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We study the problem of a quantum harmonic oscillator in the presence of a repulsive inverse-square potential within a cosmic string space-
time that contains a dislocation. Also, we study how a rotational frame affects the quantum harmonic oscillator plus the repulsive potential
within this space-time geometry. For both problems, we find three operators for the radial part of each problem and show that they close the
su(1,1) Lie algebra. From the theory of unitary irreducible representations ofitfie 1) Lie algebra, we obtain the energy spectrum from

an algebraic point of view. Also, we obtain the wave functions, the radial coherent states, and their time evolution. Finally, we calculate the
thermodynamic properties for each of these problems.
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1. Introduction by the Klein-Gordon oscillator has been studied in the space-
time of a cosmic string with a spacelike dislocation [15]. In a
Cosmic strings are hypothetical objects known in the litera-£OSMic string background space-time characterized by a sta-
ture as topological defects that significantly modify the geo_'uonary cyllnd_rlcal metric, thg generalized r_elat|V|st|(? Duffin-
metrical properties of space-time and that were formed in th&&mmer-Petiau (DKP) oscillator for a spin-zero field was
early stages of the universe by abrupt energy changes. Othgfudied in Ref. [16] and its eigenfunctions and its energy
types of defects include domain walls, global monopoles, disSPectrum were obtained. Also, in Ref. [16], the radial wave
locations and branes. Topological defects have been extefiinctions for the linear, Coulomb (and shifted Coulomb) and
sively studied in quantum theory because they alter the partth® Cornell potential were found.
cle energy spectrum and wave functions [1-4], depending on The introduction of a quantum oscillator into a cosmic
whether they have spin zero, spin 1/2, or spin one. string space-time leads to the appearance of modified energy
The quantum harmonic oscillator is one of the most exJevels that depend on the parameters that characterize the cos-
tensively investigated systems in the field of quantum meMic String. As a consequence, thermal properties such as par-
chanics, employing a number of potentials in both relativistictition function, free energy, entropy and specific heat are al-
and non-relativistic contexts with spin and pseudospin symt€red, since these properties depend on the energy levels of
metry [5-7]. Recently, the system has been investigated ithe system. . I.n other words, the presence of a cosmic string
the context of interactions with topological defects [8—17].causes additional terms to appear in the energy spectrum.
Faizuddin Ahmed and Abdelmalek Bouzenada study a Spe'l_'hese term_s_a_re associated with the string’s ten_S|on and the
cial Einstein-Maxwell solution. It is characterized by a mag-angular deficit it causes. These changes are crucial for under-
netic field and a positive non-zero cosmological constant. I$tanding how the oscillator behaves at different temperatures
the context of this magnetic space-time background, they fo@nd how it exchanges energy with its environment [18, 19].
cus on the relativistic dynamics of quantum oscillating fields It has been demonstrated that the energy spectrum of the
in the framework of position-dependent mass systems [12harmonic oscillator is influenced by the presence of a repul-
In Ref. [17], the authors investigated the behavior of a 2Dsive inverse-square potentidl,(r) = 1/r2, which modifies
harmonic oscillator embedded in an elastic medium containthe effective potential experienced by the particle. This re-
ing a spiral dislocation (or edge dislocation). In that papersults in alterations to the wave functions and energy levels,
an analytical solution for the Sabdinger equation describ- as well as modifications to the quantization conditions. A
ing the oscillator under the influence of this dislocation isnumber of theoretical studies have demonstrated the poten-
presented. The equivalent of the Aharonov-Bohm effect fotial of rotational frames to significantly influence the behav-
bound states within a relativistic quantum system describeébr of a harmonic oscillator within a given space-time geom-
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etry. In particular, these investigations indicate that such efquantum mechanics, the thermodynamic properties for the
fects can be observed when defects such as cosmic stringeneralized Dunkl oscillator were reported in Ref. [32].
are taken into account. This influence can be observed in a The introduction of the dislocation parameter within cos-
number of different areas, including the introduction of ficti- mic string space-time results in a transformation of the topol-
tious forces, additional coupling terms, modifications in theogy of space-time. This alteration impacts upon the den-
effective potential, energy corrections, and altered equationsity of states of the system, modifying the partition function,
of motion [20, 21]. which consequently affects the rest of the thermodynamic
Systems with an inverse quadratic potential displaycharacteristics of the system [38, 39].
greater resistance to fluctuations in temperature. They are In order to preserve quantum coherence, quantum com-
capable of absorbing and dissipating energy with minimaputing devices must be operated at extremely low tempera-
changes in temperature, which enhances their stability antlires. Furthermore, the thermodynamic properties of systems
resistance to fluctuations in their environment. Consequentlcontaining topological defects can influence both the energy
the inverse quadratic potential present in the oscillator Hamilconsumption and thermal management of quantum comput-
tonian modifies the energy spectrum and density of states iimg hardware. Efficient thermal management is therefore a
the space-time of cosmic strings. These modifications influerucial factor in the scaling up of quantum computers and in
ence how specific heat capacity responds to changes in terensuring their practical viability [40, 41].
perature [22]. To gain a deeper understanding of the evolution of co-
Coherent states exhibit distinctive characteristics. Thesbkerent states within the harmonic oscillator in space-time,
states behave in a manner analogous to classical particles, ék-is crucial to integrate relativistic elements and space-
hibiting well-defined position and momentum. They evolvetime curvatures into the conventional quantum mechanical
in time in a straightforward manner under the dynamics offramework. This approach provides novel equations, damp-
the harmonic oscillator. Coherent states are employed asiag factors, and phases that enhance the comprehension of
guantum analogue of classical states, rendering them a pithe behavior of quantum systems within complex environ-
otal tool in quantum optics, quantum information theory, andments [42].
guantum computing [23, 24]. The purpose of the present work is the study of the har-
Recently, there is a great interest in thermodynamic propmonic oscillator in cosmic string space-time with dislocation
erties of quantum systems, since they are crucial for develnder a repulsive /r? potential and rotational frame, using
oping quantum computing [25-27]. To this respect therea strictly algebraic method. Using our method, the energy
is an increasing interest in understanding the thermodyspectrum and eigenfunctions can be obtained in a more prac-
namic properties of fermionic particles, since the acquisitical way. We also obtain their coherent states and time evolu-
tion of quantum memory relies on pairing a group of par-tion, as well as their thermodynamic properties, for the cases
ticles, which can be described using thermodynamic princiwhere there are no defects in the cosmic strings and for zero
ples [28]. In several works the thermodynamic properties fodislocation parameter.
different quantum systems have been studied [19,29-37]. A. Our main motivation for studying the quantum harmonic
Bouzenada et al. study the thermodynamic properties of thescillator under a repulsive inverse quadratic potential in cos-
2D Klein-Gordon resonator in the presence of the cosmologmic string space-time with dislocation in both inertial and ro-
ical string in the applied magnetic field. For different param-tational frames is to demonstrate that this problem can be ap-
eters of the problem, the results are presented as a functigmoached from a different perspective, namely by employing
of temperature and applied magnetic field [19]. In Ref. [29]factorization methods of quantum mechanics. This approach
the energy and entropies are calculated, and the differencesn help us to show that the radial part of the problem exhibits
between ensembles in the system of independent harmonkl/ (1, 1) symmetry, allowing us to derive operators that close
oscillators with the same frequency are clarified in the Tsallighe Lie algebra associated with this symmetry. With the help
statistics with escort average. of the representation theory for this algebra, we intend to ob-
Thermodynamic properties and relativistic behavior oftain the energy spectrum and show that it agrees with the re-
a neutral spin one boson particle in one-dimensional spacsults found in the literature [21].
have also been studied by means of the generalized Duffin- Our second motivation is to obtain information about the
Kemmer-Petiau equation with a new non-minimal couplingmodifications that the energy spectrum, wave functions, co-
related to the g-deformed formalism [30]. The Dirac equa-herent states, and their time evolution, as well as the ther-
tion in 3 + 1 dimensional space-time with non-minimal cou- modynamic properties, may undergo with the inclusion of
pling to a linear radial three-vector potential and in the presthe parameters and y, under the influence of the inverse
ence of a static electromagnetic potential that represent botjuadratic repulsive potential and the rotational frame. Ac-
the Aharonov-Bohm and magnetic monopole field has beenording to our research, this would be a novel contribution
studied [31]. In that Ref. the authors obtained the partitiorto the literature, particularly in the context of coherent states
function describing the statistical properties of the systemand thermodynamic properties.
the mean energy, the Helmholtz free energy, the entropy and The structure of the work is as follows. In Sectidn
the specific heat. In the framework of the Dunkl-Wigner The uncoupled differential equations are obtained for the har-
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monic oscillator in the topological defect under the repulsiveThe equation

1/r? potential. In Section, we apply the Scidinger factor- - ow

ization to the second-order radial differential equation. With |+ L o — 55 _o%

the aid of this factorization, we construct three operators that 2M /=g (81 (ﬁg aj) + V(T)) V=i ot’ @)
close thesu(1,1) Lie algebra. By applying the theory of . . .
irreducible unitary representations associated with this algg €Presents the wave equation in covariant form, which takes
bra, we obtain the energy spectrum and the eigenfunctionér.1t0 accou_nf[ thg potentlaﬁ(r), whereg;; is the metric ten-
Also, these results are particularized for the case where thiP" andg" its inverse given by the Eqs2) and 8), and
dislocation parametey — 0 and for the case where no cos- ¢ = d¢t(gi;) [44-46]. Thus, the Hamiltonian operator of
mic string defect exista: — 1. In Sectiond, results similar 1€ HORP has the following form

to those in Sectio are obtained for the harmonic oscilla- . 11 y 1

tor in a topological defect under the repulsive-? potential Hose = —m\f@' (V—99"9;) + §Mw27"2» (5)

and considering rotational frame effects. Furthermore, using g

the Sturmian basis of theu(1,1) Lie algebra, the coherent \here)/ is the mass of the particle andis its angular fre-
Perelomov states and their time evolution are constructed fQjuency. The eigenvalues equation for the HORP under the

the radial equations of both problems. In Sectiowe cal-  influence of a potentidV (r) is given by
culate thermodynamic functions for the two oscillator cases,
such as the partition function, the Helmholtz free energy, the (ﬁHORP + V(r)) U — FU. (6)

mean energy, the entropy, the heat capacity, and the Massieu

function. These properties are also particularized for the limy,, considering an inverse quadratic repulsive potential
its of zero dislocation parametgr— 0 and no cosmic string given by

defecta — 1. Finally, we give some concluding remarks.

. . _ _ V(r) =5, )
2. Harmonic oscillator in topological defect

under repulsive 1/r? potential effects with 7 an arbitrary constant; > 0. Thus, by using Eqs5j
and [7) the eigenvalue Eq6] for the harmonic oscillator in

The space-time of the cosmic string with a dislocation is dethe space-time background can be expressed as [21]
scribed by the line element [21]

d52:fdt2+dr2+(a21"2+x2)d902 1 [dz 10 1 (8 6)2+82

ToM a2 T rar a2 \ap Yo 022
+ 2xdpdz + dz2, 1)
wheret € R is the time coordinate;, ¢, z the cylinder coor- + (1Mw2r2 + Z) U = EU. (8)
dinates inR? with a range of values € R*, ¢ € [0,2ma], 2 "

z € R, a= (1 — 4u) represents the cosmic string parameterry,q initial term on the left-hand side corresponds to the ki-

and runs in the interval, 1] andy is the linear mass density - peic energy of the system, where the deficit angle of the cos-

of the string and: = 1, ¢ = 1. The dislocation parametel, ¢ stringA. is incorporated, modifying the angular compo-

ISa pOSItIV'e quantity, considering a Ilnea}r deformation ("tor'nent. Subsequently, the dislocation parameter is introduced

sion” or "displacement”) of space, is defined as the modulug,, this same energy, leading to a coupling between the an-
gular and longitudinal motions.

of the Burgers vectob = be,, which is assumed to be in
By taking into account that the potential we are consider-

the z-direction, thus yieldingc = b/27. This Burgers vector
defines a line defect. It is essentially a screw dislocation, 'qng depends only on the radial coordinatethe wave func-
tion U (r, ¢, z) is written as [21]

which a complete rotation about theaxis causes a transla-
tion by b in thez-direction. It is crucial to remember that
becauseé is any real number [43]. The metric tensor for the U(r, ¢, 2) = R(r)eit? et )
space-timel) is o

-1 0 0 0 This wave function is dependent on the spatial coordinates.
s (z) = 0 1 0 0 @) However, the angular component undergoes modification due
9\ =110 0 o2+ 2 x| to the altered topology of the space-time around the cos-
0 0 X 1 mic string. Specifically, the presence of an angular deficit
and its inverse Ap = 27(1—«) leads to a substantial alteration in the behav-
10 0 0 ior of the angular coordinate. Consequentlyy no longer
0 1 0 0 spans the conventional range f,but instead covers a re-
() = ) 3 duced angular range @fra, wherea < 1. This reduction
g 0 0 1 X 3
a?r? a?ry modifies the periodicity condition, which now takes the form
0 0 —# 1+ # ei€(¢+27roz) _ ei&p_
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The eigenvalues for the orbital quantum operatorfate  where the third operatak; is written as

0,1,2, ...

order differential equation for the radial functidi{(r) [21]

d’R 1dR

dr2 'y dr

AN=2MFE —k* 7=/ +2Mn,

_ 6= XK
=

2
+ [)\ — M2w? — 72} R=0, (10)
T

where

o (11)

, andk > 0 is an arbitrary constant. Therefore,
substituting Eqs/9) into (8), we obtain the following second

1 a2 T _% 2 2 2
SN P
\SSG4Mw< dr2+ r2 +M’WT)G
A
:4Mw (19)

Therefore, it is straightforward to show that the operators
34, S, andS; close thesu(1, 1) Lie algebra

RERVIIE A (20)

The Casimir operato€? can be calculated with the help of

Now, we are in the position to obtain the generators of théghe operators given in Eqsl§) and (19), that is

algebrasu(1, 1), which are obtained in the next section.

2.1. Exact solution from an algebraic method

In this section, we obtain the exact solution of the HORP. For

this purpose, we rewrite E(LQ) as

d’R dR
—r?—— —r— 4+ M?W*r*R — MR =

.2
R 2R, (12)

To solve this equation, we proceed to eliminate the first order

derivative by making the variable chanfe= (1//r)G. We
obtain

d? 1
2 2 2.4 4,2 — [ _ ;2
( r—dTQ—&—er Ar)(? <4 T)G. (13)

Now the generators of theu(1,1) Lie algebra can be
constructed proposing the following factorization for E8)(

ri+rr2+n . + AP+ 7T )G =dG, (14)
dr dr

1
CE =905 (349- +9-9)C

= [?-1]a. (21)

Using this last equation and E@.6) of the Appendix, we
have

[ —1] G = k(k —1)G. (22)

Therefore, we obtain the following relationships

1 1 1 1
=3 Py = Ty T = Ny Py P 2
k 27’—|—2, n=nmn n, +k n+27'+2 (23)
wheren,. =0,1,2, ...
From Egs.[11), (19), (23) and Eq. A.4) of the Appendix,
we obtain
E k2 1

1
W dmw Tty @)

by developing the left-hand side of this equation and compar-

ing it with Eq. (13), we find that

A
F=A=+Mwl="=——"" 1
@ Mo
A 2
d=—"-4+1) —72 1
<2Mw+> ’ (15)

Thus, we can rewrite Eq18) as follows

1 A S
(R¢:F1)Ri—4<<2ij:1> —T>, (16)

where the two operatoi®, andR_ are given by

1 d A
Ry== — 4+ Mwr>———=x1]). 17
* 2<:Frdr+ YT oMw T ) (7

Equations/L3) and [L7) allow us to define the following op-

erators

1 d
S = |Fr— + Mwr? F1| — 33, (18)
2 dr

Thus, from this relationship, the energy spectrum for the har-
monic oscillator in topological defect under repulsivé-2
potential effects is

k2
Em«,@,k = m +w [2’/17‘ + 1+ s} . (25)
If we definep? = Mwr?, Eq. [13) takes the form
d? i — 72 9 A
—+i5— -+ | F=0. 2
<dp2+ P +Mw) 0 (26)

On the other hand, it is known that the differential equa-
tion [48]

1_ 92
Y+ [4nr+26+2x2+4x2ﬁ} y=0, (27)
has as solution [48, 56]
22
y=Nye TaTiLe (a?). (28)
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Equations/27) and 28) can be used to determine the wave and

functionsF (r) of Eq. (25), yielding to )

U (ny + 1) —mwr? T3 Enor = oM +wi2n+14+17], (36)

F(r) = I'(n.+7+ l)ef (Mw)

(29) respectively, an@ = \/(é - Xk)2 + 2Mmn. The results pre-
sented in this subsection, derived using this methodology, are

In terms of the group indices andk = (7/2) + (1/2), the  in accordance with those reported by Ref [21].

Sturmian basis for the irreducible unitary representation of

thesu(1,1) Lie algebra for the HORP is

X TTJF%L:LT (Mwr?).

) 3. Harmonic oscillator in topological defect
R(r) = {2F (n- + 1)] ’ under repulsive 1/r? potential and rota-
I (ny + 2K) tional frame effects
2 i
xe r (Mw) T rTL] (Mwr?),  (30)  In this section, we study the influence of the rotational frame
on the harmonic oscillator within the same space-time geom-
etry given by Eq./1) with a repulsive inverse quadratic po-
tential (HORPRF). Let us begin by performing a coordinate
Afansformation given by = ¢+ Qt, wheref) is the constant
angular velocity of the rotating frame. Thus, the line element
from Eq. @) is expressed as [50-53]

here the normalization coefficie,, was computed from the
orthogonality of the Laguerre polynomials. The particular
cases of our general results obtained above in this section
given in the next section.

2.2. Particular cases solutions fof/(r) = 0, x — 0 and
a1 ds = — (1 — Q2ar?) dt? + 200*r*depdt

When there is no external potential preseitt) = 0, that is

n — 0, the Sturmian basis and the energy eigenvalues for the

HORP are given by

+dr? + o?r2d? + (dz + xdy)? (37)

in this context, the ternjl — Q2a?r?) dt? represents a mod-

o (n, + 1) Tt le=xk| 1 ification of the time element because of the rotation of the
R(r) = [M] e” 2 (Mw)™ 2 system. Asr increases, the proper time is affected by the
" rotation in an analogous way to a relativistic effect. The sec-
y TTL:?}’“‘ (Muwr?) 31 ond term2Qa?r2depdt in this metric incorporates both time
" ’ and angular coordinates. This term arises because of the ro-
and tation of the system and represents the precession of orbits
52 10— x| wi_thin the context of rotational space-time. In general rel-
En k=577 +w {an +1+ } . (32) ativity, such a term is fundamental to describe phenomena
2M @ such as the Coriolis force in rotating systems. In the fourth
For zero dislocation parametgr — 0, the Sturmian basis and fifth termsp?r2dg? and (dz + xdy)”, respectively, the
and the energy eigenvalues for the HORP are variabley continues to show an angular deficit relativeito
N In a rotational frame, the combination of the dislocation
R(r) = [2F (nr + 1)} 2 and the rotation effect may cause the particle trajectories to
I (n, + 2k) be neither circular nor closed, but to have a more complex
oz =1 precession and a deviation from standard geodesics.
xe 2  (Mw) 2z r:LfM(erQ), (33) Thus, in the rotating reference frame, the line element
(37) allows us to see that the radial coordinate in the cosmic
and string space-time is restricted to the region
2
Enp e = gpp Twlne + 145, (34) 0<r< i (38)

whereE = /(2 /a2) + 2Mn.With no cosmic string defect,

o — 1, the Sturmian basis and the energy eigenvalues folf the speed of the particle exceeds that of light, it can be

HORP are given by shown that the values of the radial coordinate satisfy
. 1/Q«, which implies that the particle is located outside the
R(r) = {21“ (n+ 1)} 2 light cone [50].
I' (n+ 2k) The rotating frame is defined as
— Mwr2 +yo_ —
xe 2 (Mw)™= r=LY(Mwr?), (35) Q =0z, (39)
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and therefore the HORPRF has the following Hamilto- It can be seen that the Casimir operator for this algebra is the

nian [21]

~ ~ —
%sc = Hosc - Q- L, (40)

where H,,. is defined in Eq.%) andL is the angular mo-

mentum operator. It is shown that the presence of the dislo-
cationy modifies thez component of the angular momentum

operator for the space-time geometry given in 3, 4s fol-

lows [4,49]
i (0 0
reff — _ 2 [ 2 _ V2 )3
Lt <8<p X(?z) z. (42)

Thus, the eigenvalue equation for the HORPRF is written a

[«%ZHORPRF - V/(T)} ® = SnorpPrr®. (42)

In this case,V'(r) = V(r) — Vb, whereV(r) indicates a
repulsive inverse-square potential as given by EpatodV,

same as that of Eq21), and therefore the relationship be-
tweenk andr is given by Eq.23). Thus, from Egs.l47),
(23) and Eq. A.4) of the Appendix, the energy spectrum for
HORPREF is given by

2

2M
(0%

g’nr,e k

HORPRF — +W[27’Lr+1+g ]

— V. (49)

with & = \/((éka)Q/oﬂ) +2Mn. The Sturmian ba-

sis for the irreducible unitary representation of the1,1)

Lie algebra, expressed in terms of the group indiceand
= (7/2) + (1/2) result to be

L [2T (. + 1)
R(r) = {F(nT—i-%)

Qk—lLQk—l(Mw,rQ)

1
2 — Lu'!
] e T (Mw)' s

(50)

is a constant potential term that only shifts the energy. Thua can be seen that it is the same as that calculated in Sec. 3,

the Hamiltonian given in Eqi4@) for this particular quantum

system is given by
1 d2 £ 10 1 (0 0 Lo
- 2M ror | a?r? \ dp BT 0z

1 Q[0 0
<2Mw +*_VO+7/* (a(p_xaz)>qj_éaoscw
(43)

U+

3.1. Exact solutions

From Egs.9) and @3) we arrive to the differential equation

d2R 1dR 2, 72
where

A:QM(é"HORPRF—FQEO—FVo)—kz, (45)

andr and/, are given by Eq.11). Starting from Eq.44),

we proceed as in Sec. 3 to obtain the exact solution of th
HORPRF from an algebraic point of view. Thus, the opera- [€) =

tors obtained from this factorization method are given by

1
Xy == wi + Mwr? F1| — X3, (46)
2 dr
where the third operatds is written as
1 2T i 2 2 2
x?,G—%(CW‘i’ 7"2 +MW7’>G
A
= Mo MwG (47)
These operators close the(1, 1) Lie algebra
(X3, %] = £X5, [%_, %] =2%s. (48)

Eq. (30) and are consistent with those reported by Ref. [21].
For the particular case where the dislocation parameter
x — 0, the energy spectrum is given by

4]

+—+w[2nr+1+ g, (51)

2M
and the Sturmian ba5|s for this case is the same as that given
by Eg. B3) For the case where the cosmic string parameter
a — 1, the energy spectrum is given by

2

n k
Eionprr = U — Xk — o T 2n+1+ 7],

and the Sturmian basis for this case is the same as that of
Eq. (35).

N4,k
é(-}HOI:x’PFx’F Q
(52)

4. SU(1,1) radial coherent states and their
time evolution for the HORP and HORPRF

We use Perelomov’s definition of th8U(1,1) coherent
states [54] to calculate the coherent states corresponding to
éhe radial functions obtained for the HORP in S&cThat is

D(¢)|k,0)
- 1€ Z

where ©(£) represents the displacement operator, while
|k,0) denotes the lowest normalized state. Consequently,
when we apply the operat@ (&) to the ground state of the
functionsR(p). We obtain

- (1 B |§‘2)s+1
o= [Qrmn

x 3 LY (Mwr?).

n=1

I'(n + 2k)

nIT(2k) 53)

g/n/‘k) n>7

Rev. Mex. Fis71031701
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The generating function of the Laguerre polynomials where¢ is a complex number anB(§) = exp(£D L —£*D_)
is the displacement operator. Thus, the time-dependent
e—ry/(1-y) .
Z L (x G (55)  Perelomov coherent states can be written as [47]
-y

|<-(t/)> _ e—4i1ﬂwktheﬁ(t)©+en’}Doe—C(—t)*Q,|k70>. (65)
can be used to determine the sum of the above equation.

Therefore, the radial coherent stateg), can be expressed This result allows us to calculate the time evolution for the

as HORRP. It results to be
2 )3+ ]2 S+3 341 S
R(r) = l 0( €1°) 2&2] (Mw) = Rire) = |2 (1=1¢®)™ mw)®* 17 g
FE+HI-9 ’ L(S+1)(1- §e4iMu-r/h)2\’+2
x r3e™T (%) (56) —4iMw(3S+3) Mgr? (7?:%“?1) (66)
X e 2> T2 /e etelewt
Thus, for zero dislocation parameter— 0 the radial coher-
ent statesk(r) are given by It is worth mentioning that the coherent states and their time
evolution for the HORPRF exhibit the same behavior as
( H )~+1 2 =44 Egs. 66) and 66) due to the use of identical Sturmian bases.
R(r) = rE+1(1- 5)25+2 (Mw) 2
 ares? e 5. Thermodynamic properties for HORP and
x rZe 5 (85), (57) HORPRF
If no cosmic string defects exists, — 1, the radial coherent |, this section, we calculate the thermodynamic properties
statesR(r) are for the HORP and HORPRF problems. For each of them,
Y41 1 ) we find the partition function, the Helmholtz free energy, the
R(r) = 2 (1 — [¢] ) (Mw) 2 mean energy, the entropy, the heat capacity, and the Massieu
L(Y+1)(1—¢)>" function. Also, we find for some of them the limiting cases
, for no string defectv — 1 and for no dislocatiory — 0.
T Mwp (i#»fl)
Xrie 2 \&1), (58)

5.1. Thermodynamic properties for the HORP
To obtain the time evolution of these coherent states, we now

write Eqg. (L0) as follows It is known that the partition functionis defined by
H.G = \G, (59) il
2= ) e e, (67)
where n=0

H, = <T2d22 N 72 + M202 ) ' (60) whereg = 1/kT , k is the Boltzmann constant ari the
d absolute temperature. Thus, from E@)(and 25) the par-

Therefore, from Eqsd©) and 59), the following relation can  tition function can be writing as

be obtained exp [—ﬁ (% N w%)]

H,G = 4MwS3G = \G. (61) z= 5 sinhwf ; (68)

Equations19), (61) and A.4) of the appendix allow us to re-

! ) and the Helmholtz free energy can be calculated as follows
calculate the energy spectrum obtained in [2&) 6f Sec. 3.

We obtain po L1y, * L1 (2sinh 69
2 =73 nz= m—i—w\s—i—B n(2sinhwp), (69)
En tp=-——+w2n+1+9]. (62)
2M the mean free energy is given by
The definition of the time evolution operator for an arbitrary )
Hamiltonian is [55] g 9z K sy weothws,  (70)
Z/{(t) — e—iHTt/h _ e—4iMu§?3t/h. (63) 86 M

_ . _ o _ . the entropy for this quantum system, can be calculated with
It is considered that is a fictitious time [56, 57].The time  the help of Eqs/g8) and {70) as follows

evolution of the Perelomov coherent states is defined by

U :
1C(T)) = UR)[C) = UBDEOUT(TUH)|k,0),  (64) S=klnz+ T = k[wl cothwf —In (2sinhwf)], (71)
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the specific heat capacity/k is calculated from Eq/68) as

C _ g [821112} _ BPw? '
k op3? sinh? wf

(72)

5.2.  Thermodynamic properties for the HORPRF

In this subsection, we obtain the thermodynamic properties
for the HORPRF. These are computed beginning with the par-
tition function under rotational frame effects, which takes the

Finally, from Egs.[70) and [71) the Massieu function can be form

calculated as

f ——Q+S— K + — [S + cothwf]
M =" OMT TJ

+ k [wBcothwf — In (2sinhwp)]. (73)

Now, we particularize some of our results above for the limit
cases:A) for no string defect — 1 andB) for no disloca-

tion x — 0.
CaseA:

If no cosmic string defects exista, — 1, the partition func-

tion takes the form

o[ (£ 1)

= 2sinh wf3 ’ (74)
the Helmholtz free energy results to be
k‘2
F= BV +wYT + = 3 ln (2sinhwp). (75)
The mean free energy is given by
k2
U= m—i—wT—i—wco’chw@ (76)
and finally, the Massieu function under this potential is
k‘2
fu = 2MT T [T + cothwf]
+ k[wBcothwf — In (2sinhwf)] . (77)

CaseB:

If no dislocation existsy — 0, our general results above are
particularized as follows. The partition function in this limit

is given by
exp {fﬁ (% + wE)]
z= - , (78)
2sinh w3
and the Helmholtz free energy takes the form
ka—2+ l1 (2sinhwp) (79)
2M a)_. B n mnw .
The mean free energy simplifies to
k2
U=_—+4+wE+wcothwf, (80)

2M
and the Massieu function is given by

k2
5T T T [ + cothw/f]

+ k [wB cothw — In (2sinhwp)] . (81)

fu =

—g (X2 _ Qli=xkl
Z—GXP[MWZLS L) R

Thus, the Helmholtz free energy is given by

k2 |£ — xk|
F=_—"—+w03-0—2"
2M Tt «@
—Vo+ B In (2sinhwf) . (83)
The mean free energy for this case takes the form
k2 |€ — xk|
- (‘ LA R
U= 2M+ o Vo + weothwi.  (84)
The Massieu function result to be
k2 w |6 — xk|
— e =~ A
fM—QMTJrT F—Q ” Vo + cothwf
+ k [wB cothwB — In (2sinhwp)] . (85)

Now, we particularize some of the resul&2)-(85) for the
casesC) y — 0, andD) a — 1.

CaseC:

The partition function simplifies to

g(F =l
Z_exp[ﬁ(zMz;no;wﬂQ v)] -

Thus, the Helmholtz free energy is given by

_ K 4]

1 .
= +w _QE _VO—|-Bln(251nhWﬂ)> (87)

and the mean free energy results to be

U= % + w=E — Q% — Vo +wceothwp.  (88)
The Massieu function under the limit reduces to
fu = i + 2 “—Qﬂ—V(H—cothwﬂ +
2MT T «@
+ k [wBcothwf — In (2sinh wf)]. (89)
CaseD:

If no cosmic string defects exists, Eq82)-(85) are particu-
larized as follows. The partition function reduces to

_g (X —_Qlf— _
. exp [ B (2M +2::1hw§;€ xk| VO)} )
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Therefore, the Helmholtz free energy is given by s
2 1 |
F:m—&-wT—QM—xk\—Vo—i—Bln(2sinhwﬁ), 8
(91) Z o4 VAL
and mean free energy takes the form R N[
]{12 M[_ _::":,— gl ) ‘,/ s T
U = m-}-wT_QM_X]d_{/O_'_wCOthwﬂ (92) a)n 02 04 y 06 s + b)u 02 Y] o I3 Y] i
. . . . . |— =025 =050 == 0=0.75] [—pB=025- B=0.5-- p=0.75]
Finally, the Massieu function under the cosmic string param- B
eter limita. — 1is e
f il + 2 [T = QI — xk| — Vo + cothw] e
= — — — — CO e g
M 2MT T X ’ . z _::"'V"_ R z“'E ;o
+ k [wBcothwf — In (2sinhwp)] . (93) 1 £
As it can be seen, unlike the standard quantum harmonic os: ,-"l

cillator, the thermodynamic quantities now depend, in each "~ =« % w1 0
case, on the cosmic string parameterthe dislocation pa-
rametery, and the effect of the rotational franfe This is
why these parameters influence the allowed frequencies anglcure 1. Partition functionz vscosmic string defeat: for some
the trajectories of the particles. There is also a dependenggarticular parameters values,ja)}= 3 = M =n =0 =1,x =
on angular momentum and angular velocity, which introduce).5,b)k =w =M =n=£=1,x=05,C)k=w =M =
corrections to the energy levels and, consequently, to thethef-= 1,3 =0.5,x = 0.5, )k =w =M ={=n=1,6 = 0.5.
modynamic properties

The plots of the thermodynamic functions obtained
above, their explanation and interpretation are reported in the
next section for different values of the parametera/, », ¢,
X, w, andg.

|— %=0.25 + %=0.50 == 3=0 75|

6. Plots for thermodynamic functions for the
HORP

The study of the thermodynamic properties of certain quan-
tum particles plays a crucial role in understanding quantum
computing. In particular, the process of quantum storage sys- .,
tems involves matching a set of particles that can be describec
thermodynamically, this means that their properties depend *
on temperature, pressure and other variables. As the study or
guantum systems deepens, we can better understand the b,
havior of these particles and how we can use them to build
more powerful quantum computers. :

In this Section, we plot the thermodynamic functions
such as partition function, mean energy, Helmholtz free en-
ergy, entropy, specific heat and Massieu functionifpe 0.

Figure 1 illustrates the partition function as a function of FIGURE 2. Helmholtz free energy’ vs cosmic string defectr
the variableo. The plot shows that as the valuesc@fin- ~ for some particular parameters valueska)y= § = M = n =
crease fron) to 0.8, there is a trend for the partition function ¢ = Lx = 05, D)k =w =M =n =0 =1,x = 0.5, 0)
to increase. Beyond this point, the partition function remaind® =« =M =(=1,=05x=05dk=w =M ={ =
almost constant up to the maximum allowable value: ébr n=17=05

a specific angular frequency 6f25. However, as the angu- In Fig. 2, we plot the Helmholtz free energy as a function
lar frequency increases t50 and0.75, the growth of the of the variablex. It can be seen that the free energy decays

partition function decreases asincreases. The same result exponentially up to a value of aboQf2 of the parametety,

is evident in(b) and(c). (d) When the dislocation parame- from which it stabilizes at an approximately constant value
ter y is increased, a higher value of the partition function isfor each angular frequency. It can also be observed that the
obtained as: increases. decay becomes more pronounced as the angular frequency is
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FIGURE 5. a) Specific heat capacity/k vsw for different values

of the parameters, b) Specific heat capacity/k vsg for different
values of the parametess

as the value ab is varied. For a value @ = 4.5 the entropy

is almost constant. It can also be observed that the decay be-
comes more pronounced as the value of the paranseier
creases. b) In this case, an exponential decay can be seen as
the value of the paramet@rincreases. The entropy reaches
N an almost constant value wh@gh= 4.5. It can also be seen
FIGURE 3. Mean free energ¥{/ vscosmic string defeat for some

. that the decay becomes more pronounced &sincreased.
particular parameters valuesiaj= 3 = M =n =4 =1,x = i B .
05, 0)k=w=M=n=0=1,x=05Ck=w=M = Figure 5 presents a plot of the specific heat as a function

£=1,=05x=05dk=w=M=~¢=n=1,8=0.5. of angular frequency. a) Itillustrates an exponential decay as

the angular frequency increases. It can be seen that for a value

of 5 = 0.75, the specific heat becomes zero for a value of
reduced. Similar results are obtained when the paramgters,, — 109 approximately, and something similar occurs when
andr are varied in case@®) and(c). In contrast, whenthe 3 = (.50. However, for3 = 0.25, it becomes zero up to

parametery is varied, the opposite effect is observed, with, = 20, with a steeper drop observed for larger valueg of
greater decay for larger values pf b) The plot illustrates a clear decreasefmcreases, with

In Fig. 3 we plot the Mean free energy as a function of thea greater intensity in its decay observed for larger values of
variablea. (a) From this plot we can see that the Mean freew. Furthermore, the specific heat becomes zero at a value of
energy decreases exponentially as the value ofcreases. approximatelys = 2, forw = 3, at3 = 2.5, forw = 2 and
Also, starting from a value af of about0.2, it shows an al-  for w = 1 it becomes zero up to a value 6f= 4.5.

most constant behavior. As decreases, the decay becomes Figure 6 shows the Massieu function as a function of ab-

more pronounced. b) In this case, the decay is exponentialy e temperature. a) As the absolute temperature increases,

similar to that (_)bserved in case a). Th.e only differen_ce isan asymptotic exponential decay is observed. Arofing
that the decay is more pronounced whefs larger. ¢) This 4, 5 constant behavior is observed. This plot shows that the
case also shows an exponential decay similar to that observ%cay is more pronounced at higher valuesjofb) As T

in case a), but with a modifiegl parameter. d) We observe j,.eaqes an exponential decay is observed, which is more
that the larger thee parameter, the faster exponential decaypronounced for lower values of c) AsT increases, a de-

occurs with the same characteristics as in the previous CaseSy is observed, which is more pronounced for higher values
Figure 4 shows the entropy as a function of the angulaps ,, with a constant behavior arourid = 50. d) AsT in-

frequencyw. a) Shows the exponential decay of the entropy ¢reases, an asymptotic exponential decay is observed, and for
small values of, the decay is more pronounced.

Figure 7 we plot the partition function as a function of
the variablen. a) In this plot, it is observed that the partition
function tends to increase as the valuea @icrease between
0 and0.1. In this case, when the paramejer= 0, there are
no indications of constant behavior up to the maximum al-
lowed value fora. Moreover, when the angular frequency
increases frond.25 to 0.75, the growth rate of the partition
function decreases. b) The description is similar to that given
[—B=025 " B=0.50-~- p=0.75] o025 =050 w=0.75] in case a), except that in this case the growth rate of the par-

= = tition function decreases asincreases. c) The behavior in
FIGURE 4. a) The EntropyS vsw for k = 1, b) The EntropyS vs this plot is similar to that described in case a), but in this case,
3 for the parametek = 1. we modify the value of) and deduce that the lower the value

Rev. Mex. Fis71031701



THERMODYNAMIC PROPERTIES AND COHERENT STATES FOR THE HARMONIC OSCILLATOR IN COSMIC STRING SPACE-TIME. 11

5Ty

[— =025 ©=0.50 —- ©=0.75]

FIGURE 8. Helmholtz free energys cosmic string defectv for

FIGURE 6. The Massieu functioryf,, vs absolute temperaturé some particular parameters valuescar M =n =4(¢ =3 =1,
for some particular parameters valueskayx 8 = a« = M = b)k=w=M=n={¢(=1,00k=w=M=¢=1,8=0.5,
n=L=1x=05bk=a=M=~0(=n=F=1a= dk=w=M=n=1,8=0.5.
0.5x=05,c)k=M=n=06=£=1,a=0.5,x =0.5,d)

k=w=M=n=1a=05,8=0.5. energy is observed as the valueroincreases. This decay is

more pronounced for smaller values of the angular frequency
w. b) In this case, the description is similar to that in a), ex-
cept that the decrease in the value of the energy is smaller as
the value ofg increases. c¢) The behavior in this plot is similar

to that described in a), but in this case, we modify the value of
71, and we notice that the smaller the value of this parameter,
the faster the energy decreases. d) In this case, an exponential
decay is observed. As the value of the paraméticreases,
there is a greater reduction in the energy values. The rate of
decrease of the Helmholtz energy is slower for cases a), b),
and c) with respect te than in the case witly # 0.

________ In Fig. 9 we plot the Mean free energy as a function of
i the variablex. (a) An asymptotic exponential decay in the

z z ] energy can be observed as the value dficreases. There is
i o a more pronounced decay for smaller values of the angular
frequencyw, and it seems to approach to constant values for
, an« value of approximatel.9. (b) Similarly, an exponen-
g mE Ry s tial decay is observed asincreases. In this case, the decay is

more pronounced asincreases. (¢) The behavior in this plot

is similar to that described in (a), but in this case, we mod-

ferent parameters values k)= 8 — M — 5 — £ = 1, b) ify_ the value ofy, and we notice that the smaller the value of_

k—w—=M=p=f=1,(k=w=M=¢(=1,8=05,d) this parameter, the faste_r the energy Qecays. (d) Or]ce again,

k=w=M=n=1,3=05. we observe an exponential decay similar to the previous three

cases. As the value of the parametatecreases, there is a

of this parameter, the higher the growth rate of the partitiorgreater reduction in the energy values. The rate of decrease

function. d) In this case, the partition function increases as Of the average energy is slower for cases (a), (b), and (c) with

increases. It is also observed that the lower the value of theespect tax than in the case witly # 0.

parametet, the greater the increase in the partition function.  In Fig. 10 we plot the Massieu function as a function of

The growth rate of the partition function decreases for caseabsolute temperature. a) This plot shows an asymptotic ex-

a), b), and c) with respect te wheny # 0. ponential decay. It can be observed that starting from a value
In Fig. 8 we plot the Helmholtz free energy as a functionclose tal’ = 50, the Massieu function exhibits approximately

of the variablex. a) An asymptotic exponential decay of this constant behavior. This plot also shows that for larger values

FIGURE 7. Partition functionz vs cosmic string defect for dif-
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by °

— 0025 =050~ =075  |—B=025- B=0.50--B=0.75]

FIGURE 11. a) Partition functior: vs 3 for the parameters values
. . k=M =n=14{=1,x = 0.5, b) Partition functionz vsw for
FIGURE 9. Mean free energy/ vscosmic string defeat for some 4, parameters valugs— M — n — 1,y = 3 = 0.5, ¢) Partition

particular parameters valuesfa)= § = M =1 ={=1,X = fynctionz vs 3 for the parameters valuds — w = M = { —
05Dk =w=M=n=0=1Lx=050k=w=M= 1,8 = x = 0.5, d) Partition functionz vs 3 for the parameters
t=1x=p=05dk=w=M=n=1x=5=05 valuesk =w =M =£=1,x = = 0.5.

06 [H] 1

[— =025 ¢=0.50 - §=0.75| [— 0=0.25 " ©=0.50 - ©=0.75]

FIGURE 12. a) Helmholtz free energy,. vs 3 for the parameters
FIGURE 10. The Massieu functiorf,,, vsthe absolute temperature  valuesk = M = n = £, x = 0.5, b) Helmholtz free energy,,

T for some particular parameters valueskayr w = M = n = vsw for the parameters valuds= M = n = £ = 1,x = 0.5,
t=1,a=05bk=M=~(=n=w={(=1,a=3=05, c) Helmholtz free energy,,, vsw for the parameters valuds =
Ok=M=n=p=~0=1a=05,d)k=w=M=n= M ={¢=1,x = 3 = 0.5, d) HeImholtz free energy,, vsw for
B=1a=0.5,3=0.5. the parametersvalugs=w =M =n=1,x = = 0.5.

of the paramete#, the decay is more pronounced. b) An ex- the value of¢ decreases. The rate of decay is similar to the
ponential decay of the function is observedZaincreases. case withy # 0, but for b), the decay occurs at a higher value
In this case, the decay is slightly more pronounceq dg-  of T..

creases. c¢) Once again, we observe an asymptotic decay, the In Fig. 11a) This plot shows that the partition function
increasing the value of the parameteleads to a greater re- decays exponentially a$increases. It can be observed that
duction in the values of this function. d) An exponential de-starting at an approximate value ®f= 0.9, this function ap-

cay is observed in this case as the value of the absolute terpears to behave in a roughly constant manner. It is also noted
perature increases. A more pronounced decay is observed #zat for larger values ofv, the decay is more pronounced.
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FIGURE 13. a) Mean free energy vsw for the parameters values
k=M=n=1¢=1,x=0.5,b) Mean free energy/ vsj3 for the FIGURE 14. The Massieu functiorf,, vsthe absolute temperature

parameters valugs = M =7 = £ = 1,y = 0.5, ¢c) Mean free 7 for the parameters valuesB)=w = M =n =4 = 1,x =

energylU vsw for the parameters valuds= M = £ = 1,y = 05,P)k=M=w=~C¢=n={0=1a=x=8=05¢)
B8 = 0.5, d) Mean free energy/ vsw for the parameters values k=M =n=0=L=1,x=05dk=w=M=n=,x =
k=M=n=1,x=p3=0.5. 0.5,8=0.5

b) In this case, the partition function is plotted as a functionc@y becomes somewhat more pronounced as the valde of
of the angular frequency, showing an exponential decay andecreases. For this case, the behaviors of the functions are
approximately constant behavior starting from a value neagimilgr to those in scenarios involving cosmic strings and dis-
w = 0.9. Similarly, for larger values of, the decay is more location parameters.

pronounced. c) The behavior in this plot is similar to that de-
scribed in case b). We notice that for larger values of the pa Concluding remarks
rameter’, the partition function decays more significantly. d)

Once again, an exponential decay is observed as the param@-this paper, we have used an algebraic approach to inves-
terw increases, with a greater decaydsecomes larger. tigate a quantum harmonic oscillator in the cosmic string
Figure 12a) The Helmholtz free energy is plotted as aspace-time that contains a dislocation, given by Hj.fflus
function of the variablev. Asw increases, a logarithmic in- the presence of a repulsive square-inverse potential. We ap-
crease in the energy is observed. The increase is more prptied the Schrodinger factorization method to the second or-
nounced for higher values @f. b) In this case, the growth der differential equations obtained in Ref. [21]. This allowed
continues as increases. The increase is slightly more pro-us to obtain the generators of the(1, 1) algebra. Using the
nounced for higher values of the paramefer) A logarith-  theory of unitary representations for this algebra, we were
mic growth is observed as increases. The energy increasesable to obtain the energy spectrum and the eigenfunctions
as the value of increases. d) An asymptotic logarithmic for this problem. Proceeding exactly in the same way, we
growth is observed as the value @fincreases. This growth study the harmonic oscillator plus a repulsive inverse-square
is accentuated with increasing the angular frequency. potential within the same cosmic string space-time and we
Figure 14a) The Massieu function is plotted as a functionobtained the energy spectrum and the eigenfunctions.
of absolute temperatufE. An asymptotic exponential decay Furthermore, we constructed the Perelomov coherent
is observed. The function exhibits an approximately constanstates for both cases from the Sturmian basis obit{g, 1)
behavior from a value close 6 = 50. This plot also reveals Lie algebra for both casese. the quantum harmonic oscil-
that for higher values of the paramet&rthe decay is more lator in the presence of a repulsive quadratic inverse potential
pronounced. b) This plot shows an exponential decay of thaithin a cosmic string space-time containing a dislocation
function asT" increases. It can be seen that the decay becomesd the one containing a rotational reference frame. Also,
slightly more pronounced agdecreases. ¢) An asymptotic for both cases, we found their corresponding coherent states
exponential decay is observedAsncreases. When the pa- and its time evolution in a closed form.
rameterw increases, a greater reduction in the values of this  Moreover, for each of the problems studied in the present
function occurs. d) In this case, an exponential decay is obpaper, we have calculated and plotted the thermodynamic
served as the absolute temperature value increases. The danctions such as the partition function, the Helmholtz free
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energy, the mean free energy, the entropy, the specific heat Now, in terms of the displacement operato(¢), it is
capacity and the Massieu function. known that theSU(1,1) Perelomov coherent stat&s are

Finally, the results we found are particularized and plot-defined as
ted for zero dislocation parametgr— 0 and for no cosmic
stringa — 1 for the energy spectra, the eigenfunctions, the [¢) = D(&)[k, 0), (A.6)
coherent states and their time evolution, and the thermody-
namic properties. hereD(§) = exp(§Ly — £*L_) and¢ is a complex number.

It can be shown that the displacement operator has the fol-

Appendix lowing property from the fact thail =L_and! = Ly

A. The SU(1,1) Group and its coherent states D'(¢) = exp(¢"K- — £Ky) = D(=¢). (A7)

In the context of Lie algebra theory, the(1,1) algebra is  The normal form of the displacement operator is written as
defined by three generator§,. and £y, which satisfy the

following commutation relations [58] D(&) = exp(CLy ) exp(nLo) exp(—C*L_), (A.8)

[£07 ﬁi] =+Ly, [ﬁﬂ EH =2Lo. (A.1) . »
j - where¢ = —(1/2)re™#, ¢ = —tanh([1/2]7)e % and
The action of the above operators in the Fock space statgs _ 91, cosh |¢| = In(1 — [c[2) [57]. Therefore, by us-

{_\k,n),n =0,1,2,...}, is defined according to the existing ing Eq. A.8) and Eqs.A.2)-(A.4), The Perelomov coherent
literature, as states can be written as follows [54]

Lilk,n) =V (n+1)2k+n)lk,n+1),  (A2) N

Lokyn) = oGkt n—Dlkn-1), (A3 =013 S Sk (89
Lolk,n) = (k4 n)|k,n), (A.4)

C%lk,n) = k(k = 1)k, n). (A-5)  Acknowledgments
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