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Properties and baroclinic instability of stratified thermal upper-ocean flow
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We study the properties of, and investigate the stability of a baroclinic zonal current in, a thermal rotating shallow-water model, sometimes
calledRipa’s modelfeaturing stratification for quasigeostrophic upper-ocean dynamics. The model has Lie—Poisson Hamiltonian structure.
In addition to Casimirs, the model supports weak Casimirs forming the kernel of the Lie-Poisson bracket for the potential vorticity evolution
independent of the details of the buoyancy as this is advected under the flow. The model sustains Rossby waves and a neutral model, whos
spurious growth is prevented by a positive-definite integral, quadratic on the deviation from the motionless state. A baroclinic zonal jet with
vertical curvature is found to be spectrally stable for specific configurations of the gradients of layer thickness, vertically averaged buoyancy,
and buoyancy frequency. Only a subset of such states was found Lyapunov stable using the available integrals, except the weak Casimirs
whose role in constraining stratified thermal flow remains to be understood. The existence of Lyapunov-stable states enabpebris to

bound the nonlinear growth of perturbations to spectrally unstable states. Our results do not support the generality of earlier numerical
evidence on the suppression of submesoscale wave activity as a result of the inclusion of stratification in thermal shallow-water theory, which
we supported with direct numerical simulatiéns
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1. Introduction ing notation introduced by [47], we will refer to this model
as theHLQG for including ahomogeneous (densityayer.
The uppermost layer of the ocean, encompassing the resubmesoscale motions, with smaller length scales and faster
gion above the main thermocline, including the mixed layertime scales than mesoscale motions, are, in principle, beyond
is marked by the widespread presence of highly energetithe scope of QG theory [31]. However, based on numeri-
mesoscale eddies (20-300 km) with lifespans ranging frontal simulations, an interesting observation has been recently
weeks to months. These eddies exert a dominant influenag@ade by [20], who noted that submesoscale motions can in-
on horizontal transport and significantly contribute to verti-deed be represented by a QG model with one layer when lat-
cal transport, thereby impacting the overall biogeochemicaéral inhomogeneity is allowed in the buoyancy (temperature)
cycle [30]. field. Such simulations revealed sub-deformation sdadg (
Recent advancements in high-resolution numerical simsubmesoscale) Kelvin—Helmholtz-like vortex rolls reminis-
ulations and field observations have shed light on the roleent of structures commonly observed in surface ocean color
of submesoscale motions (1-10 km) in vertical transport dypictures acquired by satellites. A result of a simulation of that
namics. These motions manifest as Kelvin-Helmholtz-liketype along with an outstanding cloud-free ocean color image
vortices that form along density fronts and play a significantrevealing submesoscale vortices are shown in Fig. 2.
role in shaping vertical transport processes [29]. The above kind of QG model, referred tothgrmal QG
Mesoscale motions are well described by quasi-nodelby [55], has a long history. It was derived by [49]
geostrophic (QG) theory, valid, roughly speaking, for lengthasymptotically from the thermal primitive equations (PE)
scales of the order of the gravest baroclinie.( internal)  upon expanding them in small Rossby number. The ther-
Rossby radius of deformation and time scales much longemal PE, or rotating shallow-water [55], model was introduced
than the inverse of the Coriolis parameter [41]. The sim-in the 1960s [38], widely employed from the early 1980s
plest QG model, capable to provide a minimal description othrough the early 2000s [3, 16, 35, 39, 42, 52], generalized to
mesoscale upper-ocean flow, has a layer of constant density,system of multiple layers by [46], and extensively investi-
limited from above by a rigid lid and from below by a soft gated theoretically by the same author [47,48,50]. Due this
interface with an infinitely deep layer of quiescent fluid. Us-author’s several contributions, the thermal QG and PE mod-
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FIGURE 1. Cartoons depicting the density structure on a vertical plane in the thermal shallow-water model, known as Ripa’s m8del or IL
a), and its stratified version analyzed in this paper, denoted @)Ib). A reduced-gravity setting is assumed, featuring one active layer
bounded from above by a rigid lid and from below by a soft interface, which interfaces with an inert layer.

IO

Z.

els have been referred to B¥pa’s modeld13]. Honoring 1.1. Goals of the paper
notation introduced by [47], we will refer to these models
as models of theL? class, where “IL” emphasizes that the !N this paper we investigate in some depth the properties of
models have one (or possibly marighomogeneousayer(s) the recently proposed stratified IL models by focusing on the
and the superscript indicates that their fields do not vary il """’ QG [Fig.1a)]. We also study how the model fares with
the vertical. The left panel of Fid shows a cartoon of the respect to baroclinic instability, which, as noted, is an impor-
vertical structure in the ILmodel class, assuming a reduced- tant source of submesoscale circulatory motions in the ocean
gravity setting. mixed layer.
It may sound awkward to attempt an investigation of

In the last decade, the YLhas made a strong comeback baroclinic instability using an IL model involving a single
[1,10,11,14,17,18,24,26,28,56], motivated in large parfayer since the (horizontal) velocity is vertically uniform.
by the tendency of lateral temperature gradients in the uppéfwo layers may seem to be required as is needed to repre-
ocean to become steeper as the ocean absorbs heat fronsemt baroclinic instability using the HLQG in the so-called
warming troposphere. In particular, [6] introduced a family Phillips problem [41]. However, by the thermal-wind bal-
of IL-type models, both in PE and for QG dynamics, featur-ance, which dominates at low frequency, in (every layer of)
ing stratification. The buoyancy field in this model family, an IL model the velocity fieldmplicitly includes shear in the
referred to as 19", is written as a polynomial in the verti- vertical. Furthermore, implicitly, the velocity vertical profile
cal coordinate of arbitrary whole degree (vith coefficients  in the IL(%-1) is curved. This extends the standard baroclinic
that vary laterally and with time while they are advected (byinstability problem of Phillips, or Eady in the continuously
Lie transport) under the flow of the model horizontal veloc-stratified case [41], from uniform vertical shear (linear ver-
ity, which is vertically uniform, assigning meaning to the first tical profile) to velocity with vertical curvature, which aug-
slot in the superscript in 10, The IL>")PE models ad- ments the dimension of the space of parameters for explo-
mit Euler—Poinca variational formulation [21] and, via a ration.
partial Legendre transform, possess a Lie—Poissannon- While the study of this paper is of intergstr se a moti-
canonical, Hamiltonian structure [33]. The%)QG, de-  vation for pursuing it is found in numerical simulations pre-
rived asymptotically from the 1) PE, are Hamiltonian in  sented by [6]. These simulations have suggested that inclu-
a Lie—Poisson sense. Including stratification in the IL mod-sion of stratification in the IL models tends to halt the devel-
els expands their scope, for instance, by enabling them topment of submesoscale circulations. This followed from the
represent important processes such as the restratification edmparison of evolutions in the QG and 1LY QG forced
the mixed layer, which follows the development of subme-by bottom topography, which can be included without spoil-
soscale motions by baroclinic instability [5]. (In an attempting the Hamiltonian structure of the models. (This was shown
to add more physics to the IL models, velocity vertical sheatin previous work [8,20] to hold for the QG and here we
is included in Ref. [47] in the single layer case and in Ref. [7]show that it also applies to the .Y QG.) This followed
in a system with multiple layers. However, the resulting IL from the comparison of forced evolutions in thé’QG and
models with stratification and vertical shear do not enjoy thdL (Y QG. The forcing, which can be interpreted as a topo-
aforementioned geometric mechanics properties.) graphic forcing [20], does not spoil the Hamiltonian structure
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a)

FIGURE 2. a) Emergent cascade of submesoscale vorticity filament rollups in a reduced-gravity direct numerical simulation’@@he 1L

with “topographic” forcing in a doubly periodic domal®/ RZ x R/RZ of the 5-plane, whereR =~ 25 km is the baroclinic Rossby radius

of deformation. b) Ocean color image acquired by VIIRS (Visible Infrared Imaging Radiometer Suite) on 1 January 2015 west of the Drake
Passage in the Southern Ocean, revealing vortices with diameters ranging from a couple of km to a couple of hundred km. Image credit:
NASA Ocean Color Wekhttps://oceancolor.gsfc.nasa.gov/gallery/347/

of the models [8,20]. The study carried out here will helpcal curvature. Three types of stability notions are discussed,
assess the generality of the numerical evidence presented iramely, spectral (Sec. 4.1), formal (Sec. 4.2), and Lyapunov
Ref. [6]. (Sec. 4.3). In Sec. 5 we derive a-priori bounds on the non-
linear growth of perturbations to unstable basic states. A
discussion, accompanied by direct numerical simulations, of
differences between behavior in thé 1)) QG and I1°QG is

foered in Sec. 6. Section 7 presents the conclusions from the
paper. A glossary containing relevant notions from geophysi-

1.2. Paper organization

The rest of the paper is organized as follows. In Sec. 2 w

review the 1%V QG and describe its properties. Specifi- , ity cot _ ! : ,
gal fluid dynamics is included following this section. Finally,

cally, Sec. 2.1 presents the model equations along with it CE - . .
boundary conditions and a physical interpretation of its vari-2" APPendix is included containing numerical details of the

ables. Section 2.2 discusses uniqueness of solutions in tifiréct simulations.

model. Section 2.3 is dedicated to discussing theorems of

circulation, of an appropriately defined Kelvin—Noether-like

quantity along material loops (Sec. 2.3.1) and of the veloc2. The ILODQG

ity along solid boundaries of the flow domain (Sec. 2.3.2).

Invariant subspaces of the model are considered in Sec. 2.let x = (x,y) denote position on a periodic zonal domain
In Sec. 2.5 the Lie—Poisson Hamiltonian structure is clari-2 = R/LZ x [0, W] of the 3 plane. That is, the channel ro-
fied, particularly in relation with boundary conditions, which tates steadily at angular velocity/2) fz, wheref = fo+ 8y
were only superficially discussed in Ref. [6]. Inclusion of to- is the Coriolis parameter. We will denote y7_ (resp.,
pographic forcing without destroying Hamiltonian structure 92.,) the southern (resp., northern) wall of the channel at
is treated in Sec. 2.6. Reviewing the Hamiltonian structure; = 0 (resp.,y = W). Consider a layer of (ideal) fluid lim-
of the IL(“D QG is helpful for Sec. 2.7, which is devoted to ited above by a horizontally rigid lid at = 0 and below
describing the conservation laws of the system, which, whelby a soft interface at = —h(x, ¢) with an infinitely deep
linked to explicit symmetries, are obtained via a Noether'slayer of homogeneous fluid at rest. As in (rotating) shallow-
theorem appropriate for noncanonical Hamiltonian systemswater theory, the motion in the active (top) layer is assumed
The conservation laws include a family of integrals of mo-to be columnar. The vertically shearless horizontal velocity
tion that form the kernel of the Lie-Poisson bracket for theis denoted bya(x, t), where the overbar represents a vertical
potential vorticity evolution independent of buoyancy detailsaverage. Similar to conventionddermalshallow-water the-

as the buoyancy is transported by the flow. Linear waves arery, the buoyancy of the active layer is permitted to change
discussed in Sec. 3. Section 4 is dedicated to investigate tH®oth horizontally and temporally [46]. However, unlike this
stability of a baroclinic zonal flow on thé-plane with verti-  theory, vertical variations in buoyancy are also permitted [6].
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In the IL(O:1) class ofstratified thermal shallow-water mod- the equivalent barotropic (external) Rossby radius of defor-

els, of interest here, this is done by writing the buoyancy as mation in a model with arbitrary stratification in a reduced-
gravity setting. The constant on the right in E4g) is a

) ¥,(x,t). (1) measure of reference stratification. The reference buoyancy
varies froml + Satz =0tol — S atz = —H,. Thus, by

That is, the stratification in the active layer is set to be be uni® tatic stability,0 < S < L.
The system is subjected to

form, with the buoyancy (linearly) varying from + ¥, at

I(x, z,t) = I(x,t) + (1 + h(xzt)

z=0tov — 9, atz = —h. This imposes the condition Vi - hpg, =0 <= 0uly—owt =0, (5a)
9>, >0, (2)  and periodicity in the along channel directian,.e.,
i stating that the buoyancy is everywhere positive and the §(x+ Ly, t) = &(x, y,1), (5b)

density increases with depth. For future reference, we in-

troduce the instantaneous buoyancy (or Bruritisa) fre- and simila(rgyl)for the rest of the variabl_es._ =
quency squared The IL®YQG has three prognostic field&, v, 1s2),
assumed to be sufficiently smooth in each of its arguments,

Vo (x,1) (x,t). These diagnose(x, t) via (4d), which defines the in-
h(x, 1) (3) vertibility principle for the 1L QG. (In Fourier space, say,
the positive-definite symmetric operatﬁﬁr; — V2% is non-

n?(x,z,t) := 0,0(x, 2,t) = 2

Remark 1. (On notation). The subscript notation is moti- degenerate; hence, its operator inveiBg” — V?)~! exists
vated by denoting by, as in Ref. [47], the scaled vertical co- and is well defined.)

ordinatel + [2z/h(x,t)]). For instance, in the 1(°-2) model The physical meaning of the above variables is as fol-
class[6] the buoyancy is written a8 = ¥ + 0¥, + (> —  lows. LetRo > 0 be a small parameter taken to represent a

[1/3])¥,2, clarifying additional notation introduced below.  Rossby number, measuring the strength of inertial and Cori-

olis forcese.g,
2.1. Model equations

R = —
The evolution equations of the {:YQG in the reduced- © |folR

gravity setting above are given by [6]

&+ {0,6 — R (Vo — 3002)},, =0, (4)
8tw0' + {'I,Z, w(f}my — O7 (4b) (|ﬁ|a h — Hr7 8757 By) = O(ROV7 ROR7 R0f07 R0f0)~ (7)

0oz + {10, Vo2 Yy = 0, (4c)  Consistent with the QG scaling)( with an O(Ro?) error,

<1, (6)

whereV is a characteristic velocity. In QG theory [41] it is
assumed that

one has:
where _ 1.7
a= V-, (8)
V21E - R§2’JJ — g_ R§2(wa - %dh?) - 5,’% (4d) H, —
h:Hr+fR2 (wfq/)a‘i’%w(ﬂ)v (9)
with o
V=g, + ﬁw (10)
RY:=(1-15)R%. (4e) T Rt
4g
Here — 12 L YA
Vo = 3Ny H: + TR Yoz, (11)
{a,b}sy == V*a- Vb, () where
for any differentiable functions, b(x, t), whereV+ is short Yo — 2y > S - 17 Yoo _§, (12)
for z x V, is the Jacobian of the transformatiéon, y) forR2 7 2 foR? 4
(a,b) and by (2). Finally, with anO(Ro?) error,
[ 1 2 B _
R .= ngr) S = NrHI‘. (4g) Vl~u+f7fo+§ (13)
| fol 29, h - H,

The positive constantl,, g, and N? are referenceig., in  The left-hand-side of13) is proportional to the Ertet/h-
the absence of currents) layer thickness, vertically averagegotential vorticity in the hydrostatic approximation and with
buoyancy; and buoyancy frequency squared, respectivelythe horizontal velocity replaced with [47]. Thus¢ can be
The (positive) constant on the left in E@g) corresponds to  identified with potential vorticity in the (%) QG.
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With the identifications/8)—(13), Eq. @a) controls the 2.3. Circulations
evolution of 1LV QG potential vorticity. This quantity is
not materially conserved,e., advected (by Lie transport) 2.3.1. A Kelvin circulation theorem
under the flow of V1. Rather, the potential vorticity in
the ILO-DQG is created (or annihilated) by the misalign- Let f(x) be such thaW+ - f = gy. Let in additiond%; be
ment between the gradients of layer thickness and buoyandire material loop enclosing a material regi@pat timet > 0
(cf. Sec. 2.3.1, for additional discussion). This is consistengfter being advected from its initial position at time- 0 by
with Ertel’s z/ h-potential vorticity not being materially con- the flow of V4. Consider
served. Equation@b) and @éc) control, respectively, the evo-

lution of the ver_tical average and gradient of buoyancy: These Ki=¢ (VLQZ_H:_RE2V—2VL

are both materially conserved. Altogethdb) and [dc) give 09,

material conservation of buoyancy in the 11} QG. Finally, B B

the boundary conditiorba) means no flow through the solid X (=1 +{2/3}9p52]) - dx = / {dia, (18)
D

walls of the zonal channel domain.

Remark 2. (Implicit vertical shearBy the thermal-wind bal- \here the last equality follows upon using Stokes’ theorem.
ance, the velocity has implicit vertical curvature, which mo-the above is an appropriate definition of telvin circula-
tivates the streamfunction notatiots and, [6]. Indeed, 5 for the ILODQG as it leads to a theorem analogous to
the buoyancy distributioifl) implicitly implies that the ve- 4 kelvin—Noether theorem for the {:1) PE [6]. It extends
Iocity is determined, with a®(Ro?) error, by the stream- that one found in Sec. 3.1 of [23] for adiabatie( HL) QG
function dynamics to stratified thermalé., IL (%)) QG dynamics. By
(4a) and after pulling back the integrand in the last equality

2
Y=1p+ <1+]2;> Yo + ({1 + ZZ} —é) Ye2. (14)  of (18) tot = 0 and changing variables, it follows that

We note that the I2QG can be recovered from system K= 352/ {v,95 — %%ﬁmy d*z. (19)
(41) upon omittingy,2 and settingS = 0, i.e,, replacingRs 2
with R. Note, for instance, that the buoyancy restriction in
the IL°QG isv, > —(1/2)foR?. The potential vorticity in
the IL°QG, given byt = V2¢—R~2(¢Y—), )+ By, is created
(or annihilated) as in the [0 QG due to lateral changes in
buoyancy, which is only permitted to vary in the horizontal ~
(and time). This is unlike the HLQG, which follows from / Vih -V (9 - 39,) d°x
the IL°QG after ignoringy,. The potential vorticity in the P+
HLQG, ¢ = V%) — R™2¢ + By, is materially conserved.
The results discussed below for thdiY) QG can be trans-
lated to corresponding results for the’ (G or HLQG in the

As in the ILO-DPE, the misalignment between the gradients
of layer thickness and buoyancy creates (or destroys) Kelvin
circulation. This is most cleanly seen by noting that

— 2R3 /9 {Bote = 2002}, P2 (20)

indicated limits. with anO(Ro?) error.
. ) Remark 3. Two exceptions are the cases wligp, is isopy-
2.2. Uniqueness of solutions cnic at each level in the vertical and when this is solid,

as is the case of the boundary of the zonal channel do-
main Z. In each of these situations, the Kelvin circulation
is conserved. The former follows by noting that the right-
hand side of19) equals—§,, ¥V (5 — [2/3]¢,2) - fads,

Assume that); (x,t) andq,(x, t) are two solutions oi4d),
on the zonal channel domaia, each one satisfying bound-
ary conditions/b). Let ¢ := 11 — 1)o; then

V2 — R§2¢ =0, (15) while the latter follows by realizing that it is also equal to
3%@, (Yo — [2/3]1bs2) VL) - Aids. Kelvin circulation conser-
on Z subjected to vation, whem2; is solid, differs from that in the 10V PE,
L where it must be levelwise isopycnic, making thé€ ILQG
V=9 -1iog, = 0= Ouly=0,w¢ =0, less restrictive than the [V PE.
(;S(I,O,t) = d)(x, L,t). (16) NOIe that {¢7¢a - [2/3]1/}02}1:74 = Vl?ﬂ : V(wa -

[2/3]tbg2) = =V - V(g — [2/3]1h52). SinceV-V+ =0,
Multiplying (15) by ¢ and integrating by parts witiL€) in  then by Stokes’ theorem the integral on the right-hand side of

mind, (19 is equal to—§,,,, ¥V (¢, — [2/3]1h42) - ads. This van-
ishes ify, andy,= are constant along;. The Kelvin cir-
/ IVo|? + Rg%¢? d*x = 0, (17)  culation is conserved in these circumstances, which express
7 that the material loo@2; is isopycnic at each level in the
which holds if and only ifp = 0, i.e., ¢1 = 1)s. vertical.
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When 2, is replaced by the zonal channel doma&n  tion, which enables us to frame the Hamiltonian structure of
then the Kelvin circulation is conserved, whetide? is lev-  the IL-YQG in a domain with boundaries consistent with
elwise isopycnic or not. To see this, first note that, in suchthe aforementioned definition.

a case, the integral on right-hand side [@€)(is replaced pefinition 1. (Functional, functional derivatives, and varia-
by [, {t, Rs*(o — [2/3]ths2) — E}ay d*z. By (Bb) this  tions). A functionalF of scalar fieldsp? (x, 1), j = 1,..., J,

is equal ta( [, — fa@+)(R§2(¢a —[2/3]1h52) =)V denotedF[y], is a map from a vector spadé to R. The
nds, upon invoking Stokes’ theorem. B®lf) each term of  functional derivatives af are defined as the unique elements
this sum individually vanishes. This is unlike theIL)PE,  57/547,j =1,...,J, satisfying

in which case?Z,. must be levelwise isopycnic, making the

IL©-DQG less restrictive than the {©:YPE. (In that model

J
and the present one, if this condition is imposed initially, then a Flo+ edyp] =: Z/ ‘E(g@j 42z
it is preserved for all time). def._g P o
2.3.2. Circulation of the velocity =: 6F[0p; ), (23)
Consider wheree is a real parameter anip is called the variation of
- L N . The functionald F, linear indyp, is called the first varia-
VE = o Vi - nds = /0 Ayly=o,wt da, (21)  tion of F. The above is the Gateaux definition of functional
D+

derivative. The second variation &f, quadratic injy,
defining thevelocity circulationsalong the coasts of the zonal

channel domain. Note the difference with8), which we ) d42
have referred to as a Kelvin circulation for thé 111 QG. We 6“Flop; ¢l := 72 Flp + byl
will imposethe condition =0
. J 52F _
fu =0, (22) = [ ot @9
G k=1

Constancy ofy. is a boundary condition, in addition t&)(
whichguaranteegnergy preservation (cf. Sec. 2.7.1). Thisis ) o ]
not a peculiarity of the 101 QG, but a rather general aspect Where 0 F[op76p%, ik = 1,....J, define the second

of QG models. functional derivatives ofF. Higher-order variations, as well
as functional derivatives, are similarly defined, so that the to-
2.4. Invariant subspaces tal variation ofF,

If s_ystem 4) is initializgd_fr_qmwg, 1,2 = const, then ’Fhese AF[50; ] i= Flo + 6] — Flp| = 6F[6¢; ]

variables preserve their initial constant values at all times. In

other words, the subspa¢e,, 1,2 = cons} is an invariant + 1523:[5@; o]+ HBF ;) + -, (25)
subspace of the [©)QG. The dynamics on this invariant 2!

subspace is formally the same as that in the adiabatic case ) )

that is, the HLQG, wherein the potential vorticity, given by whered"F = O(||og|™) with || - |* = [,(-)* d*x is the

€ = V2 — R~2 + By, is materially conserved. This holds Square of the.? norm.

formally because),- actually is a perturbation on a refer- Assumption 1L We will assume that all variations in the
ence uniform stratification. But this is reflected in Ed) ( sense of Definitiod are restricted to those that preserve the
only through the stratification parametgr The HLQG and circulation of the velocity along each wall of the zonal chan-
IL(®-VQG potential vorticities o{+,, 1, = cons} differ ~ nel domain, namely,

by unimportant constants and by the Rosshy radius of defor-

mation being smaller fof # 0. In turn, if (4) is initialized v+ = 0. (26)
from ¢, = const, then this is preserved for all time. The
dynamics on this invariant subspace is formally the same as
that of the IL°QG, with the caveats noted above. Similarly,
in the IL°QG, obtained from the 11>V QG by ignoring:, -
and settingS = 0, the subspacéi), = const is invariant
and on this invariant subspace the dynamics coincides wit
that of the HLQG, exactly in this case.

The restriction26) enables a Hamiltonian formulation of
the IL(-)) QG wherein variational calculus is consistent with
Definition 1. Otherwise, the space space variables must be
ﬁlugmented to includes. as done in [22]. However, this re-
quires one to define the notion of variational derivative dif-
ferently than in Definitiorl [27].
2.5. Hamiltonian structure Remark 4. While allowing variations ofy,. adds generality

to the Hamiltonian formulation of the (£ QG, the practi-
We begin with a definition that is helpful to understand oper-cal consequences of such added generality are minimal. This
ations in the rest of the paper. This is followed by an assumpis illustrated in Ref. [45] for the stability problem.
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Let
EIE o] = 5 [ IVOP + RGP0 a = =5 [ §(E= R3? (b = 30s) — ) P, @)
9 9

be the energy, where the equality follows froB) (jpon integration by parts. Thatindeed is a functional of¢, v, V2 )
follows by noting that

¥ =(V? = Rg*) (€ — Rg* (Vo — 21bg2) — By), (28)

where(V? — Rg?)~!is interpreted in terms of the relevant Green’s function of the elliptic prok#m (
Now, consider

SF N\ T

SF = G
g7 _{57'}xy _{u}aa'}zy _{wa%'}my g7 )
R T I vt 0 s |
5,2 Vo2, Jay 0 0 50,2
_(6F &G : §F 6G SF oG )
= g{_,_} + Yen {_7} +{ ,_} d“x 29
Lelse s LT 5 0§y S 5 S, 29)
for any F, G[¢, 1., 2], where the second equality follows upon integrating parts and requiring
oF 0F . 0F
VLTE . 1’1‘0@i = 0, VL% '1’1|a@i = 07 Vl (51/)02 . Illa@i = 0, (30)

for all F[¢,1,,1,2]. It should be noted that periodic-
ity in x accounts for the vanishing of the corresponding In other words, the 10 QG model constitutes a Lie—
flux integral across the (oriented) boundary piéte := Poisson Hamiltonian system in the variabl@s,,v,2)
02\ 09_-U02,. Explicitly, these integrals are of the with Hamiltonian given by27) and Lie—Poisson bracket de-
form fagabv% - nds, wherea, b, c(x,t) are z-periodic.  fined by 29). More generally, one has
Noting thatmllads = —dx*, one %omputesfag;abv% : _
ﬁ%s = [y ab(=0y0)|e=rdy + [,ab(=8yc)|e—0dy = F={F,E&}, (34)
Jo (abdyclp—o — abagc|w:L) dy = 0. -
For all F,G, H[¢, ¢y, U,2], the bracket defined in forall F[¢, vy, ¥,2].
Eq. 29) satisfies:{F + G, H} = {F, H} + {G, H} (bilin- The IL°QG is also Lie—Poisson Hamiltonian, with
earity); {F,G} = —{G, F} (antisymmetry){{F,G}, H} + Hamiltonian given by 27) with Rs replaced byR and Lie—
O = 0 (Jacobi identity); and{FG, H} = F{G,H} +  Poisson bracket given b29) with ¢,> ignored. The result-
{F,H}G (Leibniz rule). An explicit proof of the Jacobi iden- ing bracket is found in Ref. [55], which is a particular version
tity is given in Ref. [6]. These properties make} a Pois-  of the one derived by [49] for a system more general than the
son bracket and by its linear dependencé@n),,, 1,2 ) itis  IL°QG. A (Lie—Poisson) deformation of the1QG bracket,
classified as of Lie—Poisson type. Such noncanonical brack-e., with the same kernel (cf. Sec. 2.7), appears in Ref. [19].
ets inherit the properties above from analogous properties dhterestingly, lows magnetohydrodynamics [34] and incom-
{, }sy, the canonical bracket iR pressible, nonhydrostatic, Boussinesq fluid dynamics on a
Since vertical plane share this bracket [4].
For a geometric mechanics interpretation of the
0 = —/ POE + RG> Yoy + 2RG*Y6Y,2 d*x, (31)  IL(DQG, where its Lie—Poisson brack@dj is associated
7 with the Lie algebra of the group of area-preserving diffeo-
where the boundary terms have cancelled out by Assumphorphisms extended by a semidirect product with that of the
tion[1, it follows that vector field formed by two copies of the space of smooth
functions—this arising from broken symmetry—the inter-

5E _ SE .- 8E - )
5 = —1), Sor = R, S = —2Rg%). (32) ested reader is referred to [9].
Equations/4a)-4b) then follow as 2.6. Topographic forcing

€ ={E,EY, Opby = {V5,E}, Otbyr = {1y2,E}. (33) Let+o(x) be an arbitrary scalar function on the zonal channel
domain 2 of length-squared-over-time units, conveniently
assumed to satisfy'yy x fi|gpy = 0. Let Ly = const have
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8 F. J. BERON-VERA AND M. J. OLASCOAGA

units of length. The Lie—Poisson Hamiltonian structure ofthe A statement of Theoreifi(i) can be found in [54]. The-

IL(©-DQG is not spoiled if41a) is modified as orem [1(ii) is due to [44]. In both cases, i§ is con-
_ o L, ) served, then it transforms solutions into solutidres, 0, =
0§+ {v,€ = Rg" (s — 51/’02)}@ {p, £} transforms intad; Agy = Agdip = Ag{p, &} =
_ Agp, £} under the transformation induced
= L() 2{1/](); 1/10 - %wcﬂ}zy- (35) { g% } gy

Note that-£ is the generator of time shifts— t—e since
The term on the right-hand side @5) may be viewed as d_gp = {€, ¢} = —e0,p. By Theoremnil(i), conservation
forcing resulting from imposing an irregular topography onof £ is related to symmetry of under selfinduced transfor-
the rigid lid separating the active layer from the atmospherenations, as is the case of the(1')QG’s energy, given in
above. This extends an earlier [20] interpretation of a similaf27). Let M|y], identified with thezonal momentunbe de-
term in the case where the active layer rests on bottom topodined as the generator of the transformatiorn> « — €. That
raphy while having a free top boundary with the atmosphereis, Iy = —e{ M, ¢} := —ed,p, Which is satisfied in the
System 41) with (41a) replaced with35) is obtained from IL(DQG,i.e., with ¢ = (&, 1., ,2) and bracketZ9), by
the Lie—Poisson bracke2®) with the Hamiltonian given by

i L MIE v o] = [ v (39)
Qlé Vo) i= 5 [ VO + RG22 2
_ 912 o — 20p,2) d2a. 36 Theoreml(i) links constancy ofM with symmetry of the
0 YolYe = 3%02) d'w (36) IL(O-DQG’s energy27) under zonal translations.
The change of the Kelvin circulatiofi along a material loop By Theorenil(ii), conservation off and M imply that

92 is given by [,, [R5 + Ly %o, ve — (2/3)¢,2]d?x,  the transformations they induced on any functional represents
rather than19). As in the unforced casee., with L = 0, X a symmetry in the general sense that transforming and letting
is conserved whefnZ; is levelwise isopycnic and along the the time run commute. But the reciprocal of the latter is not

walls 02, of 7. strictly true. Indeed, if the left-hand-side @8) vanishes,
_ thenG = 0 is equal to adistinguished functionNamely, a
2.7. Conservation laws function of functionalg[], calledCasimirs which are non-

- trivial solutions of
2.7.1. Energy, zonal momentum, and Casimirs

The noncanonical Hamiltonian formalism enables the con- {F.C} =0VF. (40)
nection of conservation laws with symmetries through

Noether's theoremas follows: The Casimirs form the kernel df, } and, sinceF includes
Theorem 1. (Noether for noncanonical Hamiltoniand)et &, they represent integrals of motion. However, they do not
P be aPoisson manifold.e., an infinite-dimensional smooth generate any variationg., dcy = —{C, ¢} = 0, and thus
manifold endowed with a Poisson bracket or structirg : ~ are not related to explicit symmetrieise., symmetries that
C>°(P) x C®(P) — C>(P). The evolution of any func- are visible in the Eulerian variables that form the phase space
tional Flp] € C=(P) : P — R is controlled by# =  inwhichthe dynamics are being viewed. The Casimirs of the

{F, £} with the dynamics specified B{p], the Hamiltonian.  IL*"QG’s bracket29) are given by
Consider the one-parameter family of variations induced by

a functionalG[y] defined byg := —¢{G, -}, wheres > 0 is Co €, 1o, 2] = / A€ + F (g, by ) d*x (41)
small. The change induced Byon € is ol | 2 ( )

AGE = E[p + dgp| — Elp] ~ {€,G} = —eG, (37)  for any constant: and arbitrary functionF. In Ref. [6] a
proof for the ILO-Y)PE’s Casimirs was given (cf. Remark 5,
where~ means asymptotically as| 0. Moreover, below). Here we present the proof for the QG case. A gen-
d dF e uine CasimitC[¢, v, 1,2 ] must satisfy:

Agf—AgNE{]:,}v (38)

dt dt dt {57 : }zy {waa : }wy {,(/)027 ’ }my
{1/10, ' }Ty 0 0
{1;[}172a : }my 0 0

for any F[¢]. The following holds:

1. Symmetry of€ under the transformation induced gy

implies conservation af and vice versa. % 0
5
2. If G is an integral of motion, then the transformation e | T (0) : (42)
generated by represents a symmetry in the general 5%,2 0

sense that the result of making a transformation and let- B
ting the time run is independent of the order in which From the last two rows, it is clear tha€ /§¢ must be a con-
these operations are performed. stant. This makes the first term in the first row to vanish.
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PROPERTIES AND BAROCLINIC INSTABILITY OF STRATIFIED THERMAL UPPER-OCEAN FLOW 9

The last two terms vanish by adding the integral of an arfor everyG. Integrating ove,

bitrary function of (v, 1,2), showing that41) indeed is a

valid Casimir. In fact, there exists no Casimir more general / G (o, g2 ) d2x = const (48)

than @1). 2

Remark 5. The admissibility condition(30) are satisfied by because the flow normal to the channel walls vanishes and

the CasimirC,, r, given in(41),_ provid_ed thaty), and ), the there is periodicity in the along-channel direction. Now
are constant alon@%., that is, provided that the coasts definex := vy — (2/3)¢h,2. Multiplying (4a) by F(g) for

of the zonal channel domai# are isopycnic. This same ; ;
F 7) with 2 I
condition must hold in the 11>V PE for its Casimirs, given any ' and using47) with G/(v5, 1) replaced by’ (x),

by Ca}F[l_l, h77§7790’} = fga(jh + F(ﬁ,lﬁg) dQ»:C f ora = ) (f_F(X)) 4V - EF(X)VLJ):REQF(X)V . ¢VJ_1Z) (49)
const and every’ whereq is the potential vorticity, to com-
mute with any functional in the corresponding bracket. ThiSMuItipIying (48) by R§2 with G (¢, ¥,2) replaced by

Casimir family reduces tG,,r in the QG limit. [ F(x)dx, and adding the result t@}7), upon integrating
The conservation laws above can all be verified directlygyer 9,

Indeed, after integrating by parts with boundary conditions

(5) in mind, one computes /QEF(X) n REQ/F(X) dy %z = const  (50)
E=vYloa_Y- +Vloz, ¥+, (43)
More generally, with'48) in mind,
which vanishes when the velocity circulations along the walls
of the zonal channel domain are constajuistifying condi- / 35 —2/F
tion (22). As for the zonal momentum, one has that @g 00 + Bs () dx

M= [ (V- R0+ oz =0, (44) +Glo pm)d'z = const - (51)
2

h he fi litv foll lati f bound from which conservation of/46) follows by choosing
where the first equality follows upon cancellation of boun "Gt 1ho2) = —R32 [ F(y) dy for arbitrary P
ary terms by virtue of%) and the second one by usirisp{,
in particular. In turn, verifying the constancy &f » directly
is a straightforward application of boundary conditicg ( 1. The integrals of motion 46) do not constitute

Finally, the IL°QG has the same motion integrals as Casimirs. Indeed,

above withRg replaced byR in the 27) and, in particular,
with (41) replaced by

Three salient observations are warranted:

{57 : }Iy {wav . }my {wa‘z, : }wy
Cralé o vl i= [ EF(62) + Glvo)Pa,  (45) o Jay 0 0
2 {wa2 5" }ry 0 0
for arbitrary F', G, which commutes with any functional with p _ 0
the appropriate Lie—Poisson bracket. This Casimir is well y ﬁ:éF’ — | —2{¢hy, b2 }uy ' (52)
known [4, 34]. To verify conservation of energy and zonal sTo¥e 7 o {3¢ 20’1& "} x;;, ’
momentum directly one simply proceeds as above. To check e o ety

conservation oi45) directly one proceeds similarly as we do
to prove constancy o#), below.
Remark 6. In a similar manner as for the Casimir family

where the last two rows in general do not vanish. That
is, Zr does not commute with every functional 29].

(41) to be genuine, genunity of the Casimir far,rmﬁ) im- 2. While conservation laws50) and 51) are more gen-
poses a c.or.1c'i|t|0n on the boundgrles of'the flow’s zonal chan- eral thanZy, it is the first term in each case, given
nel domain: its coasts must be isopycnic. by Zr, that does not represent a Casimir of the Lie—

. Poisson brackeRg).
2.7.2. Weak Casimirs

3. The family of conservation lawsZp constitute

i 1) -
Lemma 1. The dynamics of the (2 QG preserve the fol Casimirs, but for the IPQG bracket, namely,

lowing infinite family of functionals

Ir[€ Yo, Yo2] :=/@§F(wa—%¢az)d2w7 (46) For — [ ¢]0F 56 5F 66
o o= [ {50 5] ({55
whereF is arbitrary. oy i
Proof. SinceV - V-4 = 0, from {@b)—c) one has {6]—‘ 59} ) )
— d“x,
Ty

R = 53
G (s s) -V - Glthy s ys) VD = 0, (47) 5y o (53)
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10 F. J. BERON-VERA AND M. J. OLASCOAGA

for all F,G[¢, x]. The ILO-DQG dynamics implies the instance, in the infinitely wide zonal channel case, the fastest
dynamics in the variable, ), i.e., that produced by phase speed, realized in the short-wave ligit) | (0,0), is
the Lie—Poisson bracket given t§3j with Hamilto- (1 — [1/3]S)R2, which can be up to one-third slower than
nian 27), yet notvice versa that in the HLQG, given by3R2. In addition to the Rossby
_ _ ~ waves, the 1%V QG supports an = 0, i.e., neutral, mode
The last ol_aservatlon above enable; the interpretation Qi & = Ry, — [2/31.) with ¢4, # 0. This
the conservation lawg as weak Casimirs as they form ey iral mode is characterized by potential vorticity changes

the kernel of the Lie-Poisson bracket for the potential VOr-gxclusively due to buoyancy changes which do not alter the
ticity evolution independent of the details of the buoyancyyiqg velocity (' = 0).

field as this field is advected under the flow. The connection  gne test of the well-posedness of the thé1QG is
of conservation of  with particle relabeling symmetry via

Noether's theorem is discussed in Ref. [9]. _ Enee, this is defined as an integral of motion quadratic to the
Remark 7.  The IL®VPE ponservesfgth(a? = lowest-order in the deviation from a reference state. When
(1/3)9,) d*x for everyF (whereq is the potential vorticity). ¢ s positive definite, there cannot be a spurious growth
These conservation laws reduce(#8) in the low-frequency  of the amplitude of linear waves riding on the reference state
limit. The difference between tlie/3) an (2/3) factorsis 5 they must presen&iee A class of reference states4]
clarified upon noting that, with a®(Ro”) error, J — g = yjth a free energy with the desired property is defined by
(1/3)(0s — (1/2)Nr2Hr) = (29r/f0R2)(1/’0,_.(2/??)%2)- (a1/az) < 0 and(ay/as) > 0. Indeed, for such a class of
The conservation laws above are not Casimirs either. HOW;eference states,
ever, they represent weak Casimirs in the sense previously 54

1

discussed. Ereel€ 1, . a] = E[F] +R§2/ a2
2 3a3

given by the computation of tHeee energy47]. Denoted by

3. Linear waves and free energy - %w} d*z, (57)
2

Lety’ := (&', ¢, ¢,.) be an infinitesimal-amplitude pertur- which is manifestly positive definite under the stated condi-
bation on tions. This follows by adding to the energ27) a Casimir
(41 with a = a; and F (Y, ¥,2) = Rg((a1/3a3)y?, —

®; := (—Rg"(a1 — az + Ja3) + By, az, as), (54) (a1/2a2)?). An importgmt obse)rvatimfis(iheéb is) not re-
stricted to infinitesimally small normal-mode perturbations.
In fact, (57) is an exact integral of motion for the fully non-
linear dynamics abou®d). Thus positive definiteness &7)
prevents the spurious growth of perturbations/&d) (irre-
spective of their initial amplitude and structure.

wherea, as, az are arbitrary constants. The latter represent
a three-parameter family oéference states.e., stationary or
equilibrium solutions of the (%1 QG system4), subjected
to (5) and 22), with no currents. The energy of such states,

- -2 2 . i i
E[®:] = [1/2]Rg"aiW L. This identically vanishes for the Itis fair to wonder about the dynamical significance of the

particular class_ of reference states wigh= 0. Such a two- . constantsi , as, az that define the family of reference states
parameter family of reference states has the lowest possmfn

. . : 54) and the relationship among them 6. to be positive
energy and can thus be identified with trecuum stat¢32] - . S .
of the ILO:DQG. The components of the perturbation field definite. Consider the situation in which these constants are

’ evolve according to all set to zero, in which cas®4) reduces teb, = (5y,0,0),
. 9 a member of the vacuum state family. The linear waves rid-
0,8 + BOL =0, 0. =0, Opbs =0, 55)  ing on this reference state are the same as those discussed
A W Vs 3) above. However, in this case, the free energy can be shown

controlling the 1LV QG linearized dynamics aroun&d). to be egual 'Fcf_[z/;’}, wh.ich is. positiye semidefinite. Indeed,
Assuming an(z, y, t)-dependence of the form of a normal by the mvert!blht)i relationship4d), it follows that there can
mode, viz.,expi(ks — wt)sinly, satisfying the boundary D€ perturbationg’, v, ¢,7.) that do not change the free en-
conditions B), it follows thaty, = 0 = v/, while & = €rgy- Spontaneous growth of the amplitude of such pertur-
V2 — R§21/7 -+ 0 provided that bations cannot be constrained by free-energy conservation.
An example is the neutral mode discussed above, for which
the free energy identically vanishes. The same considera-
tions apply to the complete family of vacuum states (defined
by a; = 0). An important observation is that there exist Lya-
That is, the linear waves supported by the®lbQG  punov stable states that will arrest the aforementioned spon-
are the well-known (planetary) Rossby waves [40], whichtaneous growth, should it happened, as discussed in Sec. 5,
do not disturb the reference buoyancy figjd + (1 + below.

(2z/H,))(1/2)N2H,. They correspond to the Rossby wavesRemark 8. A result similar to that for perturbations on the

of the HLQG in the weak-stratification limi§ | 0. For fi-  vacuum state family in the {2V QG holds for perturbations
nite S, the (westward) phase speed is in general slower. Fapn the vacuum state in the . PE parent model. In that

kB3
= : 56
T TR TP TRS (50)
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PROPERTIES AND BAROCLINIC INSTABILITY OF STRATIFIED THERMAL UPPER-OCEAN FLOW 11

model, there is a unique reference state, which is the vacuurny static stability; cf.[2). Our main interest is the four-
state, and perturbations on it have a positive-semidefinite freparameter family of basic states defined by
energy associated with [47].

U= —Uy, v, = —Ugy7 \1102 = —Uo2y, (58C)

4. Stability of baroclinic zonal flow

implying
Considery := (£,1,,1,2), evolving according to4) sub-
jected to B) and £2). We call® := (Z,¥,, ¥,2) abasic E=-R*V+ R (¥, — 2V,2)
stateif it is an equilibrium of @), subjected to5) and 22).
A particular case of basic state is the reference state discussed + By = Rg*w¥, = RG* ™ 'w¥,0, (58d)

in Sec. 3, for which the fluid is motionless. We are interested
in the stability of a basic state in the following three senseswhere
sorted in increasing level of strength [22, 51]:

1. The first sense ispectral stability in which case a v(S) =1+ a+s(8)b—3u,
perturbationyp(x, t) on ®(x) is assumed to be a nor- s(S):=R(R2=1- 18, (58¢€)
mal mode with an infinitesimally small amplitude, viz.,
0p = eRe{p'expik(x — ct)}sinly + O(*) where  \yhich we introduce to simplify algebraic expressions below,
e | 0, satisfying b) and £2). (Note the slight change gy the thermal-wind balance58) implicitly corresponds,
of interpretation of the prime notation with respect 10 for parameters fixed, to a meridionally uniform zonal current
that used in Sec. 3.) Clearly, the amplitude of a nor-yiih quadratic vertical sheaice., a baroclinic flow withver-
mal mode cannot remain infinitesimally small unlessijca) cyrvatureon thes-plane. Nondimensional parameters
Im(c) = 0. In such a case, the basic state is said to b§, anq,, thus measure the vertical linear shear and curvature
spectrally stable. of the jet, respectively. But, by virtue c8)—(11), one also

2. The second sense fisrmal stability In this casefp, ~ has that
while assumed small, can have an arbitrary structure.

If there exists an integral of motiof([¢] such that a=1+ = - =,
SH[dp; ®] = 0 andd>H|[dy; ®] > 0, then the growth H. ©'(y) 6 ©(y)

of 6 will be constrained. The constraint is imposed by H, (N2)(y)

the quadratic nature @, which is preserved by the p= FRCIOR (59)

linearized dynamics about. In these circumstances
one says tha® is formally stable. Note that the free
energy&iee discussed in Sec. 3 is a special casé&’6
wherein® in motionless.

whereH is the layer thickness in the basic stateis the ba-

sic vertically averaged buoyancy, and = 20, /H, is the

basic state buoyancy frequency squared. This enables further

3. The third sense idyapunov stability This relies Physical insight into the (spectral) stability problem. Finally,
on the possibility of proving that the total variation hondimensional parametémeasures the strength of tise
AH[5¢; @] is convex for finite-sizedy of arbitrary effect, which can be identified with a Charney number.
structure. This means showing thaf|dp|?> < AH <
ca||d¢l|? for ¢i,c2 = const such thad < ¢; <
c2 < oo, Where|| || is typically chosen to be af?
norm. Assuming that the latter holds true, sinke{

4.1. Spectral stability

is preserved under the fully nonlinear dynamics, thel‘et
second inequality can be evaluated at titne- 0 to c_ U
get||0p|li>0 < v/c2/c16¢lli—o. This implies Lya- A=, K= RV, (60)
punov stability for®d. More precisely, for every > 0 7
there exists: > 0, e.9, & = y/(c1/e2)e, such that  representing normalized Doppler shifted phase speed and
ldpllt=0 < € implies||d¢]/s>0 < o wavenumberk = (k,1) (with k& pointing eastward and
Let northward) magnitude, respectively. The following eigen-
B U Uy . 3 583) value _problem follows upon proposing a normal-mode per-
Q= U, W= U, S U.R turbation on'68):
whereU, U,, andU,- are constants, with the latter two re- (sk24+1) AMatsb  —(A+a) %(;Hra) U’
quired to satisfy -1 — 0 vl | =o.
(S —1)foR? S foR? UH 0 —A 2
2Ug‘ - UJZ 2 T, Uo'2 < 4W 5 (58b) (61)
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Nontrivial solutions exist provided that the determinant of t

matrix of the eigenproblem vanishes. This leads to the dis-

persion relation

v+ \/1/2 —4da(1—2p) (sk2+1)
2(sk?+1)

A=

(62)

AND M. J. OLASCOAGA

he

fa<in{p<itHoe>0n{p>3},  (64)

where there is spectral stability of basic st&i€) (for every
wavenumber.This holds independent of the values taken by
the Charney numbeb) and stratification parametery). By
virtue of (59), one concludes that the basic states in the upper-

Spectral stability is realized when the perturbation phaséight (resp., lower-left) clear quadrant hai#(y) and©’(y)

speed:, or equivalently), is real. A sufficient condition for
this is

@ (1 — %u) < 0. (63)

with like (resp., opposing) signs a& (y)/(N?2)'(y) smaller
(resp., larger) thafl/6) H,. The curves labeled by bound

the (sub)regions of théx, 1)-plane where there is spectral
instability, i.e., (63) is violated, for selected and S values.
Note the asymmetry, with less basic states being spectrally

The shaded quadrants in Figare subsets of the region in ynstable toward smaller wavenumbers in the redion<

the («, u)-space defined by6B), namely,

0}n{x > (3/2)} thaninthe regiofa > 0} N{p < (3/2)}.
This behavior reverses with positive valuesof

b=-0.5,5=0.5 More specifically, in the limik | 0, (66) equals
|
8+ \\\ w | —x=0.>5
\ ! A= —dvE5y/v2 —da(1-2p), (65)
6 V=2
\'\ ':I O which is complex wherex(1 — (2/3)u) > (1/4)? =
41 \ }' (1/4)(1 + a + sb — (2/3)M)2 (and real otherwise, making
— \I I explicit that 63) is sufficient, yet not necessary, for spec-
T 1 tral stability). At criticality, one finds that = (2/3)(1 —
V) e a+sb) £(3/2)y/(1 — a+ sb) — (1 + a + sb)2 + 4a. This
< - T represents a parabola with tangencies on the cGtve:=
0 {a=0,up>(3/2)}U{a>0,u=1(3/2)}, whend < 0,
f and the curve®_ := {a =0, < (3/2)}U{a < 0,pu =
/ (3/2)}, whenb > 0, making more explicit the asymmetry
) noted above. For completeness, we note that in the limit
k T oo there is spectral stability everywhere in tte, p1)-
space where6) is violated, in such a case for ahyand S.
-4 / Indeed,
-6 ' / . ja(l— %M) 1
-5 0 A~ i 1—%3 K (66)

o

FIGURE 3. Stability of the basic state family68), representing
baroclinic zonal jets, inthe := U /U, vsu := U,z /U, space, re-

spectively measuring the vertical linear shear and curvature of a je

in the family. In the shaded regions, corresponding to th& sket-
fined bya(1 — (2/3)u) < 0, the phase speed of an infinitesimally-
small normal-mode perturbation is real for every wavenumber.
Within the hatched region, the subdet= {; < 0} N {a < 0}

of S, there is stability for finite-size perturbations of arbitrary struc-
ture. Moreover, irL the distance, in af? sense, of a perturbation
to the basic state is at all times bounded by a multiple of its initial
distance. This means thatinthere is Lyapunov stability. Spec-
tral stability is possible inside the white regions, the complement
of S, S¢. The curves labeled by the normalized wavenumber mag-
nitudex := R+v/k? + [? bound the(«, 11)-subregions of° where
there is spectral instability for the normalizgdand stratification

parametersh := 3/U,R* andS := N?H,/2g., respectively, as
indicated.

asymptotically as: 7 oo. The curves: | oo in the («, p)-

Elane are given by’;. Their union{a = 0, = (3/2)}
orresponds to the set of basic states lying at the boundary of

spectral stability. Thus, unlike all other curves in the spec-

trally unstable regions of thgy, 1)-plane, the curve€’y do
not bound spectrally unstable states.

In Fig. 4 we depict dispersion relatio®2) as a function
of the wavenumber, more preciselyU, vs «, for selected
values of the various basic state parameters. The onset of in-
stability happens at the wavenumber where the two branches
of the dispersion relation merge. Included in the plot for ref-
erence is the asymptotic expressiondpt/,, ask 1 oo, as it
follows from (66). Also indicated idim,jo.c/Us = «, that

is, a real number, irrespective of the parameters that define
the basic state.

Rev. Mex. Fis71 050601



PROPERTIES AND BAROCLINIC INSTABILITY OF

a=2b=0,8=05p=05

—Re(c)/U,
it Im(c)/U:r

-1

0.5

FIGURE 4. As a function of normalized wavenumber, normalized
phase speed for a normal-mode perturbation on the baroclinic zon
jet defined by[58) with parameters as indicated. Asymptotic dis-
persion relation curves as T oo and the corresponding limiting
value are included.

In the limit of weak stratificationi.e., S | 0, the length
scalesk and L := N, H./|fo| are well separated. The lat-
ter is proportional to the gravest baroclinic (internal) Rossb

STRATIFIED THERMAL UPPER-OCEAN FLOW 13

for long perturbations, and = 0, for short perturbations.
The limit x T oo of (67) givesA = 0, i.e,, c = U. As ex-
pected, it coincides with the short-perturbation phase speed.
This is real for all wavenumbers, which can be anticipated
to be consequential for direct, fully nonlinear simulations. It
seems reasonable to think that wave activity in such simu-
lations will fall off at sufficiently large wavenumbers (short
wavelengths), which, according to the spectia. ( linear)
analysis, are not growing.

Concerning the growth rate of the perturbation, given
by @ := kIm(c) for the smallest meridional wavenumber,
viz., | = w/W, it is observed that this saturates with zonal
wavenumber, both when the stratification is finite and for
long perturbations in the weak-stratification limit. The left
panel of Figl5 showsw (k) whenW = R for selected val-
ues of basic state parameters outside the spectrally stable set
(64) in the limit of weak stratification and with vanishing
a?harney number. Note that is larger (resp., smaller) when
the basic state zonal velocity vertical profile (F&).middle
panel) curves eastward (resp., westward) than when it does
not curve, as in the 1QG. An upper-bound measure of the
saturating value of is given, whenS is finite, by

a(l—3p)
1—-38 "7

wIm(c)
Ur

max
K

y (68)

radius of deformation in a model with arbitrary stratification.

Since we are assuming a reduced-gravity settihgnd L

where parameter(g, 1) belong in the spectrally unstable re-

can be approximately identified with the first and second ingion, i.e., the complement of s€64). The long-perturbation

ternal deformation radii, respectively, of the arbitrarily strat-

limit of (68) is /(1 — (2/3)u), which we plot in right panel

ified model extending throughout the entire water column.of Fig.5. An important final observation, with consequences
The noted scale separation allows one to distinguish long pefer direct simulations, is that the growth rate for short pertur-

turbations, with wavenumbers= O(1) asS | 0, from short
perturbations, with wavenumbefgk| = v25x = O(1) as
S | 0. We find that/62) reduces to
—(0) £ \/I/(O)2 —da(1-2p) (K2 +1)
A= 2(k2 +1)

(67)

)

—

0.5

kRIm(c)/U,

o

kR

bations vanishes for all wavenumbers, reinforcing the com-
ments above that development of wave activity should be
stopped in the 1%V QG at sufficiently short wavelengths.

max, kIm(c) /U,

0l SRR X s,
A R 7 P
o R At
AP o W e <3
9 /\\\/ “‘ g i
M\ 5 -
2 o
©) 4\\ P
6 i <7
1z g8 ¥ 5 e}

FIGURE 5. a) Growth rate as a function of zonal wavenumber in the limit of weak stratificafion ) with basic state parametessand

b as indicated for three values pf The IL°QG result corresponds to the= 0 curve as the velocity in that model can only include linear
shear (implicitly, by the thermal-wind balance). b) Zonal velocity (implicit) vertical profiles leading to the growth rates in the left panel. ¢)
Upper bound on the growth rate {r, 11)-space for weak stratification. The thick line is the corresponding result for fh@. 1L
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14 F. J. BERON-VERA AND M. J. OLASCOAGA
4.2. Formal stability with

We now turn to investigate the formal stability of basic satate F(to,1s2) = —2aR3> (1/12 _z,m1 22) . (70)
(58), for which we have at our disposal several conservation e 278 ATe s “

laws, namely, energyj, Casimirs €, ), zonal momentum
(M), and the non-Casimir, non-explicit-symmetry-related
conservation lawsZ(r) (cf. Sec. 2.7) to construct an appropri-
ate general integral of moticH such thav’H = 0 at a basic ~
state. The use of energy and Casimirs to constHichay §Hy = E[0Y] — %REQG/&/&% — 2oy dPx, (71)
be traced from the work of Arnold in the 1960's [which is

a collection of papers that appeared in those years] [2] baclich is positive definite provided that

over a decade to those of [15, 25]. The use of momentum
in systems withe-translational symmetry was pioneered by
Ripa [43]. Here we explore the additional use of the weak

Casimir conservation la@r. We these comments in mind, . .
we will, following tradition, refer to the use of all available This corresponds to the hatched region of theu)-plane of

) . : - hy Fig.l3. That is, only a subset of the spectrally stable states
integrals of motion to derive a-priori stability statements as .
Arnold’s method are possible to be proved formally stable. But such a sub-

. . set however is stable with respect to perturbations not only
Remark 9. A few remarks are in order: ; .
of arbitrary structure. Rather, they are stable with respect to
finite-amplitude perturbations since

The first variation of69) identically vanishes at the basic
state b8). Its second variation

a<0, p<oO. (72)

1. The equilibria® of a Hamiltonian systend,p =
{¢,E} are no longer unrestricted conditional ex- )
trema of the Hamiltonian&); by contrast,0,® = 0"Hy = AHg. (73)
{®,£[®]}[®] = 0 implies that(d/dp) (€ + C)[P] = 0
for some Casimic. Level sets of constants of the mo- That is, the pseudoenergy—momentum is a quadratic integral
tion define certain “leaves” on the Poisson manif0|d,0f motion. This is a Hamiltonian for the exact dynamics of
(P, {,}). If these constants are the Casimirs{of}, tbe ILOD) as seen by an observer zonally moving with speed
they form the “symplectic leaves” dP [22,36]. Thus U (extending Remark 9(ii), above). We will return to dis-
equilibria (basic states) are critical “points” 6fre-  cussing the consequences/68)in Sec. 4.3, below.
stricted to such leaves. Let us consider now the use of the weak Casimir integrals

] ] o I, defined in'46), in Arnold’s method. It turns out that the
2. WhenH is chosen to be a linear combinatiéh+  general integral of motion

C — UM whereU = const and for somé such that
dH = 0 at®, it turns out that?H is a Hamiltonian for 2

’ = g — 3 UO‘ C I . 74
the linearized dynamics abo@tas seen from a refer- H%GUU saUs M+ Cor +Ia (74)
ence frame steadily translating in thedirection with
speed/. Namely, to the lowest order iy, it follows ~ for
that(9; + U9, )d¢ = {d¢, §>H}[®] where the bracket
here is that defined in E¢29) but with a constant ar- F(g,192) = 3R a(v +1) (307197 —¢2), (75)
gument. This is a genuine Lie—Poisson bracket in tha 2 _ 2
all required properties are satisfied, most importantlyb(% 3%2) o a(% 3%2)’ (76)
the Jacobi identity, which is readily verified cf., [for a

discussion] [32]. has a vanishing first variation at the basic st&@).(Its sec-

ond variation,
3. With H as constructed, the integraf, or more
generally AH, is referred to aspseudoenergy— §2H o = £[5y] +a/ (55+ l&ba)Q B (5£—+ ;5%2)2
momentum, following notation introduced in 3aUs 2 3
Ref. [43]. In .the case with no zorlal symmetry,,, Fhe % (R§2(1/+ 1)+ %) 2
pseudoenergys referred to as a “free energy” in
Ref. [36] to mean that it is the energy accessible to + 2 (RPp (v +1) — 3) 092, d*x. (77)
the system upon perturbation away from equilibrium
given the Casimir. It should not be confused with the Higher-order variations of7d) vanish, so(T7) is an exact,

free energy defined in Sec. 3. fully nonlinear conservation law. However, it is at most pos-
itive semidefinite and provided that = 0. Thus the con-
We begin by considering servation laws46) are not useful to make anpriori assess-
_ ment about the stability of the basic stefi@)( at least using
Hg =& =UM+Co,r, (69)  Arnold’s method.
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4.3. Lyapunov stability 5. Nonlinear saturation of unstable baroclinic

. . , zonal flow
Lyapunov stability of the basic states defined [Bg)(can be

established as follows. Consider the subset of stable basic

states with In this section we seek to a-prior constraining the growth of
perturbations to basic states8] that have been found to be
a<0, 0>p>-1 (78)  spectrally unstable, namely, those that viol&8)( by mak-
. ing use of the above Lyapunov stability result(s) for basic
Lets; andA, be two positive constants such that states’8) satisfying [/2). This can be done usirhepherd's
0 methodintroduced in Ref. [53], which we outline below. De-
<m < —aq, (79) » ) .
note stable (resp., unstable) state quantities with a superscript
and S (resp., U). Grouping¢, 1, 1,2 ) into ¢ we have
—a-m< A\ < —a+mn, (80)
U | 205
respectively. Recalling thelf 8) holds, the convexity estimate o = @7][2(A1) < S+m
follows:
Ca—m . , < [|0% — ®Yl2(A1) = By, (87)
T H((S§> 6'(/107 6'(/}02)H2()‘1) < AHU
_ _ for ®S satisfying 78) and
<~ (68, 00, 00) (M), (BD) ynot
where 205
||<P_(I>UH2(>\2) < m

168, 5tb0 58002 |2 (M) = EI63] + LR35 N / b2
+ 2602, d’x, (82)

measures, in a® sense, the squared distance to the subfo’ ©° satisfying 83). The inequalities above follow as a
family of basic states5g) defined by [78) in the infinite-  result of successively:
dimensional phase space of thé) QG model Eq.4) with
coordinatesé, v, 1,2 ). This establishes Lyapunov stability
for them. Indeed, sincAH is invariant and convey, it fol-
lows that the distance to such states at any time is bounded
from above by a multiple of the initial distance.

Consider now the subfamily of basic stat&8)(defined

by

x [|®% — @Y|[3(A\g) =: Ba,  (88)

1. applying the triangular inequalitify — ®Y||2()\;) <
l = DS2(X) + [|2° = @Yl2(Ni), i = 1,2;

2. using convexity estimate8l) for i = 1 and 86) for

i =2;and
a<0, p<-L (83)
Letting 7, and )\, be positive constants such that 3. assuming thap ~ &V initially at ¢ = 0.
0<m <2, (84)
K Set \; and A, to their minimum values in their corre-
and sponding admissible ranges, given 8@)and B85), respec-
a a tively. Let
— =12 < A2 < — 41, (85)
7 7
one finds the convexity estimate: 0<r<l, =12, (89)
o — = o+
(88, 8tb0, tb02)|2(M2)? < AHp < T HR be constants such that
HA2 HA2
X ||(6£7 57%,51%2)”2(/\2)2- (86) aS

. . . . . m = 77”10‘57 2 = TQisa (90)
This establishes Lyapunov stability for basic state) (vith H

(83). Overall the above convexity estimates establish Lya-
punov stability for [68) over the whole range of stable pa- satisfy [79) and B4), respectively. The following tighter
rameters(T2). bounds result upon minimizing ovey, i = 1, 2:
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FIGURE 6. Normalized a-priori nonlinear upper bounds on the growth of perturbations to spectrally unstable basic states as computed using
Lyapunov-stable states with® < 0 and0 > x° > —1 a) anda® < 0 andu® < —1 b). The bottom panels show the same as in the top

panels in the limit/® | 0.

o o s
By > By :=Rg'\/2LW3 . \/(US - Y2 - s (US-UY)2+2(US, —UY%)?), (91)
and
o o iE
By > By := Rg'\/§LW? - \/ (O =TV + g (U2 = UR)? + 3(U3: — U2)?)- (92)

[ea

In the upper-left panel of Fig, we illustratel3; within the (aV, ;Y)-space fol/¥ = 2, R, calculated utilizing7S = f, R,
US = —foR, andUS, = (1/2)foR. Similarly, the upper-right panel of Fi$ depictsB,, derived using’® = foR, US =
—foR, ande = (3/2) foR. Itis important to note that at the boundary of instability, these bounds do not reach zero. They
indeed approach zero alon§ = 0 asU® | 0 (Fig.|6, bottom panels), but not along’ = 3/2, since the Lyapunov-stable basic
states only cover a portion of the complement to the spectrally stable zone(im, thespace (cf. Fig3). Optimal bounds can
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be found by minimizing3; andB, over stable state parame-
ters. The key point is the presence of a-priori upper bounds
that restrict disturbances to spectrally unstable basic states,
specifically equilibria®8) that violate 63), from experienc-

ing an ultraviolet blowup.

Finally, following the findings presented in Ref. [8],
Shepherd’s method serves as a means to constrain the growth
of perturbations on unstable states that may pertain to a dis-
tinct class from those for which Lyapunov stability is estab-
lished. Consequently, this inference extends to perturbed vac-
uum states, which are characterized by positive-semidefinite
free energy (cf. Sec. 3), representing a variant of pseudo-
energy—momentum. Essentially, their nonlinear growth is re-
stricted by the presence of Lyapunov-stable basic states, sim-
ilar to the nonlinear growth of perturbations to unstable basic
states with sign-indefinite pseudo-energy—momentum. The
constraints on the potential spontaneous growth of perturba-
tions to the vacuum state, if it occurs, are given by eitBé) (
or (@2 with UV =UY =UY, = 0.

o

6. Discussion

The study presented here was motivated, in part, by direct
numerical simulations revealing a tendency of théQIG

to quickly develop visually more intense small-scale vortex
rolls than the IV QG [6]. Such small-scale circulation
can be fairly referred to as submsoscales circulations as their
scales fall well belowR, the Rossby deformation radius in
the IL°QG and IV QG models. As noted above, beifiy

IL°QG and IL%-Y QG suffer from this property, which
might equally play a role in the development of subme-
soscale circulations in both models.

. The intensity of submesoscale motions is constrained

by the existence of Lyapunov-stable states, both in the
ILODQG (cf. Sec5) and the 1°QG [8]. However,
one cannot compare the size of the space available in
each model for wave activity, more precisely, the non-
linear growth of the amplitude of perturbations on ba-
sic states38) violating (63), the condition for spectral
stability. The reason is that this is measured using dif-
ferent (L?) norms.

. When considering stability itself, it was found that

this predicts growth rates in the 1:YQG that can

be smaller than, equal to, or larger than those in the
IL°QG (cf.,e.g, Fig.5). The only, potentially impor-
tant, difference is that the growth rate vanishes in the
IL©-1)QG for short perturbations. Distinguishing short
from large perturbations in the weak stratification limit
is only possible in [0V QG.

. Yet, that Arnold’s method fails to demonstrate formal,

let alone Lyapunov, stability for all spectrally stable
states (cf. Fig3) suggests that the IE:Y) QG may be
more prone to instability than the {QG, in which case

all spectrally stable basic states (in a similar class) are
provable Lyapunov stable [8,9].

an equivalent barotropic deformation radius, it approximately  \ve pack up the above inferences with the results from

corresponds to the gravest barocliriie ( internal) deforma-

direct numerical simulations (cf. Appendix for numerical de-

tion scale in the continuously stratified model defined OVehajls) of the ILO-D and IL°QG. These differ from those of
the entire water column. The results from the various analy[6]’ which included Hamiltoninan topographic forcing (cf.

ses carried out above do not appear to provide reason 10 eXec 2 6. Concretely, we considered the full nonlinear evo-
pect that the numerical observation of [6] holds in general, agtion of perturbations to the spectrally unstable basic state

we summarize next:

(58) defined bya = 3, © = 0, b = 0, andS = 0, which vio-

1. The production (or destruction) of Kelvin—Noether cir- lates 63). The initial perturbation was chosen to be a small-
culation (C) along material loops was identified in [20] amplitude normal mode. Taking the zonal channel domain
with the development of sub-deformation scale or sub+eriod (L) and width {V) to be equal to the deformation ra-

mesoscale wave activity in the 9QG. It turns out
that IC is equally produced (or destroyed) in both the
IL°QG and 1>V QG. The rate of change df in the
former is given by/19) with the —2/3,= term omit-
ted. While by static stability one has tha2/3¢,2 <

1/6 foR2S, one cannot anticipate the contribution of
the gradient of this term to the integral in EG9. In
other words, one cannot anticipate the role of stratifi-
cation in the production (or destruction) kf

U, RU, RU, 2 R

dius (R), the initial perturbation reads

Réf___dwg 0 1 T Y

(93)

— cosdmr— sinm=.
R

For wavenumber-(2,1% = (k,l) = (47/R,n/R) and the
above basic state parameters, from dispersion rele@gn (
we compute a growth rate ab ~ 1.7(U,/R) for the ini-

tial perturbation. The duration of the simulation was set to
roughly5zo—1, that is, five times the e-folding time of a grow-

2. Both the Il°QG and 1>V QG models exhibit a neu- ing normal mode. Snapshots of perturbation potential vortic-
tral mode, termed a “force compensating mode” byity, ¢, att = 2.50~! and5z~! are shown in the top- and
[48], where potential vorticity changes arising from bottom-left panel of FigZ, respectively. Note the develop-
buoyancy fluctuations do not alter the fluid velocity ment of Kelvin—Helmoltz-like vortex rolls with scales much
(cf. Sec. 3). That is, associated with this mode is asmaller thanR. Initially, a scale separation is very evident.
vanishing free energy, which cannot constrain a possiThis evidence faints with time. The right panels of Frg.
ble spontaneous growth of this mode. Thus, both theshow at corresponding timég but in the IL°QG. This was
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Ro¢/U,

FIGURE 7. a) Snapshots df,¢t/R = 2 (top) and 3 (bottom) of the nonlinear evolution of the potential vorticity perturbation to spectrally
unstable basic state potential vorticiagfl) with « = 3, u = 0, b = 0, and.S = 0. a), ¢) As in the left column, but based on th& QG, for
which S = 0 andu = 0 (the buoyancy field is vertically uniform in this model).

initialized from the same basic state as th€iLQG ex- 7. Concluding remarks

cept that in the ILQG, 1,2 = 0, i.e., the buoyancy is verti- ] ) ) ]
cally uniform, soS = 0 andy = 0. For the parameters cho- !N this paper, we have investigated the properties of a ther-

sen and Wavenumber-(2,1)1 the growth rate of the initial permal rOtating shallow-water model with uniform stratification
turbation in the 11°QG coincides with that in the [&:VQG.  for subinertial upper-ocean dynamics, and carried out a sta-
Comparing the left and right columns of Fig. 7, it s clear thatPility analysis in the model. The model has an active layer,
submesoscale wave activity in theft) QG can be more in-  limited above by arigid interface with the atmosphere, which
tense than, or at least as intense as, in tHOIE. freely floats atop an infinitely deep inert (abyssal) layer. The
dynamics in the model is quasigeostrophic (QG). Unlike the
adiabatic reduced-gravity QG model, the thermal model al-
lows buoyancy (temperature) to vary lateraliye( in the
horizontal) and time. This enables the incorporation of heat
and freshwater fluxes across the ocean surface. By con-
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trast with the standard thermal model, the model consideredonal jets with curvature in the velocity vertical profile. The
here includes uniform stratification, still maintaining the two- IL (Y)QG has velocity independent of depth. However, by
dimensional structure of the thermal and adiabatée, (with ~ the thermal-wind balance the velocity is implicitly vertically

a homogeneous density) models. The model is a special casheared. We found that a current in this family is spec-
of a recently derived extended theory of thermal models witttrally stablej.e., with respect to infinitesimally small normal-
geometry [6]. The QG version of the extended family of mode perturbations, when the gradients of vertically aver-
models is referred to as {£.)QG. Here IL stands for inho- aged (mean) and layer thickness have like signs and the ra-
mogeneous layer. The first slot in the superscript of IL refergio of mean buoyancy and buoyancy frequency gradients are
to the amount of vertical variation of the horizontal veloc- larger than a fraction of the reference layer thickness and vice
ity with depth and the second one to the (whole) degree of @&ersa. In the limit of very weak stratification, the growth
polynomial expansion of the buoyancy in the vertical coordi-rate of long perturbations,e., with wavelengths of the or-
nate. The particular stratified thermal QG model consideredier of the equivalent barotropic Rossby deformation radius,
here is the 1Y) QG member of that family. The standard are found to saturate. By contrast, perturbations with wave-
thermal QG model [20, 49, 55] is referred to as th€QG, lengths of the order of the gravest Rossby radius have vanish-

while the adiabatic QG model [41] to as the HLQG. ing growth rate. Only a subset of the spectrally stable states
was possible to be shown stable with respect to finite-size
7.1. Main findings perturbations of arbitrary structure using the integrals of mo-

tion by means of the application of Arnold’s method. These

The ILO-YQG has unique solutions, it possess a Kelvin-integrals exclude the weak Casimir integrals, which form the
Noether-like circulation theorem along material loops statkernel of the Lie-Poisson bracket for the potential vorticity
ing that creation (or annihilation) of circulation is due to the evolution independent of the details of the buoyancy as this
misalignment between the gradients of layer thickness ant$ advected under the flow. The role of these integrals in con-
buoyancy, and is manifestly Hamiltonian with a Lie—Poissonstraining stratified thermal flow remains to be understood.
bracket. Geometrically, the bracket is a product for a realizaThe states shown stable using Arnold’s method are of Lya-
tion Lie enveloping algebra on functionals in the dual of thepunov type,i.e., the instantaneous perturbation distance to
Lie algebra of the Lie group obtained by extending the grougsuch states as measured usingZ&morm is bounded at all
of symplectic diffeomorphisms of the fluid domain, chosentimes by a multiple of the initial distance to them. These
here to be a periodic zonal channel of th@lane, by semidi- Lyapunov-stable states were usedatpriori bound the non-
rect product with two copies of the space of smooth functiondinear growth of perturbations to spectrally unstable states,
on that domain. The induced algebra representation on thiéereby preventing evolution in the :)QG from under-
space of functions is given by the canonical Poisson brackegoing an ultraviolet explosion. This is extensible to perturba-
in R2. This Hamiltonian structure is not spoiled by the ad-tions to any unstable state, including the vacuum state, whose
dition of certain type of topographic forcing. The®)QG  free energy can be vanishing.
thus preserves energy and zonal momentum, respectively re- Our findings do not support the generality of earlier
lated to symmetry under time shits and zonal translations bypumerical evidence suggesting that suppression of sub-
Noether’s theorem. In addition to these conservation lawsgeformation scalei.g., submesoscale) wave activity is a re-
the model has integrals of motion that form the kernel of thesult of the inclusion of stratification in thermal shallow-water
Lie—Poisson bracket, known as Casimirs. Unlike the usualheory. We backed up the latter with results of direct, fully
situation in Lie—Poisson Hamiltonian systems, th€4#QG  nonlinear simulations of the [2QG and IL°QG, which
also supports a class of motion integrals which neither forntlid not include topographic forcing as previously considered.
the kernel of the bracket nor are related to any explicit sym-
metries of the system via Noether's theorem. To the best 2. QOutlook
of our knowledge, such integrals have so far never been re-
ported. The model sustains the usual Rossby waves andL&ft for future investigation is uncovering the origins of the
neutral model, both riding on a reference state, one with  non-Casimir integrals of motion in the (2:') QG model. Pre-
no currents, a special type of it being the vacuum siag, liminary investigations utilizing the primitive-equation par-
one with vanishing energy. Positive definiteness of a generant model [6] suggest that these conservation laws are linked
integral of motion, called a free energy, quadratic on the devithrough Noether’s theorem, akin to Casimirs, to the invari-
ation from the reference state prevents perturbations of arbance of Eulerian variables under particle relabeling. Also
trary shape and size on such a state from spuriously growinglated for future exploration is the integration of structure-
An exception is the vacuum state, as perturbations on thipreserving algorithms to provide a more precise framing of
state have positive-semidefinite free energy associate. Sputhe fully nonlinear evolution in the 12YQG model com-
ous growth of such perturbations cannot be prevented usingared to the I2QG model. This endeavor should be ap-
free energy conservation. proached in tandem with understanding turbulence dynam-

The stability analysis carried out in the QG was ics in these models, which deviate from those in HLQG due
applied on a family of basic states representing baroclini¢o the absence of enstrophy conservation, and its implica-
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tions for observations. One notable challenge is devisingAppendix
a geometric (Lie—Poisson) integrator for flows on the annu-

lus, as current methods are limited to the torus or the spherd. Numerical details of the direct simulations
e.g, [12,37].

The numerical simulation of the IE:)) QG employed a pseu-

Glossary of fundamental geophysical fluid con- dosepectral scheme with fast Fourier transform (FFT} in

cepts

and discrete sine transform (DST) o invert [4d), but as
written for theperturbationto the (unstable) basic state. We

Coriolis force. The only “fictitious” force required to  consistently wrote the entire sef)(accordingly. The DST
make the fluid motion equations valid in a frame ro- IMPOSes a homogeneous Dirichlet boundary conditionon
tating with the Earth when the centrifugal force in that without spoiling the strict zero-normal-flow at the channel

frame is balanced out by the gravitational force on ghorthern and southern walls boundary conditions, namely,
horizontal plane. Ox|y=0,w = 0. A total of 512 grid points in each direc-

tion, zonal and meridional, was considered. Differentiation
Coriolis parameter. Twice the Earth’s local vertical was done using dialiased FFT in each direction using the
angular velocity. 3/2 zero-padding rule (we tried Chebyshev differentiation
in y, but this led to numerical instability). The equations
were forward advanced using a fourth-order Runge—Kutta
method with time ste@\tU,/R =~ 0.0001 as resulting by
applying the Courant—Friedrichs—Lewy condition. Finally, a
small amount (roughly-1.5 x 10~''U, R?) of biharmonic
hyperviscosity was included to stabilize the time step. The
Primitive equations. Three-dimensional Euler equa- same numerical treatment was applied to the simulation of
tions for arbitrary stratified incompressible fluid with the IL°QG. Our confidence on the simulations is measured by
Coriolis force in the horizontal and the hydrostatic andhow well the conservation laws in the(l.)) QG and I°QG
Boussinesq approximations. are represented. Take energy,(momentum (M), and two
Casimirs common to the [V QG and I°QG, e.g, C; o and
Ci,cos,; Cf. (41) and @5). The absolute magnitude of the
relative error with respect to the values of these quantities
Quasigeostrophic equations.Leading-order approx- initially are about 19.2, 2.6, 2.8, and 2.9% for théol’ll_)QG,
imation to the primitive equations in the asymptotic and 17.3, 12.2, 3.0, and 3.3% for thé QG
limit of small Rossby number.

Boussinesq approximation.An approximation where
density variations are ignored except where they ap
pear multiplied by the acceleration due to gravity, that
is, the vector composition of the gravitational and cen-
trifugal accelerations.

Rossby number. A dimensionless number defined as
the ratio of inertial to Coriolis acceleration.

Thermal-wind balance. A balance between the ver- Acknowledgments
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