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We investigate the transformation laws of the Wigner function under changes of reference frames. By employing the coordinate transfor-
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1. Introduction

Reference frames are fundamental in physics. Whenever we
set up an experiment or describe the behaviour of a physical
system, we implicitly or explicitly rely on a reference frame.
Broadly speaking, a reference frame is a conceptual or phys-
ical framework relative to which we measure the properties
of the system under study. The mathematical counterpart of
a reference frame is provided by a coordinate system and a
time scale, which together allow us to describe the motion
of particles. In classical mechanics, a change of reference
frame typically involves straightforward transformations of
positions and momenta, which do not affect the underlying
physical processes, rather, they merely alter the mathemati-
cal description. However, in quantum mechanics, the situa-
tion becomes more intricate due to the wave-like behaviour of
particles and the significant role played by the wave function.
For instance, in non-relativistic quantum mechanics the coor-
dinate transformations are usually presented in terms of uni-
tary operators that correspond to canonical transformations in
classical phase space [1]. Nevertheless, despite considerable
efforts over the years, a complete theory of coordinate trans-
formations in quantum mechanics remains elusive, including
a satisfactory theory of canonical transformations.

In order to shed some light on these issues, in this paper
we analyze the transformation laws under changes of refer-
ence frames within the phase space formulation of quantum
mechanics. The phase space formulation of quantum me-
chanics consists in a formal passage from classical to quan-
tum systems using the Dirac quantization framework as a fun-
damental guideline [2]. A central feature within this formula-
tion is determined by the Wigner distribution function. This

function provides a phase space representation of the density
operator and captures all auto-correlation properties and tran-
sition amplitudes of a quantum system. As we will demon-
strate below, the transformation of wave functions enables
us to characterize the change of the Wigner function entirely
in terms of the transformations of the extended phase space
variables.

The paper is organized as follows, in Sec. 2 we briefly
introduce the fundamental concepts of phase space quantiza-
tion and Wigner functions. In Sec. 3, the coordinate trans-
formations of wave functions are analyzed. Then, in Sec. 4
we obtain the transformation laws of the Wigner functions
under changes of reference frames, presenting several ex-
amples. Finally, we introduce some concluding remarks in
Sec. 5.

2. The Wigner–Weyl quantization and the
Wigner function

The Wigner–Weyl quantization is a formulation of quan-
tum mechanics that represents quantum states and observ-
ables as functions on the phase space, offering an alter-
native to the traditional wavefunction or operator formal-
ism based on Hilbert spaces. In this framework, quantum
observables, which typically act as operators on states de-
fined in Hilbert spaces, are mapped to phase space functions
through the Weyl transform, establishing a direct correspon-
dence between classical observables and their quantum coun-
terparts [3]. By avoiding the need for Hilbert space operators,
the Wigner–Weyl quantization provides an intuitive approach
that proves to be useful for understanding the transition be-
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tween classical and quantum regimes, as well as for practical
applications in areas like quantum optics, quantum informa-
tion and semiclassical approximations [4].

Let us consider a classical system withn degrees of free-
dom described by the phase spaceR2n, with local coordi-
natesx = (x1, . . . , xn) andp = (p1, . . . , pn). The quanti-
zation of this theory results in the construction of the Hilbert
spaceL2(Rn), where the functionsx andp become operators
x̂ = (x̂1, . . . , x̂n) andp̂ = (p̂1, . . . , p̂n), acting onL2(Rn),
which satisfy the commutation relations

[x̂i, x̂j ] = 0, [p̂i, p̂j ] = 0, [x̂i, p̂j ] = i~δij . (1)

Now, given a functionf(x,p) onR2n, we can promote this
classical function to an operator through the Weyl quantiza-
tion map, defined as

Q(f) =
1

(2π)n

∫

R2n

f̃(a,b) ei(a·x̂+b·p̂) dadb, (2)

wheref̃ denotes the Fourier transform off . Since the Weyl
transform corresponds to the integral of an operator, we can
compute its integral kernel as

Kf (x,x′) = 〈x|Q(f)|x′〉. (3)

By means of the Baker–Campbell–Hausdorff formula, we
obtain

Kf (x,x′) =
1

(2π~)n

∫

Rn

f

(
x + x′

2
,p

)

× eip·(x−x′)/~ dp. (4)

This integral kernel for the operatorQ(f) also satisfies∫

R2n

|Kf (x,x′)|2dx dx′ =
1

(2π~)n

×
∫

R2n

|f(x,p)|2 dxdp, (5)

which implies that the kernel defines a Hilbert–Schmidt op-
erator, as it maps functions fromL2(Rn) into functions in
L2(Rn) and possesses a well defined (but possibly infinite)
trace [5]. Then, we conclude that the Weyl transform (2) can
be viewed as a map from the set of square-integrable func-
tions on the phase spaceR2n to the space of Hilbert–Schmidt
operatorsHS(L2(Rn)) acting onL2(Rn). In particular, it
can be shown that the Weyl transformQ(f) corresponds to a
self-adjoint operator whenf is a real-valued function [6].

Once we have described the quantization map, the inverse
of the Weyl transformQ−1 : HS(L2(Rn)) → L2(R2n) can
be obtained as follows

Q−1(Â) = AW (x,p)

=
∫

Rn

〈x− x′

2
|Â|x +

x′

2
〉 eip·x′/~ dx′, (6)

for any operatorÂ ∈ HS(L2(Rn)). The resulting function
AW (x,p), defined on the phase spaceR2n, is known as the
Wigner transform of the operator̂A. Although these expres-
sions were derived for square-integrable functions in phase
space, they can be extended to the case of arbitrary functions
through the use of generalized functions [5].

With the Weyl quantization map and the Wigner trans-
form established, we are now ready to define the Wigner
function or Wigner distribution associated to the wavefunc-
tion ψ(q) belonging to the Hilbert spaceL2(Rn). Con-
siderρ̂, a density operator corresponding to a quantum state
ψ ∈ L2(Rn), that is, a self-adjoint, positive and semi-definite
operator with trace one, written as

ρ̂ψ = |ψ〉〈ψ|, (7)

in Dirac notation. By means of the Wigner transform for-
mula (6), the phase space function associated to the stateψ,
also known as the Wigner function, is given by

W (x,p) =
1

(2π~)n
Q−1(ρ̂) =

1
(2π~)n

∫

Rn

ψ∗
(
x +

x′

2

)

× ψ

(
x− x′

2

)
eip·x′/~ dx′, (8)

where the extra overall factor1/(2π~)n has been chosen so
that the Wigner function turns out to be normalized in phase
space ∫

R2n

W (x,p) dx dp = 1. (9)

A remarkable feature of the Wigner function for a quantum
state lies on the possibility of taking negative values on cer-
tain regions of phase space. Consequently, it cannot be in-
terpreted as a probability density in the traditional sense, and
is therefore commonly referred to as a quasi-probability dis-
tribution in the literature. However, this seemingly unusual
property of the Wigner function enables the characterization
of joint-correlation functions and entanglement properties
within the quantum system [7]. Moreover, the Wigner func-
tion contains all the necessary information about the quantum
probability distributions associated with a state. Indeed, it is
straightforward to verify from its definition that∫

R2n

W (x,p) dp = |ψ(x)|2, (10)

which corresponds to the probability distribution in position
space and, similarly, for the momentum space one finds∫

R2n

W (x,p) dx = |ψ̃(p)|2, (11)

whereψ̃(p) denotes the Fourier transform of the wavefunc-
tion ψ(x). The Wigner function can also be employed to cal-
culate the expectation values of operators by integrating their
respective Wigner transforms across the entire phase space,

〈ψ|Â|ψ〉 =
∫

R2n

W (x,p)AW (x,p) dxdp. (12)

All these properties suggest that the Wigner function is the
closest analogue to a probability distribution in a quantum
system. Since it represents the phase space counterpart of the
density operator, one could argue that the information con-
tained in the Wigner function is fully equivalent to that pro-
vided by the wavefunctions in the conventional formulation
of quantum mechanics [8].
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3. Transformation of wavefunctions

Following Ref. [9], let us consider a transformation given by a unitary operatorÛ , defined by the conditions

Û x̂iÛ
−1 = X̂i(x̂, t), Û p̂iÛ

−1 = P̂i(p̂, t), (13)

wherex̂i andp̂j denote the position and momentum operators respectively, whileX̂i andP̂j are operators depending onx̂, p̂
andt. Furthermore, within the Schrödinger picture, the states transform under the action of unitary operators as follows

|ψ′〉 = Û |ψ〉. (14)

Now, suppose that|x〉 and |p〉 are eigenstates of the position and momentum operatorsx̂ and p̂, respectively, such that
x̂|x〉 = x|x〉 andp̂|p〉 = p|p〉, then by using Eqs. (13) the following result holds

x̂Û−1|x〉 = Û−1X̂(x̂, t)|x〉 = X(x, t)Û−1|x〉, (15)

which implies thatÛ−1|x〉 is an eigenstate of the operatorx̂ with eigenvalueX(x, t), thus

Û−1|x〉 = eiα(x,t)/~|X(x, t)〉, (16)

where, in general,α(x, t) corresponds to a real parameter depending onx andt. According to Eq. (14), the former expression
allows us to write the transformed wave functions as follows

ψ′(x) = 〈x|Û |ψ〉 = e−iα(x,t)/~〈X(x, t)|ψ〉 = e−iα(x,t)/~ψ (X(x, t)) . (17)

A similar argument shows that

Û−1|p〉 = eiβ(p,t)/~|P(p, t)〉, (18)

whereβ(p, t) is a real parameter that depends onp andt. In order to determine the values of the parametersα andβ, we
calculate the scalar product

〈x|Û Û−1|p〉 = 〈x|p〉 =
1

(2π~)n/2
eip·x/~, (19)

which, according to Eqs. (16) and (18), must agree with

ei(β(p,t)−α(x,t))/~〈X(x, t)|P(p, t)〉 =
1

(2π~)n/2
ei(β(p,t)−α(x,t)+P(p,t)·X(x,t))/~. (20)

This implies that

p · x = β(p, t)− α(x, t) + P(p, t) ·X(x, t). (21)

As we will see in the next section, the preceding formula enable us to describe the transformation of the Wigner function under
unitary transformations associated with changes of reference frames.

4. Transformation of the Wigner function under changes of reference frames

In order to determine the behaviour of the Wigner function under the action of unitary transformations defined by the con-
ditions (13), let us write the Wigner function associated to the density operatorρ̂ψ′ = |ψ′〉〈ψ′| for the stateψ′ ∈ L2(Rn)
as

W ′(x,p) =
1

(2π~)n

∫

Rn

〈x− y
2
|ψ′〉〈ψ′|x +

y
2
〉 eip·y/~ dy. (22)

Now, by making use of the action of the unitary operators on the states (14) and the transformation of the wavefunctions (17),
we have

W ′(x,p) =
1

(2π~)n

∫

Rn

〈x− y
2
|Û |ψ〉〈ψ|Û−1|x +

y
2
〉 eip·y/~ dy,

=
1

(2π~)n

∫

Rn

ψ∗
(
X

(
x +

y
2

, t
))

ψ
(
X

(
x− y

2
, t

))
e−i[α(x− y

2 ,t)−α(x+ y
2 ,t)−p·y]/~ dy. (23)
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Similarly, through a Fourier transform, an analogous expression for the Wigner function in the momentum representation holds

W ′(x,p) =
1

(2π~)n

∫

Rn

〈p− u
2
|ψ′〉〈ψ′|p +

u
2
〉 e−ix·u/~ du. (24)

Using in this case Eq. (18), we can derive

W ′(x,p) =
1

(2π~)n

∫

Rn

〈p− u
2
|Û |ψ〉〈ψ|Û−1|p +

u
2
〉 e−ix·u/~ du,

=
1

(2π~)n

∫

Rn

ψ̃∗
(
P

(
p +

u
2

, t
))

ψ̃
(
P

(
p− u

2
, t

))
ei[β(p+u

2 ,t)−β(p−u
2 ,t)−x·u]/~ du. (25)

As we will observe in the following subsections, the inclusion of the parametersα andβ proves to be essential in order to
express the transformed Wigner function entirely in terms of the new position and momentum coordinates.

4.1. Examples

In this subsection, we present some well-known examples with the main aim to explicitly illustrate how the Wigner function is
transformed under a change of reference frame using the method outlined above.

4.1.1. Spatial translations

As a first test case, let us consider a spatial translation by a constant vectora ∈ R3, this transformation can be defined by

X̂ = x̂− a, P̂ = p̂. (26)

From Eq. (21) we obtainp · x = β(p, t)− α(x, t) + p · (x− a), which implies that

α(x, t) = β(p, t)− p · a. (27)

Hence, we conclude that

α(x, t) = ξ(t), β(p, t) = p · a + ξ(t), (28)

whereξ(t) denotes a real-valued function depending ont. (When the Hamiltonian is invariant under the transformation (13),
the functionξ can be chosen in such a way that the transformation (17) maps solutions of the corresponding Schrödinger
equation into solutions of this equation, see Ref. [9].) Now, substituting the expression forα into Eq. (23), we obtain

W ′(x,p) =
1

(2π~)3

∫

R3
ψ∗

(
x− a +

y
2

)
ψ

(
x− a− y

2

)
eip·y/~ dy,

=
1

(2π~)3

∫

R3
ψ∗

(
X +

y
2

)
ψ

(
X− y

2

)
eiP·y/~ dy,

= W (X,P). (29)

Alternatively, we can make use of the parameterβ and the momentum representation (25) to obtain the transformed Wigner
function as

W ′(x,p) =
1

(2π~)3

∫

R3
ψ̃∗

(
p +

u
2

)
ψ̃

(
p− u

2

)
e−i(x−a)·u/~ du,

=
1

(2π~)3

∫

R3
ψ̃∗

(
P +

u
2

)
ψ̃

(
P− u

2

)
e−iX·u/~ du,

= W (X,P). (30)

4.1.2. Galilean transformations

Our next example is devoted to the case of the Galilean transformations, given by

X̂ = x̂−Vt, P̂ = p̂−mV, (31)

Rev. Mex. Fis.71030702
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whereV denotes a constant vector inR3. In this case, Eq. (21) becomes

p · x = β(p, t)− α(x, t) + (p−mV) · (x−Vt), (32)

so that

α(x, t) = −mV · x + ξ(t),

β(p, t) = p ·Vt + ξ(t), (33)

whereξ(t) denotes a real-valued function depending ont. From the formula for the transformation of the Wigner function
(23), we obtain

W ′(x,p) =
1

(2π~)3

∫

R3
ψ∗

(
x−Vt +

y
2

)
ψ

(
x−Vt− y

2

)
ei(p−mV)·y/~ dy,

=
1

(2π~)3

∫

R3
ψ∗

(
X +

y
2

)
ψ

(
X− y

2

)
eiP·y/~ dy,

= W (X,P). (34)

In the same manner, an equivalent result can be derived from the momentum representation by using the parameterβ in place
of α.

4.1.3. Constant acceleration

Let us consider now the transformation given by a constant acceleration, which corresponds to

X̂ = x̂− 1
2
at2, P̂ = p̂−mat, (35)

wherea is a constant vector inR3. For this example, expression (21) yields

p · x = β(p, t)− α(x, t) + (p−mat) · (x− 1
2
at2), (36)

which leads to

α(x, t) = −mat · x +
1
6
ma2t3 + ξ(t),

β(p, t) =
1
2
p · at2 − 1

3
ma2t3 + ξ(t), (37)

whereξ(t) denotes a real-valued function ont. Then, with the parameterα at hand, the transformation of the Wigner function
reads

W ′(x,p, t) =
1

(2π~)3

∫

R3
ψ∗

(
x− 1

2
at2 +

y
2

)
ψ

(
x− 1

2
at2 − y

2

)
ei(p−mat)·y/~ dy,

=
1

(2π~)3

∫

R3
ψ∗

(
X +

y
2

)
ψ

(
X− y

2

)
eiP·y/~ dy,

= W (X,P). (38)

It is important to emphasize that the transformation laws of the Wigner functions, as illustrated in the previous examples,
take precisely this form since the unitary operators associated to these transformations [9], are given by displacement operators
in both position and momentum, accompanied by a phase factor [10]. In the general case, it is expected that the transformed
Wigner function takes a different form due to the presence of non-linear terms of the position and momentum operators. This
complexity arises, for example in the case of non-inertial frames and quantum reference frames, where the unitary operators
introduce dependencies that deviate from the linear behavior characteristic of inertial frames.
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5. Conclusions

In this paper we have analyzed the transformation laws of the
Wigner function under changes of reference frames within
the phase space formulation of quantum mechanics. In par-
ticular, we have included some physically motivated exam-
ples in order to illustrate our approach. It is worthwhile to
note that the method developed here can be applied also to
more general unitary operators, such as nonlinear transfor-
mations and non-inertial changes of reference frames. As
a future work, we expect to implement our approach to the
recently introduced concept of quantum reference frames,
which generalizes coordinate systems intended to describe
states, measurements and dynamical evolution by means of

quantum physical systems. This approach suggests that prop-
erties such as entanglement and superposition become frame-
dependent features [11]. Our intention is to make use of the
phase space representation of quantum mechanics to investi-
gate these features in more general scenarios. This investiga-
tion will be addressed in future work.
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