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A regularization strategy for inverse source problems with applications in optics
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In this work, we provide a stable algorithm for the inverse source problem where the region corresponds with a circle centered on the origin.
The algorithm is obtained using an operational equation, which is ill-posed in the Hadamard sense due to the following points: firstly, many
sources produce the same measurement and, secondly, due to the presence of numerical instability. If the operational equation is restricted
the Hilbert space of harmonic functions, the inverse source problem’s uniqueness is guaranteed. The algorithm considers two regularizatior
parameters to handle the numerical instability: the Tikhonov regularization parameter and the tehere the series expansion is truncated.

To illustrate the proposed algorithm, we developed one numerical example. Furthermore, we apply the algorithm to solve one inverse optical
problem associated with the Intensity Transport Equation when the intensity distribution is considered almost uniform for the case in which
the wavefront, which propagates in the direction of the optical axis, is considered within the paraxial approximation. The case where the
source is not harmonic has no unigue solution without a priori information. This work presents the case where the source belongs to functions
that take two values. For this type, it is possible to recover the source completely. We give examples of the same application considering two
cases for the source of the right side of the Intensity Transport Equation: when the source is a harmonic function and when it belongs to the
above-mentioned type.
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1. Introduction 2. There is at most one solution to the problem (unique-
ness).

Source identification problems are widely studied in many re- ) ] .

search fields, such as tomography, geophysics, inverse elec- 3. The solution depends continuously on the data (stabil-

trocardiography, inverse electroencephalography, industrial ity).

processes, etc. The inverse source identification problems A problem is well-posed in modern language if the op-
determine the sources that produce a given measuremegfyior 4 is pijective and bicontinuous. A problem is ill-
recorded on the region’s boundary. These inverse problenEosed if it is not well-posed. In particular, when the oper-
are ill-posed in the Hadamard sense due to the following oy, 41 js not continuous, numerical instability is present.
points: many sources can produce the same measuremesin,|| changes in the measurement (right side of the equa-
and the problem of source recovering presents a NUMEricgh ) are inherent in the measurement devices. We emphasize
instability, i.e., small changes in the measurement can proga¢ many application problems can be written as operational

duce substantial variations in the sought source. Regularizgs ations with operators whose inverses are not continuous.
tion techniques must be applied to handle this instability. In * 1is work considers the inverse source problem defined

particular, we consider the Tikhonov regularization, whichi, 5 circular region. The relationships between the sources
depends on a parameter that must be chosen in terms of they measurements are established by an elliptic boundary
measurement’s error. The forward problem is associated witl)| e problem. Considering the geometry, the circular har-
the inverse problem, which co_nsists of determining the Me3monics are used to express the sources, the solution of the
surements when the source is known. ' As the first step iy, ngary value problem, and the measurements. We get the
studying inverse problems, the forward problem is studieqeqjarized solution solving the normal equations from where
since we get information on both the uniqueness of the soye hronosed the algorithm, which considers two parameters
lution and numerical instability. Furthermore, some inverse, handie the numerical instability: the Tikhonov regulariza-

problems can be expressed as an operational equation of g, ,arameter and a parameter associated with a cut-off of
form Az =y, and the study of the forward and inverse prob-,q series used to represent the source, potentials, and mea-

lems can be done by considering the properties of the 0pegyrements. In this work, we have the following original re-
ator A. More precisely, an operational equatida = y is

well-posed if ([1])

sults:

e A regularization strategy, which depends on two pa-
1. A solution to the problem exists (existence). rameters. First, it is the Tikhonov regularization pa-
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rameter. Second, it is the parameter associated with the e Original MATLAB programs were specifically devel-

truncation of the series in which the source and mea-
surement are expanded. This strategy (Algoritm
can be applied to recover harmonic sources defined in
Q.

Algorithm 2 allows us to recover sources different to
zero in a closed subset 6f or the case in which the
source depends on a finite number of parameters. From
the measurement off2, we recover the harmonic
component using Algorithrd. Then, we define some
functionals to recover the source completélg,, the
non-harmonic component of the source is recovered,
considering prior information about the total source.
Inverse source problems, it is usually considered apri-
ori information about the source since those inverse
problems are ill-posed in the Hadamard sense. That
information about the source can be obtained from the
knowledge of the studied problem, which guarantees
uniqueness and finds stable algorithms to recover the
sought source.

In [2] the author considers the following:

— The sourcef € Ly(2) has compact support (the
set of points where the function is not zero is
closed and bounded) in a subdomé&it, which
is contained in the regiofl where the problem is
studied.

oped to implement and execute Algorithitsand 2
efficiently. These programs are designed to consider
the two key parameters in the regularization strategy
proposed (Algorithm 1), ensuring accurate computa-
tion and reliable results. Also, Algorith2 is imple-
mentedfminconroutine to find the maximum of the
approximated harmonic component @1, with a tol-
erance ofl0— 14,

The application to the following inverse optical prob-
lem:

To find the irradiance from the wavefront measurement
on the boundary of one circular region if the intensity
distribution is considered to be almost uniforslgo-
rithms/1l and 2 were applied to solve, in stable form,
this inverse problem.

According to [8], there is a considerable amount of
work to get the wavefront, but there is none for the in-
verse problem of finding the intensity from the wave-
front. In that work, the authors used the ray count-
ing method to get some values of the wavefront and
then applied one discretization of the Laplace opera-
tor to find the irradiance. This work provides another
approach.

In summary, this work gives a stable algorithm that con-

siders two regularization parameters for the inverse source

— The sourcef is piecewise constant.
In [3], the authors consider the following:

— The source has the form:

problem defined in a circular region centered in the origin.
This work is divided as follows: In Sed, the Introduc-

tion provides the basic ideas, among which we can find the

ill-posedness of the inverse source problem studied. Also, an

optical application is presented. In SBpresents the math-

f(x1,22) = p1(22)g1 (1) + @a(w2)g2(r1).

ematical model used to find an operational equation acting

between Hilbert spaces, which allows us to study the inverse
— For the first step, they supposed that the functionssource problem. In Se@®, the forward and inverse prob-

g1 andgo are known.

— Then, they proposed an iterative algorithm for the
general case.

lems are solved using the circular harmonics expansion, and
the proposed stable algorithm is presented. In 8athows
numerical examples of the proposed algorithm for the case

where the source is a harmonic function. In SEpresents

— They consider the full data on the boundarg,,

an inverse source problem in optics, considering that the

they do not consider the case of a finite numbergq rce is harmonic. In Se@studies the same inverse source

of points in which the measurement is taken.

Other examples of these points can be found in
Refs. [4-7]. The assumptions correspond to informa-

problem in optics considering a priori information about the
source. Finally, the conclusions are given in $éc.

tion about the sources. In this work, we follow thisidea2. Mathematical model

and consider two cases for the sources:

The problem that concerns us is related to the following

— Harmonic sources if.

— Sources that are different from zero in a closed
and bounded subset (compactfbbr the case in
which the source depends on a finite number of
parameters.

boundary value problem.

Au=f in

1)
%:O on 09,
on

e Original synthetic examples were developed to showwhere2 is a bounded region sufficiently smooth, repre-

the feasibility of the proposed Algorithms.

sents the Laplace operatgrjs called thesourceandu is the
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potentialdefined inQ2. The boundary condition oi2 can be
also denoted by72. U= {feLQ(Q) : /fdQO},

There are two problems associated with problét) ( Q

1 . —

is called theforward problem which consists of determin- v {” €H(Q) /Q“dQ - 0} ’
ing the potentiak: (measurement) on the boundary when the
lem, which is defined as follows:

Given a measuremeii, the inverse problem consists of

interpreted as a null flux condition. The Laplace operator is

which are given in the following definitions: The first one

source is known. The second one is calleditiverse prob- W = {U € Ly(09) : / vdo) = o} )
0

determining a source such that the solutioaf the boundary

value problen(l) satisfies thati|spq = V. The spacéV is called the spaces of measurement func-
From the Green formulas, we get the following compati-tions. In this space is the image of the operatorwhich
bility condition. relates the sourceg with the measuremerit, i.e., given a

sourcef, the solution of the forward problem gives an ideal
measurementi(f) = V € W. This ideal measurement is
/QfdQ =0. (2)  defined onodf?, and the real measurement is recorded in a
finite number of points on the sam2, which can be inter-
polated to get an element of tig (W), which must be close

2.1. Weak solution and operational statement to the ideal measurement (i.e., an elemenf Since the
real measurement contains errors, we have to interpolate in
The following definitions can be found in Ref. [9]. a stable form. We can use different interpolation methods to

Let L»(Q) andL,(99) be the spaces of square integrable €t an element ofV. In this Work_, we cpnsider that the mea-
functions defined o2 and 9, respectively, that take real Surementis expressed as Fourier series and that we know the
values. H'(9) is the Sobolev space consisting of functions Fourier coefficients. . -
in L,(©) whose generalized first derivatives are also square USing the Green formulas, the following definition is ob-
integrable, wher® is a bounded domain iR”, with bound-  tained, which can be found in [10], p. 171.

ary o0 Sufﬁcient'y SmoothL2 (Q) is a nhormed vector space Definition 1. Givenf S U, the functionu ey is called the
with the following norm weak solution of the problerd)if it satisfies

1/2 T Vod) — i, .
[ £l Lo0) = (/ deQ) _ /Q u-Vu /va s (4)
) forallv e HY(Q).

This norm arises from the scalar product The following Theorem can be found in Ref. [10]:
Theorem 1. Given f € U, the problem|T) has a unique
9 iy = / Fod€. solutionu € V, which satisfies
Q
[ull @) < CED1f]l Ly » (5)
Thus, Ly(2) is a Hilbert space. Analogously, we get that
L»(09) is a Hilbert space. where the constar(Q2) does not depend ofi
H'(Q) is a normed vector space with the following norm We can define the operatdf : &/ — V such that
T(f) = uwwhereu € V is the solution of the problent).
| f L) = 1 fll o) + ||D1f|\L2(Q)7 (3)  As well, we define the operator trace: V — W such that

tr(u) = V whereu € V is the weak solution of the problem
(2), i.e., the operator trace is the generalization of the restric-
éion of the functionu on 92 (see Appendix B). The operator
trace evaluated im is also denoted by|sq = V. The op-
eratorA = tr o T', which is composition of” with the trace
1 1 tr : ¥V — W, is compact sincér is compact, which relates
{(F,9)0m1 @) = (f:9) o) + (D f, D7g) 1y, the sourcef with the measurement = u|aq. In terms of
the operator4, the inverse problem can be stated as follows:

where D' f = (D1 f, Dif) and D} is the operator of gen-
eralized first derivatives (see Appendix B). This norm arise
from the scalar product

from whereH! (Q2) is also a Hilbert space. The spakié (2) _ _ )

also is the completeness of th8 () when we consider the ~ Given afunction” € WV find a sourcef < U such that
norm (3). This result can be found in [9], p.p. 59-60.

So, we consider the following spaces: A(f) =V (6)

Rev. Mex. Fis71050701



4 J. A. ACEVEDO VAZQUEZ, J. J. OLIVEROS OLIVERQOS, J. J. CONDE MONES AND M. M. M@NRCASTILLO

The operatorA is not injective, which is a consequence normal equationA*A + af) fo 5y = A*Vs. Furthermore,
of the Theoren®, which can be found in Ref. [11]. In this ||R.| < 1/ya.
Theorem, it was proved thaer(A) # {0}. SinceAislinear, Theorem 4. Any choicea(d) such thatlim «(§) = 0 and
it is not injective. 00
Theorem 2.ker(A) = [Harm(Q)]", whereHarm(2) rep-
resents the space of harmonic functions defined.in 1
We denote by (Q)={g € Harm(Q) : (g, 1)1, sup{[|RaVs = A Vly) ¢ Vs € L2(09),
= 0}. We haveld = ker(A) @ HL(Q). This Theorem IV = Vsl o009y <8} — 0,
shows that the spadé can be decomposed in a direct sum
of the space of harmonic functions and its orthogonal spaceyhené — 0. In this caseR,, is called ‘admissibléand
which is the kernel of the operatot. This decomposition

lim 6% / a(8) = 0 ensures that

is a consequence of the Theordgiven in Ref. [12] p. 53 %in% fa@) = fn In La(92). (8)
since the space of harmonic functions is closed. From Theo- -
rem[2, the restriction4 of the operatord to H+ () is injec- There are different methods for determining a suitable

tive, i.e, we can recover uniquely the harmonic componentregularization parameter that should balance the two terms of
fn of the source from the measuremént SinceA is com-  the functional/,,. The discrepancy principle and the L-curve
pact, the inversel—! is not continuous, which is related to are examples of these methods. The name L-curve comes
the ill-posedness of the problem. More precisely, the no confrom the shape of the curve and is a log-log plot of the norm
tinuity of the operatord—! is associated with the numerical of a regularized solution versus the norm of the correspond-
instability (see Appendix D). ing residual norm [14].

To recover the whole sourcgé € U, we have to impose In this work, we consider two regularization parameters:
a priori information to find its non-harmonic component. In The first one is the Tikhonov parameter, and the second one
Ref. [4], the source is given by a product of two functions thatis the term where the expansion series is truncated.
depend on different variables, one of them is known consider-  \We will denote the operatot by A.
ing a cylindrical geometry. In Ref. [5], the authors recover the
non-harmonic component of the source using a priori infor- . .
mation and an iterative algorithm for some particular classes: S0lving the forward and inverse problems
of sources. For example, the authors consider the case Wh«,\e‘}n1
the whole source is harmonic in a subdomain of the region"

Synthetic examples are developed in circular (simple) and iy ¢onsider that the regidis a circular region of radiug
regular (complex) regions to validate the numerical methOdbentered in the origin. The source can be expressed by

Circular regions

ology.
For simplicity of the notation, in what follows, we will =< . ) .
use the symbal to denote the operatot. Fr,0) =" fiApr® cos kO + fRARr*sinkd,  (9)
k=1
2.2. Tikhonov regularization where A, = V2kT3/(R*1F) is a normaliza-
In practice, we know’s insteadV” with ||V — V|| 00y < 6 tion factor, and fo = (fAprtcoskd)r, ) fi =

wheres > 0 is called the measurement error. To handle thel./: A" sink0)r,(q) are the Fourier coefficientsk =
numerical instability of the operational equatidif) = V, L2... ) ) ]

the Tikhonov regularization method is used, which consists 1Nhe solution of the problend} is sought in the form
of adding a regularization (penalization) term to the least

square probleny(f) = %HA(f) - VH2L2(BQ)' that is, the u(r,0) = ZakAkrk cos kO + by Apr” sin k6

method minimizes the regularized functional el 10)
1
1 a >
Jo(f) = iHA(f) - V||%2(ag) + §||f\|%2(g)a (7) + Z cxBrpr® T2 cos kO + dy Br* T2 sin k0,
k=1

wherea(d) > 0 is the Tikhonov regularization parameter, fis ) o
which must be chosen appropriately in terms of the erroWhereBi =2k + 6/(R""*\/m) is a normalization factor.

5 [1,13]. After some calculations, we found (see Appendix A):
Let fo5y = RoVs be an approximation of; where ar = Tofl, by =T/

R, = (A*A + al)~'A* is the operator associated with B R TR SRk (11)

the Tikhonov regularization strategy, which has the proper- ek = Apfi,  di = ApfE.

ties described in the following theorems ( [1, 13]):
Theorem 3. R, : H(Q) — L,(09) is boundedly in- where T}, = —(k+2)R%/(4k(k+1)) and A, =
vertible, and f,;y = R.Vs is the unique solution of the Rvk+1/(4(k+1)vVk +2).
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The solution of the forward problem is given by (see Ap-4.  Algorithm to recover the harmonic function

pendix A):
sin k6
D, ——
k ﬁ )

where C, = /7 (axAxR* + ¢, BR*?) and D, =
ﬁ (bkAkRk + dkBkRk+2).

A(f)(0) =V (0) (12)

ad cos k6
= ch.7 +

k=1

For the inverse problem, we consider that the exact mea-

surement is given by
V2 sin k6

k9
yl cos
Z 7

where the Fourier coefficientg! andV;? of V are known.
To find the minimum of/,, ;) we have to solve the normal
equations:

(13)

[A A+ a()I](f) = AV,

whereA* : W — U is the adjoint operator ofi, which is
given by A*(¢) = —¢ wherey is the solution of the adjoint
boundary value problem [5, 11]

Ap=0 in €

(14)
a—@:;b on 09Q.
on

When( is a circle of radiusk centered in the origin, the
operatorA* is given by (see Appendix A) [6]:

A ()(r.6) = -3 By
k=1

x [r Arr® coskf + Yp Apr® sinkd] (15)

where
Z " cos k9 w2 sin k6
bym
and
B~ i
Instead ofi/, we consider the measurement with error
Z Vi, cosk@ V2, sin k6 (16)
NV

< §. After substituting in the normal

with |V = Vsl 1, 90
%e regularized solution:

equations, we gett

= ZZkAk [Viis ¥ cos kb + V25 r¥ sin ko] , (17)
k=1
where
_ B,
Ap— ik
k ﬁEkq)k —a’

and®, = T, ALR* + A, B, R 2.

(18)

From (17), we obtain the following stable algorithm to re-
cover the source from the measurement with ertgrs

Algorithm 1: To identify the harmonic source we pro-
ceed as follows:

Step 1 We take some values for the parametersso,
R, R, and we take a sourgedefined ort.

Step 2 We solve the boundary value problef).(

Step 3 We compute th& = u|sq, the exact measure-
ment, using Eq.¥2) for N = 30, which was chosen
by numerical tests.

Step 4 To emulate the measurement with error, we
aggregate an appropriate random error, usingdhd
function of MATLAB, to the coefficientd/! andV}?,
wherek = 1,2.... Hence, we get the coefficient3! ;
andV2;, k=1, 2 of the measurement with errdg,
which satlsf|e$|V5 Vi, 00) <0
Step & Then, we get the regularized solution to the
inverse problem by

N
N&é) = ZZkAk [V]€1,5 Tk COS ke + Vk:25 Tk: Sin ke] ) (19)
k=1

takinga(§) = 107° andN = 16.

According to the numerical results obtained in this work, we
propose the following values for the regularization parame-
ters:a = 1075 and N = 16, which is an original result.

Considering a prior information, we can get estimates
about the convergence of the regularized solution (see Ap-
pendix C). A prior information is obtained from the specialist
on the topic studied.

5. Numerical example

In this section, we illustrate the algorithm proposed by syn-
thetic examples proceeding as in the following:

Example 1. We consider the sourcé(z,y) = e®cosy,
defined in the circular regioft = {(z,y) : 2% + y* < 1}.

In polar coordinatesf(r,0) = e %cos(rsinf). In
Figs.1 andi2 show the exact source and its approximations
by Fourier series usingy = 16 terms in [9). The error be-
tween the approximated and exact source(872. In Fig. 13
shows the potential obtained usitkf) and the measurement
with and without error. In Figl5 shows the recovered source
using the Algorithnil, which takeN = 16 anda = 107°. In
Figs.l6 and7 show the importance of the two regularization
parameters. In Fi, we takea = 10~° and N = 100.
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Exact source

i . . .
;:",‘l 15 TABLE |. Relative errors for different values of and Tikhonov
P . . . .
'-":5‘:“?5“\‘:\%{1 regularization parameter taking = 16 for the truncation of the
i .
15 T series.
' S
R 1
1 L o« 6=01 4§=005 =001 6=0.001
il
L 1073 0.1128 0.6765 0.0103 0.0076
+ 0.5 it i
S i 4
R . F;iﬁ;ﬁ%%&lﬁ 0.5 10~ 0.1332 0.0467 0.0112 0.0041
e - i
° . 107° 0.0890 0.0580 0.0142 0.0031
5 107 0.0879 0.0645 0.0100 0.0030
1077 0.1089 0.0535 0.0138 0.0039
1
-0.5

TABLE Il. Absolute errors for different values of the Tikhonov reg-
ularization parametet and different values of the truncation pa-

rameterN, with § = 0.1.
FIGURE 1. Exact source.

« N =16 N =30 N =60 N =100
Approximation of the source s
1073 0.3810 0.5375 0.5813 0.7628
—4
15 10 0.3064 0.4095 0.8857 0.9052
SR 107° 0.2879 0.5586 0.7544 1.0085
i
i
. 1 10°° 03350 04025  1.0836 1.1301
ot
et I _
e 1077 0.3106 0.6872 0.5617 0.8671
b
S i iy
SR e f,'-f::”n - Measurements
e, : - ; : T - :
50 0.1 1
0 + .
01T 1
= Exact measurement
>
. . . ‘s’ Measurement with error
FIGURE 2. Approximated source obtained takifg = 16 terms 02 ]
in (9).
0.3 1
Potential
04 1
05 . . ‘ ‘ . .
0 1 2 3 4 5 6 7
ST

ph i) . . .
ﬁﬁ?ﬁfﬁ“}fﬁ?\‘\'}s&‘?ﬂﬁ%}{ﬁ‘}}{ﬁ FIGURE 4. Measurements without and with error in red and blue,
e .

:.“S::ft'\‘é:‘.\'\‘:‘?:'\‘ﬂl‘é'i*t\‘:}}\‘\‘!h\\l‘{\‘?\l\\"‘}{\'}\g{‘%}{}{‘ respectively.
S Tt
it
A w}l\{m\m\‘

i
.
\\\\\\\\\\\\l\\\\l\\\\\\h\‘.\\\“‘-"
S
MMy

We can observe that the parameters- 10=¢ and N = 16
give good results. Tabl#| shows the numerical results for
other values ofV anda. The optimal values ar®& = 16 and

a =105 foré =0.1.

FIGURE 3. Potential obtained usind.0) taking N = 16 terms. 6. Appllcatlon to one Optlcal problem

In Fig.[7, we takeo = 0 and N = 16. Similar results are ob- It has been shown in previous works that if a wavefront,
tained for other values of the two regularization parametersvhich propagates in the direction of the optical axis, is con-
«a andN. Tablell shows the regularized solution for different sidered within the paraxial approximation, we obtain the ir-
parameter values and for different values of the errar.  radiance transport equation (ITE) [15]:
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Recovered source with the inverse operator considering data with error.

i
A
i
A
g

i
il
R

i
it
A
R i
it
.
‘\"}3:““}‘:\‘ iy
ERR “
i
.

il
il
i
iy

il i
bl
Sty

g

FIGURE 5. Recovered source taking = 0.1, « = 10~° and
N = 16.

Recovered source with Tikhonov regularization

Y
S
S
:13“3‘\}“.\\“&\\
S
L

0.5

1 -0.5

FIGURE 6. Recovered source taking = 0.1, « = 107° and
N = 100.

Recovered source without Tikhonov regularization

i
il I
A
{n‘:h\:"-}\«{.““‘.‘..l‘]l
s
l&l\‘:“l:;‘“l[';‘“
L
il
i
ittt
sttt
T
kR
el
\‘ﬂt\:}:‘}ll‘:\‘ﬂl‘t\ll‘\‘\llll‘.\l\“‘m\m -

FIGURE 7. Recovered source taking:= 0,6 = 0.1 andN = 16.

I
Vol VoW +IVAW = f%. (20)

The Eqg. R0) is only valid in cases where the curvature
presented during the wavefront propagation is smooth and
the propagation of the wavefront is mainly in the paraxial
regime [15].

The ITE is used in many schemes for recovering the phase
from irradiance measurements, without using interferometric
techniques. In addition, this transport equation is the basis
for curvature wavefront sensing methods [16]. The ITE re-
lates the phase in a plane orthogonal to the optical axis to the
rate of change of the beam intensity along the propagation di-
rection, assuming a paraxial beam describe@ky, y, z) =
[I(z,y, 2)]"/? explip(z, y, 2)], wherel (z, y, z) is the irradi-
ance, ands(z,y, z) is the phase. In terms of the wavefront
W(z,y,z), the phase is given by the relatianiz, y, z) =
@r/NW (z,y,z) = kW (z,y, 2) [16].

If the intensity distribution is considered to be almost uni-
form, the first term of Eq.20) vanishes and the ITE becomes
a Poisson equation as follows [8,16, 17]:

VW = f, (21)
where
101
=—-—. 22
f 79, (22)
We can consider that
ow
—_—= 23
5 =0, (23)

since that boundary condition is obtained by forcing the ra-
dial derivative to zero within a narrow band surrounding the
boundaries [18].

Inverse problem: Given a measuremenmton the bound-
ary 012, to determine the sourcg such that the solution of
(21)-(23) satisfiesV| ., = ¢.

When we findf in a stable form applying our method,
the irradiancd is given by:

I(z) = e~ f@v)=, (24)

We consider the same procedure given in Section Numer-
ical Example to solve the inverse problem when the measure-
ment with errorVs is known.

Example 2. We consider in(22) the source given by
f(z,y) = 2% — y? defined in the circular regiof? =
{(z,y): 2> +y* <1}. In polar coordinates,f(r,d) =
r?cos(20) = fiAar?cos(20) where f; = 1/A, is the
unigue Fourier coefficient different to zero. The solution of
the problem(21)-(23) is
rt — 2r2
u(r,0) = 15
which inz-y coordinates is given by
(% +y* = 2)(2® — ¢*)
12 '

cos 20, (25)

u(mvy) =

Rev. Mex. Fis71050701
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Exact source

1
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1
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FIGURE 8. Exact source.
Approximation of the source
AL
t“\“‘{:“"‘{;‘“
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L
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i
ki 0.4
0.5 He :
i
“‘":‘“‘?‘lg"‘?."}‘\:?“‘““\'}fl\k\"\“ 0.2
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-05 -0.2
-0.4
4‘;\ - 1
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o T 0.5

[t} 0 o r

FIGURE 9. Approximated source obtained takidg = 16 terms
in (9).
In this case, the measureménis given by

, cos20

V() =V, o

(26)

whereV,! = (R* — 2R?/12),/7 is the unique Fourier coef-

ficient different to zero.

In Fig. '8 and9 show the exact source and its approxi-
mation using the Fourier series taking = 16 terms of the
expansion. In Figl0 shows the solution to the problem. In
Fig. 11 shows the exact and with error measurements, de- ;-4
noted byV andVj, respectively. In Figl2 and14 respec-
tively show the recovered sources with and without regular-
ization. Table 11l shows the relative errors for different error
valuesd and different values of the Tikhonov regularization
parameter. We consid€¥y = 16 for the truncation of the
series|®). The numerical results show the feasibility of the

proposed method.

Example 3. We consider in(22) the source given by

f(x,y) = x® — 3xy? defined in the circular regiof =
{(z,y) : 2 +y* <1}. In polar coordinates,f(r,0) =
73 cos®(0) — 3r cos(6)r2 sin?(h).

Potential
0.2
0.15
0.2
0.1
0.1
0.05
) 0
0
-0.1
0.05
il
ARG
7 i
. ) e
“ i
y \ 0.15

FIGURE 10. Potential obtained usind.0) taking N = 16 terms.

Measurements

0.3

Exact measurement
Measurement with error

v(0)

03 L n . . n L

FIGURE 11. Measurements without and with error in red and blue,
respectively.

TABLE lll. Relative errors for different values éfand Tikhonov
regularization parameter taking = 16 for the truncation of the
series.

a §=01 6=005 6=001 §=0.001
1073 0.1180 0.0859 0.0164 0.0168
0.1450 0.0821 0.0158 0.0089
107° 0.1705 0.0605 0.0175 0.0074
1076 0.1785 0.0576 0.0152 0.0078
1077 0.1476 0.0820 0.0150 0.0089

In Fig./15 and16 show the exact source and its approxi-
mation using the Fourier series taking = 16 terms of the
expansion. In Figl8 shows the exact and with error mea-
surements, denoted By andVj, respectively. In Figl9 and
21 show the recovered sources with and without regulariza-
tion.
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A REGULARIZATION STRATEGY FOR INVERSE SOURCE PROBLEMS WITH APPLICATIONS IN OPTICS 9

Recovered source with the inverse operator considering data with error. Exact source

4
A
i

0.8 4 0.8
A
. 1 o
. L
T
s i ‘“ 0.4 ‘\:{g?}‘{ﬂl\:‘{ﬁ"{ﬂ / 0.4
R 0.2
0.2
w 0
0
-
4 0
-0.5 0.2 05 0.2
0.4
: 8 0.4
6 S = 06
. 1 0.8
§ TRy 0.8 T 1
- 06 A
2 S 04 B
02
e 0 o r
FIGURE 12. Recovered source takinj= 0.1, = 10~° and
N = 16. FIGURE 15. Exact source.
Recovered source with Tikhonov regularization Approximation of the source 4
2 4
,.1‘\|‘
A
7
1.5 1 {|\‘.:|l'|‘l|“||,'l|
2 4 ‘\:{:\‘\’1\:{#}'}}{}“““\“ 0.6
bttt
1.6 :3\‘3\\‘{3\“‘::.}51\ il 6
sl 1 0.5 ‘:ﬁ}&ﬁ&;}}{{'ﬁ '
1 i Ay
i T b
0.5
- . 0.5 R '
-0.5 0 -0.5 0.2
ud J -0.4
805 ’
6
6
- 1 = 1
4 5
= 1
e 0.5 2\\\ 0.5
5 : "
0 0 o r 0 I I

FIGURE 13. Recovered source taking = 0.1, o = 107° and FIGURE 16. Approximated source obtained takidg = 16 terms

N = 100. in (9).
Recovered source without Tikhonov regularization TABLE IV. Relative errors for different values éfand Tikhonov
2 regularization parameter taking = 16 for the truncation of the
series.
1.5
«@ 6=0.1 6 =0.05 6 =0.01 6 = 0.001
i 1072 0.1444 0.0902 0.0197 0.0181
0.5 1074 0.1714 0.1034 0.0191 0.0083
1075 0.2039 0.0681 0.0151 0.0071
: 106 0.2116 0.0669 0.0199 0.0065
105 1077 0.1710 0.0929 0.0179 0.0077
1 1
1.5

7. Information a priori: the sources are de-
fined in a circle contained in the region

FIGURE 14. Recovered source takingy = 0, 6 = 0.1 and

N = 16. We consider a special case regarding the problem of recover-

ing the whole source, which will be described below in detail.

Rev. Mex. Fis71050701



10 J. A. ACEVEDO VAZQUEZ, J. J. OLIVEROS OLIVEROS, J. J. CONDE MONES AND M. M. M@RCASTILLO

Potential Recovered source with the inverse operator considering data with error.

.4":' i
0.2 P 0.8
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-0.1 = i -0.4
-0.15 6 - = 0.6
1
0.2 4\\\ -0.8
2 C 0.5
[t} 0 0 r
. . . . - _ -5
FIGURE 17. Potential obtained usind.0) taking N = 16 terms. ]F\;GURE 20. Recovered source taking = 0.1, o = 107 and
= 16.
0.3 Mgasuremepts Recovered source without Tikhonov regularization
A
‘."t‘|"
4 1
0.2 Al
L
\“‘ﬁll'llnl:ﬂ‘.\'l l -
t -
e
U 0.5 s-q:-‘fﬁ%‘mmw .
- il
= Exact measurement 0
= 0 Measurement with error b
> 0
-0.5
-0.1 .
1 4-0.5
6 =
-02 e 1
4 . 1
P
2 0.5
03 n . . . . .
0 1 Z 3 4 5 6 7 f 0 o0

r

FIGURE 21. Recovered source takingyx = 0, 6 = 0.1 and
FIGURE 18. Measurements without and with error in red and blue, N = 16.
respectively.

7.1. Identification of Non-Harmonic sources

Recovered source with Tikhonov regularization

According to Theoren®, we know that a general source
: f € U is the direct sum of two sources; one of them is a

harmonic function, and the other one belonggdd A), i.e.,
0.5
f=fo+h, with fy€ker(A),
N ’ andh € H-(Q). (27)
-0.5
In previous sections, we have dealt with the computation
B of the harmonic park, which can be recovered from mea-
; surements on the exterior boundatf2. We emphasize that
4 1 1.5 f and h produce the same measurement sifiggoroduces
g 05 the measurement zero.
7] 0 o0 F

7.2. Describing the class of functions
FIGURE 19. Recovered source takingj= 0.1, o = 107> and

N = 100. In this section, we are concerned with the non-harmonic com-

ponentf,, which can be identified using a priori information.
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A REGULARIZATION STRATEGY FOR INVERSE SOURCE PROBLEMS WITH APPLICATIONS IN OPTICS 11

Let F be a class of piecewise sources that take two conwith o and 3 fixed such thatyG < 0. Moreover, whatever
stant valuesx and 8 known in €, such thatf takes the the familyl/ of closed convex sets with the properties men-
value o in a subset/ C Q and 3 in (2 N (U¢)). We tioned, the corresponding sét is compact inL»(Q2) and is
consider the subclass, of sourcesfy, such that the sets contained in the sphere centered@tand radiusy/—afSR,
U={x¢€0: fy(x) = a} are closed circles contained in whereR is the radius of the circular regiof with center in
Q with u(U) > 0, where all circled/ have the same radius. the originO.

Letxy € Q be the center an®®, > 0 the radius ofU. Then, From the Theorend, the setF, is a class of uniqueness
eachfy, € F. is of the form used to identify the sourcg,, of the boundary problenilf
from a measurement on 9f). To solve the inverse problem
fxo = (@ =B) xv + 5, (28)  ina circular regior? with conductivitys, we applied Algo-

rithm[2 of the Subsec7.4, when we have data with error in

whereyy is the indicator function ot/. Sincef,, must be the measurement.

orthogonal to the constants, we obtain

0= fxo dx = (o — B) p(U) + B () 7.4. Stable algorithm for identification of piecewise con-
Q2 (29) stant sources

= apU)+Bu@\T), Algorithm 2: To identify a sourcefx, € F., in the case
wherey denotes the Lebesgue measure on the plane. So thhen the measuremeVi has error and Vs — V||, 9q) < 0.
parametep3 is given by
Step 1 Find an approximated harmonic component of

8= —au(U) = —ap(U) , (30) h from measurements with errdf on 9Q of f,, by
pQA\U) () = p(U) Algorithm1(given and illustrated in Se@?). This ap-
and taking into accoun®g) proximated harmonic component is denotedilys) .
(U = p Q) = BWRQ. (31) Step 2 Determine the point where hqs)(r, 0)
80—« 08—« reaches its maximum value a@if2 (appealing to the
) ) — maximum principle for harmonic functions in the
If the sgtsU are circles contained |@,' then from B81) all bounded regior2). The MATLAB fmincon routine
these circles must have the same radius: may be employed to compute the poirf where
3 haes)(r,0)],—r takes its maximum ord(2, which
Ry = 3 aR (32) matches the minimuma-hgs) (7, 0)| = r-

Step 3 Compute the unique centef of U by mini-

The centerzy = (x§,23) of these circled/ must be con- ' . 0
mizing the following convex functional:

tained in the disk centered &b,0) and radiuskR — Ry =

gl —\/B/(6— a)) R. From 29), itis concluded that and J5(x) =l A(fx) = Vs 7,00, forallx € Q, (34)
must have opposite signs. Furthermore,fall € F. can
also be written as where 4 is the operator defined irf6), Of course,
w(U) fx, € F. also depends on the known radilig of U (a
fxo = (= B) {XU - (Q)] : (33) priori information). This computed point; approxi-
K matesxy. In this step, the MATLABfminconroutine
for some convex closed sEtin Q and satisfies29). may be employed again to find the minimum point of

the functional/s; (x) expressed in polar coordinates:
7.3. Uniqueness of the identification problem in a class

of piecewise constant sources N(9) )
Js(r,0) = > (Vilx = Vilk)
The following Theorems can be found in Ref. [7]. k=1
Theorem 5. For any family of convex closed subset§)afat- 5 9 \2
isfying condition[29), the corresponding family of functions + (th - M) ’ (35)

F defined byi33) is a class of unicity for solving the inverse

problem of identifyingf in the EBP from the measurement whereVy ., i = 1,2, are the coefficients with error of

o. Vs and the coefficientﬁ/,j,x depend on the variables
Theorem 6. Any setF of functions orthogonal to the con- andg. These are given by

stants inQ2 takes the value: on a convex closed s@, and 3 RE+2)1 RE+2),2

on its complement consists of functions of the f@@) (ith L= R ognd Y2 = Rfx
U closed convex contained fhsatisfying the restrictiorig) * 20k(k+1) * 20k(k+1)
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which are in terms of the Fourier coefﬁmerﬁ%
1 = 1,2, of the harmonic parh of the functlonfx
Takmg into account32) we have

hihfx:(f)(? pk cos kw>L2(Ql)=(Oz—ﬂ)
[ ookt = = ) (i cosk)
U

= —BR*r* cos k6, (36)

and

hi,fx = <fx,Pk Senkw>L2(Ql) =(a—p)

X / pF sen kwdQ = (a — B) (7 R3r* sen ko)
U

= —BR*r* sen ko, (37)
where the center of the circlés in coordinates polar
is (r,0) € [0, R — Ry x [0,2n] and all them have the
same radiug.

Measurement

0.015

Exact measurement
——— Measurement with error

0.011

0.005

-0.005 |,

-0.01r

-0.015
0

FIGURE 22. Plots of V' (red) andV;s (blue), forxe = (ro,60) =
(0.1,(3/4)7), Ro = 0.1, = 12 ands = 0.1.

Exact harmonic source i Approximate harmonic source fi, ;)
0.04 0.04
0.06 0.03 0.06 0.03
0.04 0.02 0.04 0.02
0.02

-0.04

r

00 00

FIGURE 23. Recovered harmonic componéni s (in region(?)
corresponding to the exact complete soufge € F., obtained
with Algorithm [2 given in Subsec?7.4 for xo = (ro,00) =
(0.1,(3/4)w), Ro = 0.1, = 12 andd = 0.1.
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Algorithm|2is implementedminconroutine to find the max-
imum of the approximated harmonic componentiéh with
atolerance of 04,

7.5. Numerical examples for piecewise constant sources

We takes = 1 and the different exact sourcgs,, defined
by (33), belong to different subclasg.. Each subclass,

is defined by the fixed known values 3 and R, and for
all centersxg (of the corresponding closed circlé regard-
ing the sourcesfy,) are contained in the disk centered at
(0,0) and radiusk — Ry. As mentioned before, thaverse
problemconsists in finding an approximation of the center
xo = (r0,00), in polar coordinates, of the corresponding
closed circleU of the sourcefy, with the same values of
the radiusRy, a andg,whereg is given by 80). The values
of parametersy, 3 and Ry and the centex, that define one
sourcefy, in a subclassF, are given in Table V.

Table V shows the numerical results for noisy dggaon
00 with three different noise levels = 0.1, 0.05 and0.01.
The point where the functionals(r, 8) is minimized is de-
noted byx; , , wheren is the number of iterations conducted
by fmincon The relative errors in the Euclidean norm be-
tweenxy = (ro, ) andxj ,, = (r5,05), are in the columns
of each value ob. In this case, the relative errors decrease
when the error in dat®; decreases. These results show nu-
merical convergence regarding the noise leveladdition-
ally, the accuracy of the solution in this case is high for the
circular regions2. Therefore, the numerical results in Ta-
ble V show that the method proposed here is stable consider-
ing the noise in the input data.

Exact and recovered domains

0.5} 4
- o ©
-0.5 1
i : : :
-1 0.5 0 0.5 1

X

FIGURE 24. Exact and recovered domains of the soufgg and
its approximate solution; ,, at iterationn. = 5, obtained with
the Algorithm2 given in the Subsecz.4, for xo = (r0,60) =
(0.1,(3/4)7), Ro = 0.1, a = 12 andé = 0.1.
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TABLE V. Relative errors for different values 6f Ro, a and3 applying Algorithm2 proposed in Subse@.4for a circular regiorf2, where
[ is given by [80) and the subscript is the number of iterations conducted fagincon

Ro  xo0 = (r0,60) o 6=0.1 Xin = (15,65 )n 6 =0.05 Xin = (15,65 )n 6 =0.01 Xin = (15,65 )n

0.2 (0.5,57) 10 0.0285 (0.5038,3.8996)5 0.0204 (0.4942, 3.9439)5 0.0151 (0.4993,3.9120)5
0.1 (0.5,5) 0.0394 (0.4831,3.9476)5 0.0214 (0.4957,3.9466)5 0.0139 (0.5015, 3.9405)5
0.1 (0.3, %ﬂ') 9 0.0567 (0.3152,2.3314)5 0.0320 (0.3065, 2.3328)5 0.0174 (0.3036,2.3439)5
0.1 (0.1, %ﬂ') 12 0.0667 (0.1056,2.3212)5 0.0527 (0.1034,2.3955)5 0.0405 (0.1040, 2.3604)5
0.1 (0.6, %ﬂ') 8 0.0337 (0.5881,0.5512)5 0.0265 (0.6109, 0.5427)5 0.0123 (0.5996, 0.5358)5
0.1 (0.1, %w) 0.0523 (0.1042,0.4930)5 0.0503 (0.1049, 0.5325)5 0.0477 (0.1043,0.5435)5

Figure22 shows the noisy dat¥; (blue), fors = 0.1, The Tikhonov regularization method is employed to get the
generated by the functiormndom of MATLAB, Fig. 23  algorithm. This method carries up to one variant of the nor-
shows the recovered harmonic sourggs) obtained with  mal equation. In addition to the Tikhonov regularization pa-
Algorithm [2 (proposed in Subse@.4) at iterationn = 5.  rameter, we consider another regularization parameter, which
Finally, Fig.24 shows the recovered domaif with center is obtained by truncating the series that gives the solution of
X5 ,» corresponding to the recovered souy’g%n obtained the normal equations. Thus, the algorithm considers two reg-
with this algorithm. The last figure shows that the recoveredularization parameters. The numerical results show the feasi-
domainU, with centerxj , obtained with the method pro- bility of the proposed algorithm. The work also considers the
posed in this work is indistinguishable. The correspondingoroblem of determining the irradiance using the Irradiance
figures for the other values of the parameterss, Ry, xg Transport Equation for the case in which that equation can be
andd are qualitatively similar and are not included. written as a Poisson equation with a null Neumann boundary
condition, and the source is a harmonic function. When the
source is not harmonic, we can consider additional informa-
tion to get the uniqueness of the inverse problem. This ad-

An e||ip'[ic boundary value prob|em is used to Study the for-ditional information can be obtained from the experts in the
ward and inverse source problems. The inverse problem has#ea where the problem is studied. To get the whole source,
unique solution when the space of harmonic functions is conan additional minimization problem must be defined. To il-
sidered. This work presents a stable algorithm for recoverindpstrate this, we consider one case for the non harmonic func-
that harmonic function. The solution to the boundary valuetion in which the source belongs to a particular class of piece-

problem is obtained using circular harmonics. wise constant sources.
|

8. Conclusions

Appendix
A. Series calculations
To solve problemZ), we consider that the functiofican be expanded in the form
f(r,0) = Z frAprF cos k@ + f2 A" sin k6,
k=1

whereA,, is a normalization factor. To calculatk,, we have to calculate the norm ©f cos k6 andr” sin k6:

R2k+2
2k +2

T,

R 2w R 2m
||7“k sin k:9H2L2(Q) = Hrk cos k@”iz(m = / / (¥ cos k@)*rdrdf = / T2k+1dr/ cos2 kOdh —
0 0 0 0

then||r* cos k@HLQ(Q) = /[R?:+2/(2k + 2)]7. Hence

¥ cos k V2k+2 V2k+2 V2k+2
= r¥cosk) = ———r" cosk = ————=r" cos kf.
[rk cos kOl /R22, /7 (RH1)2 /7 RF+L /T

Rev. Mex. Fis71050701



14 J. A. ACEVEDO VAZQUEZ, J. J. OLIVEROS OLIVEROS, J. J. CONDE MONES AND M. M. M@RCASTILLO

So, we have
V2k +2
W:/%rk cos kO = Apr* cos k0,
from where
V2k + 2
A, = T (A1)
Rk+1\/7T-
We do the same for the biharmonic function
) = Z apApr® cos kO + by Apr® sin k6 + Z e Ber* 12 cos k6 + dj, Bir* 2 sin k6. (A.2)
k=1 k=1

We calculate the norm of**2 cos k6 to obtain the orthonormal basis

) R p2rm R 2m R2k+6
|42 cos kO||” = / / (r*+2 cos k) rdrdd = / P22+ g / cos? kOdo =
0 0 0 0

s

2k+6

then||r*+2 cos k|| = \/[R**6/(2k + 6)]r. Hence

r*2cosk  V2k+6 ., skl — V2k+6 42

[rF+2 cos k|| ‘/Rz(mg)ﬁr ¢ Rk+3\f os k.

So, we have
VIE 6 k42 os k0 = Burt coskd = By = Yor 10
RA3 /7 RKE+3\/1c

Remember that the Laplace operator in polar coordinates is defined by
of 19%f 19f o?f 10%f
A, - = — 7/
oS = r 8r < 8r> + 20602 ror T or? * r2 062
Applying A, ) to (A.2)
0?(r*+2 cos ko) N 19(r**2 cos k6) N 1 9(rF+? cos ko)
Oor? r or r2 002
+ (k + 2)r* cos kO — k*r* cos k6 = (4k 4 4)r* cos k6.

A(r,e)(TkH cos ko) = = [(k + 2)(k + 1)]r* cos k@

So,
A oyu(r,0) = i cr By (4k + 4)r% cos kO + dy, By, (4k + 4)r* sin ko = i fEARr* cos kO + fEALr" sin k6.
k=1 k=1
Thus
e e

On the other hand

0) = Z kAgrF—t (ak cos kO + by, sin k0) + Z k+2 Bkr’“r1 (ck cos kO + dj sin k0) .
k=1
So,

= (kax ARRF ™ + (k + 2)cx BR*) cos k) + (kb AxR* ' + (k + 2)di B, R*) sin k6.
k=1
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Thus,
kap A R*' + (k + 2)ep BRM = 0.
Then,
o= — (k+ 2)ckB;iR’€“ _ (k+2)exBrR? _ (k+2)BiR*A; e C(k+2)R? fk
kAR kAy 4By (k + 1)k Ay 4(k+ 1)k
Analogously
2
b = (k(;f)? fi

B. Trace of a function

Let ) be a bounded domain iR", and letS be an(n — 1)-dimensional surface that belongs{¥pfor example,S = 9. We
will call the trace f| 4 of the functionf € C(Q) on S the value that the continuous functigrtakes on this surfacs, i.e., by
the trace of a continuous function dhwe mean its value extended uniquely according to the continuity.dn this case, the
trace coincides with the restriction of the functigron the surface&. The concept of the trace of a function Srcan also be
introduced for functions id* (). By definition, H1(12) is the completion of the spacg' (), endowed with the norm

@) = 1o + 1D fll Lo (B.1)

where D! f denotes the vector whose entries are given byf = 0f/dz;, i = 1,2,...,n. Here, D} f is the generalized
derivative of order one of the functiofi corresponding to the independent variable and D! is called the operator of
generalized first derivatives. The definition of the generalized derivative of ordedpmef the functionu corresponding to
independent variable;, i = 1,2, ..., n, is given by the following [10] p. 126:

Definition 2. (First generalized derivativ@he functiorv € L ;,.(€2) is called the first generalized derivative (or generalized
derivative of order one) of the functian€ Ly ;,.(£2), which is denoted by = D}u corresponding to independent variable
x4 = 1,2, ...,n, if the following equality holds:

/ vpdQ = — / uD} pd$, (B.2)
Q Q

forall ¢ € C,™(2), whereLg 1,.(Q) = {v : @ — R |forall Q" € Qand [, f2dQ < oo}, here the symbat indicates
strict containment, and’,*(Q) is the set of functions which take the value zero on the boun@argf the bounded domain
Q.

The functionv that satisfies the relatio®(2) is unique; the proof can be found in [10].

Then, forf € H'(Q), there exists a sequence of functighsp = 1,2, ..., from C'*(Q) that converges tg in H'(€2). For
each function(f, — f,), p,q = 1,2, ..., the inequality holds

Ifp — fq||L2(S) <Cllfp— f‘JHHl(Q) ’

whereC' > 0 is a constant that does not depend of the functin- f,).

Since|| f, — fq||H1@) — 0asp,q — oo, we also have{ f, — fyll;,(5) — 0 asp, g — oo. This means that th.e sequence of
the traces of the functiong, on S is Cauchy sequence i, (S). Furthermore, sincé.(S) is complete, there exists a function
fs(x) € Ly(S) such that the sequence of tragigss converges to it ag — oo. Taking the limit in the previous inequality, we
obtain

||fp - fSHLz(S) <C Hf;v - f”Hl(Q) '

Now, let us see that the functiofy does not depend on how the sequerigep = 1,2, ..., is chosen, which approximates
the functionf in the norm fromH! (). Indeed, letfy, k¥ = 1,2,..., be another sequence of functions(i(Q2) for which

Hf ka — 0 ask — oo, and letfs(z) be the limit in the norm froni,(S) of the sequencg;|s, k = 1,2, ....
Then, from the previous inequalities, we have that

HfS*fsl

<fs = Flluaisy + |[Fomtal

s

¢ (1= + =Tl gy 1T )

L (8) Lz(S)

The last expression of the last inequality tends to zerp-asco, we havefs = fs.
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Thus, the concept of the trace of a function has been determined for any elg¢rokif!(2). Therefore, we have the
following definition:
Definition 3. The functionfs € Lo (S) is called the trace of the functiofiin H'(2) on the surfaces, and it is denoted by
the symbolf|s. The norm|f|s||., s is denoted byl f||, s

This concept is indeed a generalization of the concept of the value of a function(en-ath)-dimensional surface, that
is, of the restriction of a continuous functighto a surfaceS. This allows us to define the operator trace, denotedrtas
follows: tr : H*(Q2) — Ly(S) such thatr(f) = f|s.

C. On correctness of the Algorithms 1 and 2

For the Tikhonov regularization, the following Theorem can be found in Ref. [1], p. 39.
Theorem 7. LetK : X — Y be alinear, compact, and injective operator and> 0 andxz* € X be the exact solution of
Kax* = y*. Furthermore, let’ € Y with ||y® — y*|ly < §. Then

a) Letz* = K*z € R(K*) with ||z]|y < E. We choosex(d) = ¢/ E for somec > 0. Then the following estimates hold:

< %<1m+ VOVBE, (c1)

< (1+¢)é. (C.2)

HKxa(é),é o y*

b) For somer € (0,2], letz* = (K*K)?/?z € R((K*K)?/?) with ||z||x < E. The choicen(8) = ¢(§/E)?/(e+1 for
¢ > 0 leads to the error estimates

Hxa,é —x*

S H(SU/(U+1)E1/(O+1), (C3)

1220 =y || < (1 + corc@™ /23, (C4)

where H = (1/2\/c) + c,c°/%. Here,c, are the constants for the choice @bf the part (a) of Theorer@.8 [1],
p. 35. Therefore, forr < 2 Thikonov's regularization method is optimal for the informatipii*) ~*2*||y < E or
|(K*K)~?/?2*||x < E, respectively (provideds* is one-to-one).

Now, we get an estimate for the truncated series

| =2t

Hf fa(s) + fas) — a(a)HL @ = <||f = faes) ||L2(Q ‘ a(é)H

La(9)

=1 = ool | 2 () * (Baw)”
+

WherefN5 is the approximated truncated sourcefgfs), andf} () f2 a(s) are the Fourier coefficients of the approximated
sourcefa , which are given by

flf:,oz((i) = ZkAkVIj,&? i=1,2, (C5)

Whel’eri’&,i = 1,2 are the Fourier coefficients of the error measuremgnwith ||V — Vjl| ;o) < 4, and 4, is given in
Eq. (18). Taking into account the coefficients,, E;,, ®, and A, given in Sec. 3, we hawg;, = I', A, R* + A, B, RF? =
—V2RVk +1/4y/7 and

EAg —4

AL Ay, = = C.6
MO T TER®r —a JTRFIR? £ 4ka]’ (€6

where
1

— <1
(R3 + 4ka) — 7
for the values suggested in this wartk= 10~°, k = 16 andR > 1. Then

— 1
(AkAk) < —6

™
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Therefore,
Hf N fﬁé)HLQ(Q) < Hf - fa(ts)HLQ(Q) + k;ﬂ (AkAkal,d) + (AkAka%) = Hf - fa(‘s)HLg(Q)
> 2 5 \2 4 > L2 5\ 2
+ Z (AkAk) [( ka) + (Vk,5) ] < Hf_f‘l(‘s)HLg(Q) +ﬁ Z [(Vk,é) + (Vk,é) }
k=N+1 k=N+1
4 Vsll 46
= = faoll 1,0 TMQ) <|\If = fawll 1y + NG

where|| f — fa(s

whend — 0.
These results show the mathematical correctness of the algoritfamd 2. Furthermore, the accuracy of the Tikhonov

regularization method is at least of order one or linear if we have a priori information about the exactfs@aedheoreri).

) HL2(Q) — 0 since Tikhonov regularization is an admissible strategy (see The)cedtearly,(46/1/7) — 0,

D. Inverse operator and numerical instability

A linear operatord : X — Y, whereX andY are Hilbert spaces, is continuous in a paint X if and only if it is continuous
in every point ofX. From this, when an operator is not continuous, it is not continuous at each point of theXspades
is reflected when we solve operational equations of the faim= y. One way to proceed consists of discretization of that
operational equation to get a system of linear equatibs vy = yn, whereAy, zy, andyy are discretization of thel, «,
andy, respectively. The operatorsy — A when the following norm is considejA|| = sup) .20 {||Az|/||z| }. However,
the operatorsi,,;! do not converge tol~!. Furthermore, the matrices that represent the operbitofwe can use the same
symbol for the matrix representation and the operators) are ill-conditioned, which produces large changes in the sought solutior
when small errors appear on the right side of the equation. Examples can be found in Ref. [1], p. 11, and Ref. [19], p. 6. Note
that the errors in the right hand of the operational equation appear as errors in the right hand on the linear system of equations
Thus, the non-continuity of one operatdr® can be interpreted as follows: the images of close points may be very far from
each other, which can be related to the ill-conditioning of the matrites Notably, the operatoA is linear, compact, and
injective, andz andy belong to appropriate Hilbert spaces of infinite dimension, which impliesAhatis not continuous.
This kind of operator appears in many applications [19].

In this work, the operatord andA&1 are given by

N .
cos (k0) sin (k)
A (f)(@):g C +D ,
N RN T

N

4RkvVE +1 cos (k6

N (Va)( :Z 5 Vies ( )+ k.6 )
V2[k — R2(k + 2)] N NZS

=1

where we can see that

; ARkVE + 1 ;
flc,é = > k6
V2[k — R2(k + 2)]
and
V2KV 4| _
5 <l (D.1)

fori =1, 2, then\f,i75| — 00, Whenk — oo by (D.1). These results show the numerical instability of the inverse of the
operatorA defined in Eq.I12).
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