a wavefront,
which propagates in the direction of the optical axis, is con-
sidered within the paraxial approximation, we obtain the ir-
radiance transport equation (ITE) [15]:
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FIGURE 5. Recovered source takingδ = 0.1, α = 10−5 and
N = 16.

FIGURE 6. Recovered source takingδ = 0.1, α = 10−5 and
N = 100.

FIGURE 7. Recovered source taking:α = 0, δ = 0.1 andN = 16.

∇T I · ∇T W + I∇2
T W = −∂I

∂z
. (20)

The Eq. (20) is only valid in cases where the curvature
presented during the wavefront propagation is smooth and
the propagation of the wavefront is mainly in the paraxial
regime [15].

The ITE is used in many schemes for recovering the phase
from irradiance measurements, without using interferometric
techniques. In addition, this transport equation is the basis
for curvature wavefront sensing methods [16]. The ITE re-
lates the phase in a plane orthogonal to the optical axis to the
rate of change of the beam intensity along the propagation di-
rection, assuming a paraxial beam described byΨ(x, y, z) =
[I(x, y, z)]1/2 exp[iφ(x, y, z)], whereI(x, y, z) is the irradi-
ance, andφ(x, y, z) is the phase. In terms of the wavefront
W (x, y, z), the phase is given by the relationφ(x, y, z) =
(2π/λ)W (x, y, z) = kW (x, y, z) [16].

If the intensity distribution is considered to be almost uni-
form, the first term of Eq. (20) vanishes and the ITE becomes
a Poisson equation as follows [8,16,17]:

∇2
T W = f, (21)

where

f = −1
I

∂I

∂z
. (22)

We can consider that

∂W

∂n
= 0, (23)

since that boundary condition is obtained by forcing the ra-
dial derivative to zero within a narrow band surrounding the
boundaries [18].

Inverse problem: Given a measurementφ on the bound-
ary ∂Ω, to determine the sourcef such that the solution of
(21)-(23) satisfiesW |∂Ω = φ.

When we findf in a stable form applying our method,
the irradianceI is given by:

I(z) = e−f(x,y)z. (24)

We consider the same procedure given in Section Numer-
ical Example to solve the inverse problem when the measure-
ment with errorVδ is known.
Example 2. We consider in(22) the source given by
f(x, y) = x2 − y2 defined in the circular regionΩ ={
(x, y) : x2 + y2 < 1

}
. In polar coordinates,f(r, θ) =

r2 cos(2θ) = f1
2 A2r

2 cos(2θ) where f1
2 = 1/A2 is the

unique Fourier coefficient different to zero. The solution of
the problem(21)-(23) is

u(r, θ) =
r4 − 2r2

12
cos 2θ, (25)

which inx-y coordinates is given by

u(x, y) =
(x2 + y2 − 2)(x2 − y2)

12
.
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FIGURE 8. Exact source.

FIGURE 9. Approximated source obtained takingN = 16 terms
in (9).

In this case, the measurementV is given by

V (θ) = V 1
2

cos 2θ√
π

, (26)

whereV 1
2 = (R4 − 2R2/12)

√
π is the unique Fourier coef-

ficient different to zero.
In Fig. 8 and 9 show the exact source and its approxi-

mation using the Fourier series takingN = 16 terms of the
expansion. In Fig.10 shows the solution to the problem. In
Fig. 11 shows the exact and with error measurements, de-
noted byV andVδ, respectively. In Fig.12 and14 respec-
tively show the recovered sources with and without regular-
ization. Table III shows the relative errors for different error
valuesδ and different values of the Tikhonov regularization
parameter. We considerN = 16 for the truncation of the
series (9). The numerical results show the feasibility of the
proposed method.
Example 3. We consider in(22) the source given by
f(x, y) = x3 − 3xy2 defined in the circular regionΩ ={
(x, y) : x2 + y2 < 1

}
. In polar coordinates,f(r, θ) =

r3 cos3(θ)− 3r cos(θ)r2 sin2(θ).

FIGURE 10. Potential obtained using (10) takingN = 16 terms.

FIGURE 11. Measurements without and with error in red and blue,
respectively.

TABLE III. Relative errors for different values ofδ and Tikhonov
regularization parameter takingN = 16 for the truncation of the
series.

α δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.001

10−3 0.1180 0.0859 0.0164 0.0168

10−4 0.1450 0.0821 0.0158 0.0089

10−5 0.1705 0.0605 0.0175 0.0074

10−6 0.1785 0.0576 0.0152 0.0078

10−7 0.1476 0.0820 0.0150 0.0089

In Fig. 15 and16 show the exact source and its approxi-
mation using the Fourier series takingN = 16 terms of the
expansion. In Fig.18 shows the exact and with error mea-
surements, denoted byV andVδ, respectively. In Fig.19and
21 show the recovered sources with and without regulariza-
tion.
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FIGURE 12. Recovered source takingδ = 0.1, α = 10−5 and
N = 16.

FIGURE 13. Recovered source takingδ = 0.1, α = 10−5 and
N = 100.

FIGURE 14. Recovered source taking:α = 0, δ = 0.1 and
N = 16.

FIGURE 15. Exact source.

FIGURE 16. Approximated source obtained takingN = 16 terms
in (9).

TABLE IV. Relative errors for different values ofδ and Tikhonov
regularization parameter takingN = 16 for the truncation of the
series.

α δ = 0.1 δ = 0.05 δ = 0.01 δ = 0.001

10−3 0.1444 0.0902 0.0197 0.0181

10−4 0.1714 0.1034 0.0191 0.0083

10−5 0.2039 0.0681 0.0151 0.0071

10−6 0.2116 0.0669 0.0199 0.0065

10−7 0.1710 0.0929 0.0179 0.0077

7. Information a priori: the sources are de-
fined in a circle contained in the region

We consider a special case regarding the problem of recover-
ing the whole source, which will be described below in detail.
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FIGURE 17. Potential obtained using (10) takingN = 16 terms.

FIGURE 18. Measurements without and with error in red and blue,
respectively.

FIGURE 19. Recovered source takingδ = 0.1, α = 10−5 and
N = 100.

FIGURE 20. Recovered source takingδ = 0.1, α = 10−5 and
N = 16.

FIGURE 21. Recovered source taking:α = 0, δ = 0.1 and
N = 16.

7.1. Identification of Non-Harmonic sources

According to Theorem2, we know that a general source
f ∈ U is the direct sum of two sources; one of them is a
harmonic function, and the other one belongs toker(A), i.e.,

f = f0 + h, with f0 ∈ ker(A),

andh ∈ H⊥(Ω). (27)

In previous sections, we have dealt with the computation
of the harmonic parth, which can be recovered from mea-
surements on the exterior boundary∂Ω. We emphasize that
f and h produce the same measurement sincef0 produces
the measurement zero.

7.2. Describing the class of functions

In this section, we are concerned with the non-harmonic com-
ponentf0, which can be identified using a priori information.
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Let F be a class of piecewise sources that take two con-
stant valuesα and β known in Ω, such thatf takes the
value α in a subsetU ⊂ Ω and β in (Ω ∩ (U c)). We
consider the subclassFc of sourcesfx0 such that the sets
U = {x ∈ Ω : fx0(x) = α} are closed circles contained in
Ω with µ(U) > 0, where all circlesU have the same radius.
Let x0 ∈ Ω be the center andR0 > 0 the radius ofU . Then,
eachfx0 ∈ Fc is of the form

fx0 = (α− β) χU + β, (28)

whereχU is the indicator function ofU . Sincefx0 must be
orthogonal to the constants, we obtain

0 =
∫

Ω1

fx0 dx = (α− β)µ(U) + β µ(Ω)

= α µ(U) + β µ(Ω \ U),

(29)

whereµ denotes the Lebesgue measure on the plane. So the
parameterβ is given by

β =
−αµ(U)
µ(Ω \ U)

=
−αµ(U)

µ(Ω)− µ(U)
, (30)

and taking into account (29)

µ(U) =
β

β − α
µ(Ω) =

βπR2

β − α
. (31)

If the setsU are circles contained inΩ, then from (31) all
these circles must have the same radius:

R0 =

√
β

β − α
R. (32)

The centerx0 = (x1
0, x

2
0) of these circlesU must be con-

tained in the disk centered at(0, 0) and radiusR − R0 =(
1−

√
β/(β − α)

)
R. From (29), it is concluded thatα and

β must have opposite signs. Furthermore, allfx0 ∈ Fc can
also be written as

fx0 = (α− β)
[
χU − µ(U)

µ(Ω)

]
. (33)

for some convex closed setU in Ω and satisfies (29).

7.3. Uniqueness of the identification problem in a class
of piecewise constant sources

The following Theorems can be found in Ref. [7].
Theorem 5.For any family of convex closed subsets ofΩ sat-
isfying condition (29), the corresponding family of functions
F defined by (33) is a class of unicity for solving the inverse
problem of identifyingf in the EBP from the measurement
φ.
Theorem 6. Any setF of functions orthogonal to the con-
stants inΩ takes the valueα on a convex closed setΩ, andβ
on its complement consists of functions of the form (33) with
U closed convex contained inΩ satisfying the restriction (29)

with α and β fixed such thatαβ < 0. Moreover, whatever
the familyU of closed convex sets with the properties men-
tioned, the corresponding setF is compact inL2(Ω) and is
contained in the sphere centered atO and radius

√−αβR,
whereR is the radius of the circular regionΩ with center in
the originO.

From the Theorem5, the setFc is a class of uniqueness
used to identify the sourcefx0 of the boundary problem (1)
from a measurementV on∂Ω. To solve the inverse problem
in a circular regionΩ with conductivityσ, we applied Algo-
rithm 2 of the Subsec,7.4, when we have data with error in
the measurementVδ.

7.4. Stable algorithm for identification of piecewise con-
stant sources

Algorithm 2: To identify a sourcefx0 ∈ Fc, in the case
when the measurementVδ has error and‖Vδ−V ‖L2(∂Ω) ≤ δ.

Step 1. Find an approximated harmonic component of
h from measurements with errorVδ on ∂Ω of fx0 by
Algorithm 1(given and illustrated in Sec.??). This ap-
proximated harmonic component is denoted byhα(δ).

Step 2. Determine the pointx0
δ where hα(δ)(r, θ)

reaches its maximum value on∂Ω (appealing to the
maximum principle for harmonic functions in the
bounded regionΩ). The MATLAB fmincon routine
may be employed to compute the pointx0

δ where
hα(δ)(r, θ)|r=R takes its maximum on∂Ω, which
matches the minimum−hα(δ)(r, θ)|r=R.

Step 3. Compute the unique centerx∗δ of U by mini-
mizing the following convex functional:

Jδ(x) =‖ A(fx)− Vδ ‖2L2(∂Ω), for all x ∈ Ω, (34)

where A is the operator defined in (6). Of course,
fx0 ∈ Fc also depends on the known radiusR0 of U (a
priori information). This computed pointx∗δ approxi-
matesx0. In this step, the MATLABfminconroutine
may be employed again to find the minimum point of
the functionalJδ(x) expressed in polar coordinates:

Jδ(r, θ) =
N(δ)∑

k=1

(
V 1

k,x − V 1
δ,k

)2

+
(
V 2

k,x − V 2
δ,k

)2
, (35)

whereV i
k,x, i = 1, 2, are the coefficients with error of

Vδ and the coefficientsV i
k,x depend on the variablesr

andθ. These are given by

V 1
k,x =

Rk+2h1
k,fx

2σk(k + 1)
, and V 2

k,x =
Rk+2h2

k,fx

2σk(k + 1)
,
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which are in terms of the Fourier coefficientshi
k,fx

,
i = 1, 2, of the harmonic parth of the functionfx.
Taking into account (32) we have

h1
k,fx

=〈fx, ρk cos kω〉L2(Ω1)=(α−β)

×
∫

U

ρk cos kωdΩ = (α− β)
(
πR2

0r
k cos kθ

)

= −βR2rk cos kθ, (36)

and

h2
k,fx

= 〈fx, ρk sen kω〉L2(Ω1) = (α− β)

×
∫

U

ρk sen kωdΩ = (α− β)
(
πR2

0r
k sen kθ

)

= −βR2rk sen kθ, (37)

where the center of the circlesU in coordinates polar
is (r, θ) ∈ [0, R − R0] × [0, 2π] and all them have the
same radiusR0.

FIGURE 22. Plots ofV (red) andVδ (blue), forx0 = (r0, θ0) =

(0.1, (3/4)π), R0 = 0.1, α = 12 andδ = 0.1.

FIGURE 23. Recovered harmonic componenthα(δ) (in regionΩ)
corresponding to the exact complete sourcefx0 ∈ Fc, obtained
with Algorithm 2 given in Subsec.7.4, for x0 = (r0, θ0) =
(0.1, (3/4)π), R0 = 0.1, α = 12 andδ = 0.1.

Algorithm 2 is implementedfminconroutine to find the max-
imum of the approximated harmonic component on∂Ω, with
a tolerance of10−14.

7.5. Numerical examples for piecewise constant sources

We takeσ = 1 and the different exact sourcesfx0 , defined
by (33), belong to different subclassFc. Each subclassFc

is defined by the fixed known valuesα, β andR0 and for
all centersx0 (of the corresponding closed circleU regard-
ing the sourcesfx0 ) are contained in the disk centered at
(0, 0) and radiusR − R0. As mentioned before, theinverse
problemconsists in finding an approximation of the center
x0 = (r0, θ0), in polar coordinates, of the corresponding
closed circleU of the sourcefx0 with the same values of
the radiusR0, α andβ,whereβ is given by (30). The values
of parametersα, β andR0 and the centerx0 that define one
sourcefx0 in a subclassFc are given in Table V.

Table V shows the numerical results for noisy dataVδ on
∂Ω with three different noise levelsδ = 0.1, 0.05 and0.01.
The point where the functionalJδ(r, θ) is minimized is de-
noted byx∗δ,n, wheren is the number of iterations conducted
by fmincon. The relative errors in the Euclidean norm be-
tweenx0 = (r0, θ0) andx∗δ,n = (r∗δ , θ∗δ )n are in the columns
of each value ofδ. In this case, the relative errors decrease
when the error in dateVδ decreases. These results show nu-
merical convergence regarding the noise levelsδ. Addition-
ally, the accuracy of the solution in this case is high for the
circular regionsΩ. Therefore, the numerical results in Ta-
ble V show that the method proposed here is stable consider-
ing the noise in the input data.

FIGURE 24. Exact and recovered domains of the sourcefx0 and
its approximate solutionx∗δ,n at iterationn = 5, obtained with
the Algorithm 2 given in the Subsec.7.4, for x0 = (r0, θ0) =
(0.1, (3/4)π), R0 = 0.1, α = 12 andδ = 0.1.
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TABLE V. Relative errors for different values ofδ, R0, α andβ applying Algorithm2 proposed in Subsec.7.4for a circular regionΩ, where
β is given by (30) and the subscriptn is the number of iterations conducted byfmincon.

R0 x0 = (r0, θ0) α δ = 0.1 x∗δ,n = (r∗δ , θ∗δ )n δ = 0.05 x∗δ,n = (r∗δ , θ∗δ )n δ = 0.01 x∗δ,n = (r∗δ , θ∗δ )n

0.2 (0.5, 5
4
π) 10 0.0285 (0.5038, 3.8996)5 0.0204 (0.4942, 3.9439)5 0.0151 (0.4993, 3.9120)5

0.1 (0.5, 5
4
π) 6 0.0394 (0.4831, 3.9476)5 0.0214 (0.4957, 3.9466)5 0.0139 (0.5015, 3.9405)5

0.1 (0.3, 3
4
π) 9 0.0567 (0.3152, 2.3314)5 0.0320 (0.3065, 2.3328)5 0.0174 (0.3036, 2.3439)5

0.1 (0.1, 3
4
π) 12 0.0667 (0.1056, 2.3212)5 0.0527 (0.1034, 2.3955)5 0.0405 (0.1040, 2.3604)5

0.1 (0.6, 1
6
π) 8 0.0337 (0.5881, 0.5512)5 0.0265 (0.6109, 0.5427)5 0.0123 (0.5996, 0.5358)5

0.1 (0.1, 1
6
π) 7 0.0523 (0.1042, 0.4930)5 0.0503 (0.1049, 0.5325)5 0.0477 (0.1043, 0.5435)5

Figure22 shows the noisy dataVδ (blue), for δ = 0.1,
generated by the functionrandom of MATLAB, Fig. 23
shows the recovered harmonic sourcehα(δ) obtained with
Algorithm 2 (proposed in Subsec.7.4) at iterationn = 5.
Finally, Fig. 24 shows the recovered domainU , with center
x∗δ,n, corresponding to the recovered sourcefx∗δ,n

obtained
with this algorithm. The last figure shows that the recovered
domainU , with centerx∗δ,n obtained with the method pro-
posed in this work is indistinguishable. The corresponding
figures for the other values of the parametersα, β, R0, x0

andδ are qualitatively similar and are not included.

8. Conclusions

An elliptic boundary value problem is used to study the for-
ward and inverse source problems. The inverse problem has a
unique solution when the space of harmonic functions is con-
sidered. This work presents a stable algorithm for recovering
that harmonic function. The solution to the boundary value
problem is obtained using circular harmonics.

The Tikhonov regularization method is employed to get the
algorithm. This method carries up to one variant of the nor-
mal equation. In addition to the Tikhonov regularization pa-
rameter, we consider another regularization parameter, which
is obtained by truncating the series that gives the solution of
the normal equations. Thus, the algorithm considers two reg-
ularization parameters. The numerical results show the feasi-
bility of the proposed algorithm. The work also considers the
problem of determining the irradiance using the Irradiance
Transport Equation for the case in which that equation can be
written as a Poisson equation with a null Neumann boundary
condition, and the source is a harmonic function. When the
source is not harmonic, we can consider additional informa-
tion to get the uniqueness of the inverse problem. This ad-
ditional information can be obtained from the experts in the
area where the problem is studied. To get the whole source,
an additional minimization problem must be defined. To il-
lustrate this, we consider one case for the non harmonic func-
tion in which the source belongs to a particular class of piece-
wise constant sources.

Appendix

A. Series calculations

To solve problem (1), we consider that the functionf can be expanded in the form

f(r, θ) =
∞∑

k=1

f1
kAkrk cos kθ + f2

kAkrk sin kθ,

whereAk is a normalization factor. To calculateAk, we have to calculate the norm ofrk cos kθ andrk sin kθ:

∥∥rk sin kθ
∥∥2

L2(Ω)
=

∥∥rk cos kθ
∥∥2

L2(Ω)
=

∫ R

0

∫ 2π

0

(rk cos kθ)2rdrdθ =
∫ R

0

r2k+1dr

∫ 2π

0

cos2 kθdθ =
R2k+2

2k + 2
π,

then
∥∥rk cos kθ

∥∥
L2(Ω)

=
√

[R2k+2/(2k + 2)]π. Hence

rk cos kθ

‖rk cos kθ‖ =
√

2k + 2√
R2k+2

√
π

rk cos kθ =
√

2k + 2√
(Rk+1)2

√
π

rk cos kθ =
√

2k + 2
Rk+1

√
π

rk cos kθ.
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So, we have
√

2k + 2
Rk+1

√
π

rk cos kθ = Akrk cos kθ,

from where

Ak =
√

2k + 2
Rk+1

√
π

. (A.1)

We do the same for the biharmonic function

u(r, θ) =
∞∑

k=1

akAkrk cos kθ + bkAkrk sin kθ +
∞∑

k=1

ckBkrk+2 cos kθ + dkBkrk+2 sin kθ. (A.2)

We calculate the norm ofrk+2 cos kθ to obtain the orthonormal basis

∥∥rk+2 cos kθ
∥∥2

=
∫ R

0

∫ 2π

0

(rk+2 cos kθ)2rdrdθ =
∫ R

0

r2(k+2)+1dr

∫ 2π

0

cos2 kθdθ =
R2k+6

2k + 6
π,

then
∥∥rk+2 cos kθ

∥∥ =
√

[R2k+6/(2k + 6)]π. Hence

rk+2 cos kθ

‖rk+2 cos kθ‖ =
√

2k + 6√
R2(k+3)

√
π

rk+2 cos kθ =
√

2k + 6
Rk+3

√
π

rk+2 cos kθ.

So, we have
√

2k + 6
Rk+3

√
π

rk+2 cos kθ = Bkrk cos kθ ⇒ Bk =
√

2k + 6
Rk+3

√
π

.

Remember that the Laplace operator in polar coordinates is defined by

∆(r,θ)f =
1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2

∂2f

∂θ2
=

1
r

∂f

∂r
+

∂2f

∂r2
+

1
r2

∂2f

∂θ2
.

Applying ∆(r,θ) to (A.2)

∆(r,θ)(rk+2 cos kθ) =
∂2(rk+2 cos kθ)

∂r2
+

1
r

∂(rk+2 cos kθ)
∂r

+
1
r2

∂2(rk+2 cos kθ)
∂θ2

= [(k + 2)(k + 1)]rk cos kθ

+ (k + 2)rk cos kθ − k2rk cos kθ = (4k + 4)rk cos kθ.

So,

∆(r,θ)u(r, θ) =
∞∑

k=1

ckBk(4k + 4)rk cos kθ + dkBk(4k + 4)rk sin kθ =
∞∑

k=1

f1
kAkrk cos kθ + f2

kAkrk sin kθ.

Thus

ck =
Ak

4Bk(k + 1)
f1

k , dk =
Ak

4Bk(k + 1)
f2

k .

On the other hand

∂

∂r
u(r, θ) =

∞∑

k=1

kAkrk−1 (ak cos kθ + bk sin kθ) +
∞∑

k=1

(k + 2)Bkrk+1 (ck cos kθ + dk sin kθ) .

So,

∂

∂r
u(R, θ) =

∞∑

k=1

(
kakAkRk−1 + (k + 2)ckBkRk+1

)
cos kθ +

(
kbkAkRk−1 + (k + 2)dkBkRk+1

)
sin kθ.
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Thus,

kakAkRk−1 + (k + 2)ckBkRk+1 = 0.

Then,

ak = − (k + 2)ckBkRk+1

kAkRk−1
= − (k + 2)ckBkR2

kAk
= − (k + 2)BkR2Ak

4Bk(k + 1)kAk
f1

k = − (k + 2)R2

4(k + 1)k
f1

k .

Analogously

bk = − (k + 2)R2

4(k + 1)k
f2

k .

B. Trace of a function

Let Ω be a bounded domain inRn, and letS be an(n− 1)-dimensional surface that belongs toΩ, for example,S = ∂Ω. We
will call the tracef |S of the functionf ∈ C(Ω) onS the value that the continuous functionf takes on this surfaceS, i.e., by
the trace of a continuous function onS we mean its value extended uniquely according to the continuity onS. In this case, the
trace coincides with the restriction of the functionf on the surfaceS. The concept of the trace of a function onS can also be
introduced for functions inH1(Ω). By definition,H1(Ω) is the completion of the spaceC1(Ω), endowed with the norm

||f ||H1(Ω) = ‖f‖L2(Ω) + ‖D1f‖L2(Ω), (B.1)

whereD1f denotes the vector whose entries are given by:D1
i f = ∂f/∂xi, i = 1, 2, ..., n. Here,D1

i f is the generalized
derivative of order one of the functionf corresponding to the independent variablexi, andD1 is called the operator of
generalized first derivatives. The definition of the generalized derivative of order oneD1

i u of the functionu corresponding to
independent variablexi, i = 1, 2, ..., n, is given by the following [10] p. 126:
Definition 2. (First generalized derivative)The functionv ∈ L2,loc(Ω) is called the first generalized derivative (or generalized
derivative of order one) of the functionu ∈ L2,loc(Ω), which is denoted byv = D1

i u corresponding to independent variable
xi, i = 1, 2, ..., n, if the following equality holds:

∫

Ω

vϕdΩ = −
∫

Ω

uD1
i ϕdΩ, (B.2)

for all ϕ ∈ C0
∞(Ω), whereL2,loc(Ω) = {v : Ω′ → R | for all Ω′ b Ω and

∫
Ω′ f

2dΩ < ∞}, here the symbolb indicates
strict containment, andC0

1(Ω) is the set of functions which take the value zero on the boundary∂Ω of the bounded domain
Ω.

The functionv that satisfies the relation (B.2) is unique; the proof can be found in [10].
Then, forf ∈ H1(Ω), there exists a sequence of functionsfp, p = 1, 2, ..., from C1(Ω) that converges tof in H1(Ω). For

each function(fp − fq), p, q = 1, 2, ..., the inequality holds

‖fp − fq‖L2(S) ≤ C ‖fp − fq‖H1(Ω) ,

whereC > 0 is a constant that does not depend of the function(fp − fq).
Since‖fp − fq‖H1(Ω) → 0 asp, q →∞, we also have‖fp − fq‖L2(S) → 0 asp, q →∞. This means that the sequence of

the traces of the functionsfp onS is Cauchy sequence inL2(S). Furthermore, sinceL2(S) is complete, there exists a function
fS(x) ∈ L2(S) such that the sequence of tracesfp|S converges to it asp →∞. Taking the limit in the previous inequality, we
obtain

‖fp − fS‖L2(S) ≤ C ‖fp − f‖H1(Ω) .

Now, let us see that the functionfS does not depend on how the sequencefp, p = 1, 2, ..., is chosen, which approximates
the functionf in the norm fromH1(Ω). Indeed, letf̃k, k = 1, 2, ..., be another sequence of functions inC1(Ω) for which∥∥∥f − f̃k

∥∥∥
H1(Ω)

→ 0 ask →∞, and letf̃S(x) be the limit in the norm fromL2(S) of the sequencẽfk|S , k = 1, 2, ....

Then, from the previous inequalities, we have that

∥∥∥f̃S−fS

∥∥∥
L2(S)

≤‖fS − fq‖L2(S) +
∥∥∥f̃q−fq

∥∥∥
L2(S)

+
∥∥∥f̃S−f̃q

∥∥∥
L2(S)

≤C

(
‖fq−f‖H1(Ω) +

∥∥∥fq−f̃q

∥∥∥
H1(Ω)

+
∥∥∥f̃q−f̃S

∥∥∥
H1(Ω)

)
.

The last expression of the last inequality tends to zero asq →∞, we havefS = f̃S .
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Thus, the concept of the trace of a function has been determined for any elementf of H1(Ω). Therefore, we have the
following definition:
Definition 3. The functionfS ∈ L2(S) is called the trace of the functionf in H1(Ω) on the surfaceS, and it is denoted by
the symbolf |S . The norm‖f |S‖L2(S) is denoted by‖f‖L2(S).

This concept is indeed a generalization of the concept of the value of a function on an(n − 1)-dimensional surface, that
is, of the restriction of a continuous functionf to a surfaceS. This allows us to define the operator trace, denoted bytr as
follows: tr : H1(Ω) → L2(S) such thattr(f) = f |S .

C. On correctness of the Algorithms 1 and 2

For the Tikhonov regularization, the following Theorem can be found in Ref. [1], p. 39.
Theorem 7. Let K : X → Y be a linear, compact, and injective operator andα > 0 andx∗ ∈ X be the exact solution of
Kx∗ = y∗. Furthermore, letyδ ∈ Y with ‖yδ − y∗‖Y ≤ δ. Then

a) Let x∗ = K∗z ∈ R(K∗) with ‖z‖Y ≤ E. We chooseα(δ) = cδ/E for somec > 0. Then the following estimates hold:

∥∥∥xα(δ),δ − x∗
∥∥∥

X
≤ 1

2
(1/
√

c +
√

c)
√

δE, (C.1)

∥∥∥Kxα(δ),δ − y∗
∥∥∥

X
≤ (1 + c)δ. (C.2)

b) For someσ ∈ (0, 2], let x∗ = (K∗K)σ/2z ∈ R((K∗K)σ/2) with ‖z‖X ≤ E. The choiceα(δ) = c(δ/E)2/(σ+1) for
c > 0 leads to the error estimates

∥∥xα,δ − x∗
∥∥

X
≤ Hδσ/(σ+1)E1/(σ+1), (C.3)

∥∥Kxα,δ − y∗
∥∥

X
≤ (1 + cσ+1c

(σ+1)/2)δ, (C.4)

whereH = (1/2
√

c) + cσcσ/2. Here,cσ are the constants for the choice ofq of the part (a) of Theorem2.8 [1],
p. 35. Therefore, forσ ≤ 2 Thikonov’s regularization method is optimal for the information‖(K∗)−1x∗‖Y ≤ E or
‖(K∗K)−σ/2x∗‖X ≤ E, respectively (providedK∗ is one-to-one).

Now, we get an estimate for the truncated series
∥∥∥f − fN

α(δ)

∥∥∥
L2(Ω)

≤
∥∥∥f − fα(δ) + fα(δ) − fN

α(δ)

∥∥∥
L2(Ω)

≤
∥∥f − fα(δ)

∥∥
L2(Ω)

+
∥∥∥fα(δ) − fN

α(δ)

∥∥∥
L2(Ω)

=
∥∥f − fα(δ)

∥∥
L2(Ω)

+

√√√√
∞∑

k=N+1

(
f1

k,α(δ)

)2

+
(
f2

k,α(δ)

)2

,

wherefN
α(δ) is the approximated truncated source offα(δ), andf1

k,α(δ), f2
k,α(δ) are the Fourier coefficients of the approximated

sourcefα(δ), which are given by

f i
k,α(δ) = AkAkV i

k,δ, i = 1, 2, (C.5)

whereV i,δ
k , i = 1, 2 are the Fourier coefficients of the error measurementVδ, with ‖V − Vδ‖L2(Ω) ≤ δ, andAk is given in

Eq. (18). Taking into account the coefficientsAk, Ek, Φk andAk given in Sec. 3, we haveΦk = ΓkAkRk + ΛkBkRk+2 =
−√2R

√
k + 1/4

√
π and

AkAk =
EkAk√

πEkΦk − α
=

−4√
πRk−1[R3 + 4kα]

, (C.6)

where
1

(R3 + 4kα)
≤ 1,

for the values suggested in this workα = 10−5, k = 16 andR ≥ 1. Then

(AkAk)2 ≤ 16
π

.
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Therefore,

∥∥∥f − fN
α(δ)

∥∥∥
L2(Ω)

≤
∥∥f − fα(δ)

∥∥
L2(Ω)

+

√√√√
∞∑

k=N+1

(
AkAkV 1

k,δ

)2

+
(
AkAkV 2

k,δ

)2

=
∥∥f − fα(δ)

∥∥
L2(Ω)

+

√√√√
∞∑

k=N+1

(
AkAk

)2
[(

V 1
k,δ

)2

+
(
V 2

k,δ

)2
]
≤

∥∥f − fα(δ)

∥∥
L2(Ω)

+
4√
π

√√√√
∞∑

k=N+1

[(
V 1

k,δ

)2

+
(
V 2

k,δ

)2
]

=
∥∥f − fα(δ)

∥∥
L2(Ω)

+
4 ‖Vδ‖L2(Ω)√

π
≤

∥∥f − fα(δ)

∥∥
L2(Ω)

+
4δ√
π

,

where
∥∥f − fα(δ)

∥∥
L2(Ω)

→ 0 since Tikhonov regularization is an admissible strategy (see Theorem4). Clearly,(4δ/
√

π) → 0,
whenδ → 0.

These results show the mathematical correctness of the algorithms1 and 2. Furthermore, the accuracy of the Tikhonov
regularization method is at least of order one or linear if we have a priori information about the exact sourcef (see Theorem7).

D. Inverse operator and numerical instability

A linear operatorA : X → Y , whereX andY are Hilbert spaces, is continuous in a pointx ∈ X if and only if it is continuous
in every point ofX. From this, when an operator is not continuous, it is not continuous at each point of the spaceX. This
is reflected when we solve operational equations of the formAx = y. One way to proceed consists of discretization of that
operational equation to get a system of linear equationsANxN = yN , whereAN , xN , andyN are discretization of theA, x,
andy, respectively. The operatorsAN → A when the following norm is consider‖A‖ = sup‖x‖6=0 {‖Ax|/‖x‖}. However,
the operatorsA−1

n do not converge toA−1. Furthermore, the matrices that represent the operatorAN (we can use the same
symbol for the matrix representation and the operators) are ill-conditioned, which produces large changes in the sought solution
when small errors appear on the right side of the equation. Examples can be found in Ref. [1], p. 11, and Ref. [19], p. 6. Note
that the errors in the right hand of the operational equation appear as errors in the right hand on the linear system of equations.
Thus, the non-continuity of one operatorA−1 can be interpreted as follows: the images of close points may be very far from
each other, which can be related to the ill-conditioning of the matricesAN . Notably, the operatorA is linear, compact, and
injective, andx andy belong to appropriate Hilbert spaces of infinite dimension, which implies thatA−1 is not continuous.
This kind of operator appears in many applications [19].

In this work, the operatorsAN andA−1
N are given by

AN (f)(θ) =
N∑

k=1

Ck
cos (kθ)√

π
+ Dk

sin (kθ)√
π

,

A−1
N (Vδ)(θ) =

N∑

k=1

4Rk
√

k + 1√
2[k −R2(k + 2)]

[
V 1

k,δ

cos (kθ)√
π

+ V 2
k,δ

sin (kθ)√
π

]
,

where we can see that

f i
k,δ =

4Rk
√

k + 1√
2[k −R2(k + 2)]

V i
k,δ

and
√

2k|V i
k,δ|

R
≤ |f i

k,δ|, (D.1)

for i = 1, 2, then|f i
k,δ| → ∞, whenk → ∞ by (D.1). These results show the numerical instability of the inverse of the

operatorA defined in Eq. (12).
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