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The regular and irregular/Jost solutions of the Schrödinger equation with the Modified Pöschl-Teller potential are presented by implementing
the differential equation technique to the problem. In this work the said potential is parameterized for nuclear systems by exploiting Jost
formalism to estimate bound state energies and the scattering phase shifts. The results are in line with previous theoretical and experimental
observations. The total elastic scattering cross sections are being calculated using the phase parameters.
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1. Introduction

Studying the energy spectra and wave functions of a quan-
tum system under various potentials is an intriguing area of
nonrelativistic quantum scattering theory [1], as it provides
essential information about the system’s behavior and prop-
erties. The P̈oschl-Teller potential [2] is used to describe the
vibrational behavior of diatomic molecules. It is particularly
useful for describing bound states and vibrational spectra.
In our context, the P̈oschl-Teller potential has been modi-
fied [3-6] to suit the nuclear domain. This adaptation likely
involves changes to the potential parameters or functional
form to more accurately describe nucleon-nucleus interac-
tions. The Jost function [7-9] is a mathematical tool used in
scattering theory to analyze how particles interact with a po-
tential. In our work, it is employed to handle the complexities
of the nucleon-nucleus interaction under the modified Pöschl-
Teller potential [3-6]. The P̈oschl-Teller potential is indeed
one of the potentials for which the Schrödinger equation can
be solved exactly. The P̈oschl-Teller potential is particularly
interesting because it has applications in various areas of
physics. Several researchers have studied the Pöschl-Teller
potential in recent years [10-21]. Perturbation calculations
and approximation techniques are crucial tools in solving the
radial Schr̈odinger equation, especially for cases where exact
analytical solutions are challenging to obtain. These methods
are part of a broader toolkit for addressing complex quantum
mechanical problems. The N-U method [22], Supersymmet-
ric quantum mechanics [16,23,24], the screened centrifugal
barrier [25-31] provide various ways to handle the challenges
posed by different types of potentials and boundary condi-
tions, allowing researchers to gain insights into the physical
systems under study. While the harmonic oscillator poten-
tial provides a useful starting point for understanding vibra-

tional modes in diatomic molecules, anharmonic potentials
are essential for a more accurate description of molecular vi-
brations, especially at higher energy states. These potentials,
such as the Morse potential [32], address the limitations of
the harmonic approximation and provide a more complete
picture of molecular behavior. The Pöschl-Teller potential
remains a significant model in quantum mechanics due to its
mathematical properties and its applicability in both nonrel-
ativistic and relativistic contexts. The use of various approx-
imation techniques and exact methods allows researchers [3-
6,17,33-46] to explore a wide range of physical phenomena
associated with this potential. Donget al. [14] used tradi-
tional methods to solve the Schrödinger equation with the
Pöschl-Teller potential and Infieldet al. [14] used the fac-
torization method. Aktas and Sever [16] and Diazet al. [34]
employed the SUSY QM techniques to solve the modified
Pöschl-Teller potential. The modified Pöschl-Teller potential
has found significant applications in various physical and the-
oretical contexts, including clathrate quantum statistical me-
chanics [47] and strong-field ionization dynamics [48]. The
study of the P̈oschl-Teller potential and its modifications ex-
tends to various advanced analytical techniques and method-
ologies, including the calculation of matrix elements for pow-
ers of x-dependent operators [49] within the framework of the
Pöschl-Teller potential and applying quantization conditions
[50,51] to find discrete energy levels of the system. The study
of s-wave(` = 0) [37,52-54] solutions for the Schrödinger
equation with various potentials, including the Pöschl-Teller
potential, is a well-explored area in quantum mechanics. The
references [13,55-57] provide valuable insights into how to
effectively approximate solutions for quantum systems in-
volving the centrifugal term. Based on the above description
the paper is organized, which contains methodology, results
and discussion followed by conclusion.
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2. Jost function for the Modified Pöschl-Teller potential

The modified P̈oschl-Teller potential [3-6] is provided as

V (s) = − V0

cosh2(αs)
, (1)

whereV0 is the strength andα is related with the range of the potential.
The Schr̈odinger equation for this potential has the following form:

[
d2

ds2
+

V0

cosh2(αs)
− `(` + 1)

s2

]
φ`(χ, s) = 0, (2)

whereχ2 = 2mE/~2, define the centre of mass momenta. To find the analytical solution, the suitable approximation to the
centrifugal term [25] is considered as1/s2 = α2/sinh2(αs). By changing a new variablez = tanh2(αs), the Eq. (2) is then
rearranged as

4α2z(1− z)2
d2φ`(z)

dz2
+ 2α2(1− z)2

dφ`(z)
dz

+
(

χ2+V0(1−z)−α2`(`+1)
[
1
z
−1

])
φ`(z)=0. (3)

Using the following trial wave function

φ`(χ, z) =
1
α

zδ(1− z)βR(χ, z), (4)

in the Eq. (3), one obtains

z(1− z)R′′(χ, z) +
([

2δ +
1
2

]
− z

[
2δ + 2β +

3
2

])
R′(χ, z) +

([
− 2δβ − β

2
− δ +

V0

4α2
− δ(δ − 1)

− δ

2
− β(β − 1)− β

]
+

[
δ(δ − 1) +

δ

2
− `(` + 1)

4

]
1
z

+
[
β2 +

χ2

4α2

]
1

1− z

)
R(χ, z) = 0. (5)

To come up with the basic form of hypergeometric differential equation [58-61]

z(1− z)R′′(χ, z) +
[
C − (A + B + 1)z

]
R′(χ, z) + ABR(χ, z) = 0, (6)

the third term of Eq. (5) must be free of the dependence“z”. The requirements are as follows:
(

δ(δ − 1) +
δ

2
− `(` + 1)

4

)
= 0, (7)

and
(

β2 +
χ2

4α2

)
= 0. (8)

The values ofδ andβ are obtained asδ = 1/4 ± (1/2)
√

(1/4) + `(` + 1) andβ = ±(iχ/2α). The quantitiesδ andβ have
two outcomes. Choosingδ = 1/4 + (1/2)

√
(1/4) + `(` + 1) andβ = −(iχ/2α), Eq. (5) yields

z(1− z)R′′(χ, z) +
([

2δ +
1
2

]
− z

[
2δ + 2β +

3
2

])
R′(χ, z)−

(
2δβ +

β

2
+ δ2 − V0

4α2
+

δ

2
+ β2

)
R(χ, z) = 0. (9)

Equations (6) and (9) in comparison yield

A = δ + β +
1
4

+
1
2

√
1
4

+
V0

α2
, (10)

B = δ + β +
1
4
− 1

2

√
1
4

+
V0

α2
, (11)

and

C = 2δ +
1
2
. (12)
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Solution to the Eq. (9), in its conventional form is2F1(A,B : C; z). Therefore the expression for the regular solution for
Pöschl-Teller potential will be expressed from Eq. (4) using the values ofA, B, C, δ andβ as

φ`(χ, z) =
1
α

(tanh2(αs))δ(1− tanh2(αs))β
2F1(A, B : C; tanh2(αs)) (13)

To get the irregular solution from Eq. (13), one can apply the transformation formulae [58,59]

2F1(m, p; d; x) =
Γ(d)Γ(d−m− p)
Γ(d−m)Γ(d− p) 2F1(m, p; m + p− d + 1; 1− x)

+ (1− x)d−m−p Γ(d)Γ(m + p− d)
Γ(m)Γ(p) 2F1(d−m, d− p; d− p−m; 1− x), (14)

in Eq. (13) followed by the transformation [58,59]

2F1(m, p; d;x) = (1− x)d−m−p
2F1(d−m, d− p; d; x), (15)

to have

φ`(χ, s)=
1

2iχ

[2Γ
(

2δ+ 1
2

)
Γ
(

1+ iχ
α

)

Γ(C−A)Γ(C−B)

[
tanh2(αs)

]−δ+1/2

×
[
1−tanh2(αs)

]− iχ
2α

2F1

(
1− iχ

α
−A, 1− iξ

α
−B;

1− iχ
α

; 1−tanh2(αs)
)
−

2Γ
(

2δ + 1
2

)
Γ
(

1− iχ
α

)

Γ(A)Γ(B)

[
tanh2(αs)

]−δ+1/2[
1− tanh2(αs)

] iχ
α

× 2F1

(
1 +

iχ
α
− C + A, 1 +

iχ
α
− C + B; 1 +

iχ
α

; 1− tanh2(αs)
)]

. (16)

According to [8,9], the relationship between regular and irregular solutions is stated as

φ`(χ, s) =
1

2iχ

[
F

(−)
` (χ)f (+)

` (χ, s)− F
(+)
` (χ)f (−)

` (χ, s)
]
, (17)

where the Jost function [7-9]F (+)
` (χ) = (F (−)

` (χ))∗ and the Jost solutionf (+)
` (χ, s) = (f (−)

` (χ, s))∗. Now, by comparing
Eqs. (16) and (17), Jost solution and the Jost function represented as

f
(+)
` (χ, s) =

[
tanh2(αs)

]−δ+1/2[
1− tanh2(αs)

]− iχ
2α

2F1

(
1− iχ

α
−A, 1− iξ

α
− B; 1− iχ

α
; 1− tanh2(αs)

)
, (18)

and again using the transformation given in Eq. (15) to the2F1(.) function Eq. (18) leads to

f
(+)
` (χ, s) =

[
tanh2(αs)

]δ

×
[
1− tanh2(αs)

]− iχ
2α

2F1

(
A, B; 1− iχ

α
; 1− tanh2(αs)

)
, (19)

with the Jost functionF (+)
` (χ) as

F
(+)
` (χ) =

2 Γ
(

2δ + 1
2

)
Γ
(

1− iχ
α

)

Γ(A)Γ(B)
. (20)

However, one can reach at the same regular, irregular/Jost solution and Jost function with the remaining two roots which are
δ = 1/4− (1/2)

√
(1/4) + `(` + 1) andβ = iχ/2α utilizing the transformation formula [58,59] given in Eq. (15). The bound

state energies are generated by the zeros of the Jost function in the upper half of the complex momentum (χ)-plane,i.e. for
χ = iκB . WhereκB = (2mEB/~2)1/2, with EB andm denoting the binding energy and reduced mass respectively. Jost
functionF

(+)
` (χ) attains zero value at the poles of the gamma functions then

δ + β +
1
4

+
1
2

√
1
4

+
V0

α2
= −m; m = 0, 1, 2... (21)
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Consequently, using the valuem = 0, and Eq. (20) coupled with Eq. (10) yields

κB = −α + α

√
1
4

+
V0

α2
− α

√
1
4

+ `(` + 1). (22)

Jost function is a complex quantity thus one can define the phase shift as

tanδ = −
[
ImF(+)

` (χ) /ReF(+)
` (χ)

]
. (23)

3. Results and discussion

Analysis on elastic neutron-deuteron (n-d) and(n−He3)
scattering are presented by applying Jost function method.
The model parameters are obtained by parameterizing the nu-
clear modified P̈oschl-Teller potential which are given in Ta-
ble I and II. For the bound states(1/2)+ (n-d) and S-wave
(n−He3), the parameters of the concerned potentials have

TABLE I. Parameters for the neutron-deuteron (n-d) system.

States α(fm−1) V0(fm−2)

1/2+ 0.853 2.965

1/2− 0.418 0.021

3/2− 1.017 4.360

3/2+ 0.639 5.730

TABLE II. Parameters for the(n−He3) system.

States α(fm−1) V0(fm−2)
1S0 0.416 2.621
3S1 0.685 7.802
1P1 1.415 2.015
3P0 1.092 5.075
3D1 1.074 7.076

FIGURE 1. Scattering phase shifts for (n-d) system. The standard
results are from Chenet al. [62] and Ḧuberet al. [63].

been fixed by fitting their binding energies using Eq. (22).
For (n-d) system the binding energy has been found to be
−7.61 MeV and for (n−He3) system it is−28.09 MeV.
However, in order to get the best fit of the phase shifts
at various laboratory energies, free iteration of the param-
eters in the computational approach has been applied to
the unbound states. For computation of scattering phase
shifts, bound state energies and total elastic cross sections

FIGURE 2. Scattering phase shifts for(n − He3) system. The
standard data are from Vivianiet al. [64].

FIGURE 3. (n-d) potentials as a function ofs.

Rev. Mex. Fis.71051202



CROSS SECTION ANALYSIS OF NEUTRON-LIGHT NUCLEI SYSTEMS USING MODIFIED PÖSCHL-TELLER POTENTIAL 5

FIGURE 4. (n−He3) potentials as a function ofs.

~2/2m=31.1025 MeV fm2 and~2/2m = 27.6466 MeV fm2

has been used judiciously for (n-d) and(n−He3) systems re-
spectively.

Figure 1 depicts the (n-d) phase shifts as a function of
laboratory energy up to 12 MeV along with the findings of
Chenet al. [62] and Ḧuberet al. [63]. Figure2 represents
the(n−He3) phase shifts with those of Vivianiet al. [64] up
to 4 MeV. It can be seen from Fig.1 that up to a lab energy of
12 MeV, our parameters for various states of the (n-d) system
reflect the right-phase parameters. The results are in close
agreement with the results of Chenet al. [62] and Ḧuberet
al. [63]. The(n−He3) scattering phase parameters, depicted

in Fig. 2, demonstrate excellent agreement with the standard
data of Vivianiet al. [64] except the state where the phase
shifts are discernible slightly at laboratory energies 1 and
3.5 MeV. For the scattering of the Pöschl-Teller model of the
(n-d) and(n−He3) systems, the related potentials for various
states are depicted in Figs.3 and4. The scattering cross sec-
tion represents an invaluable tool for quantifying the intrinsic
rate at which a particular event takes place throughout the
scattering of a pair of particles. Numerous nucleon-nucleon
model interactions have low-energy n-d parameter computa-
tions [65-71] available. The present text studies how much
level the model’s computations will be capable of producing
accurate cross-section data in light of the minor disparities
between the results of these phase shift analyses and those
of our computation. Considering the systems under investi-
gation, the total scattering cross sections in this article have
been computed and compared with the standard data [67,72]
that currently exist. The computed results are tabulated in Ta-
ble III andIV along with standard data [67,72] for the (n-d)
and (n−He3) systems. The effects of S-, P-, and D-waves
have been taken into account while calculating the cross sec-
tion. The calculated outcomes for the (n-d) system are in
good agreement with the results of Ref. [67]. However for
(n−He3) system the computed results differ slightly with ex-
perimental result [72]. This may be attributed to the fact that
the obtained phase parameters for state differ slightly from
those of Vivianiet al. [64]. It is notable that the cross sec-
tion data mainly agree with the results obtained by Seagrave
et al. [72].

TABLE III. Total elastic cross-section for (n-d) system.

ELab(MeV) σnd(b) σnd(b) ELab(MeV) σnd(b) σnd(b)

(Present Work) (Ref.[67]) (Present Work) (Ref.[67])

0.5 5.184 —- 8.0 1.244 1.120± 0.067

1.0 4.247 — 8.5 1.184 —-

1.5 3.593 —- 9.0 1.132 1.028± 0.062

2 3.133 —- 9.5 1.083 —-

2.5 2.754 2.375± 0.140 10.0 1.037 —-

3.0 2.459 2.149± 0.129 10.25 1.020 0.938± 0.056

3.5 2.241 1.985± 0.119 11.0 0.959 —-

4.0 2.054 1.863± 0.112 11.5 0.923 —-

4.5 1.900 1.732± 0.103 12.0 0.878 0.819± 0.049

5.0 1.768 1.608± 0.096 12.5 0.850 —-

5.5 1.650 —- 13.0 0.829 —-

6.0 1.550 1.448± 0.087 13.5 0.802 —-

6.5 1.463 —- 14.0 0.769 0.694± 0.042

7.0 1.379 1.254± 0.075 14.5 0.742 —-

7.5 1.308 —- 15.0 0.717 —-

Rev. Mex. Fis.71051202
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TABLE IV. Total elastic cross sections for(n−He3) system.

ELab(MeV) σe(mb) σe(mb)

(Present Work) (Ref.[72])

0.5 3.034 ——–

1.0 2.530 1.96± 0.06

1.5 2.212 —– –

2.0 1.968 2.52± 0.07

2.5 1.777 —– –

3.0 1.640 ——-

3.5 1.495 2.34± 0.06

4.0 1.382 —– –

4.5 1.284 —– –

5.0 1.210 ——-

5.5 1.131 ——-

6.0 1.064 1.69± 0.07

4. Conclusion

Several authors have attempted to develop localized versions
of nonlocal potentials or phase-equivalent local potentials to

represent nonlocal interactions. One aspect of the current
methodology is the generation of smooth potentials. The
method used here is extended to real potentials by applying
the Taylor series expansion to the wave functions. The com-
puted phase parameters are then utilised to estimate cross-
sections for the studied systems. Up to very high energies,
the generated local potentials reproduce phase shifts that are
in good agreement with standard data. It is well known that
the folding models for alpha-nucleus scattering often use the
non-local separable or phase equivalent local interactions of
different forms. In the present work, we have investigated
nucleon-nucleon and alpha-nucleon systems by constructing
velocity-dependent interaction models and have obtained sat-
isfactory results. The current procedure can easily be applied
to electromagnetically distorted nonlocal potentials of higher
rank. In our future work, we will address all partial wave
cases, along with the spin dependence of the interaction.
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33. J. M. Arias, J. Ǵomez-Camacho, and R. Lemus, Ansu(1, 1)
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