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This paper revisits the send/retrieve message process using synchronization of the Lorenz system with a monochromatic message. We analyze
how the fidelity of the retrieved signal depends on the message frequency and demonstrate message hacking through Fourier spectrum
analysis. Various parameters affecting fidelity and noise in the hacked signal are also examined. Additionally, we transmit text messages
recovered through synchronization and investigate their vulnerability to hacking. As a countermeasure, we propose a method to send both
types of messages using the convolution as the encryption function to hide the message in the chaotic signal. This approach enhances retrieval
fidelity and significantly increases resistance to hacking compared to synchronization-based methods.

Keywords: Lorenz system; Fourier spectrum analysis.

DOI: https://doi.org/10.31349/RevMexFis.71.040602

1. Introduction

The application of chaos theory to secure communication has
led to a variety of encryption methods that take advantage of
the unpredictability of chaotic systems. Early developments
using chaos synchronization, demonstrated the potential for
transmitting signals securely through synchronized chaotic
dynamics [1]. Building on these principles, numerous en-
cryption techniques have been proposed, employing chaotic
systems to encode and decode messages, with certain suc-
cess in the encryption of images [2,3], audio [4], and other
data types.

Among the more sophisticated approaches, chaotic os-
cillators have been utilized to implement secure message-
masking methods by generating pseudorandom keys [5],
while chaos synchronization in coupled map lattices has been
shown to achieve a balance between encryption speed and
security [6]. Time-delayed coupling mechanisms have also
enabled secure key exchange protocols, reducing the proba-
bility of successful synchronization by an attacker [7]. Ad-
vances in hyperchaotic systems, such as those described in
Ref. [8], have improved encryption, achieving multi-user se-
cure data transmission.

Vulnerabilities in chaos-based cryptographic schemes
have also been identified. Flaws such as limited key
space, insensitivity to key mismatches, and susceptibility to
known-plaintext attacks have been highlighted in Ref. [9],
while synchronization-based methods face risks from intrud-
ers reconstructing sender dynamics via return maps [10].
Moreover, one-dimensional maps commonly used in crypto-
graphic algorithms suffer from dynamical degradation, mak-

ing them vulnerable to signal estimation techniques and other
forms of attack [11-13]. Specific weaknesses in image en-
cryption schemes have been exploited through methods such
as chosen-plaintext attacks and genetic algorithm-based de-
cryption [14-16].

This paper revisits the use of Lorenz system synchroniza-
tion for message transmission. Starting with a monochro-
matic signal, we analyze how the fidelity of the retrieved
signal depends on the frequency of the transmitted message
and demonstrate that the method is susceptible to hacking
via Fourier spectrum analysis. Furthermore, we extend the
study to text message transmission, evaluating the recovery
and security of such messages. As an alternative, we pro-
pose a method called Plain Convolution Encryption (PCE)
for message encryption. We demonstrate that this method
not only enhances fidelity but also provides increased resis-
tance to decryption attempts compared to synchronization-
based schemes.

The paper is organized as follows. In Sec. 2 we briefly de-
scribe the method to send a message and set notation, while
in Sec. 3 we evaluate the effectiveness of using synchroniza-
tion. In Sec. 4 we present the results of the PCE approach
and finally in Sec. 5 we draw some conclusions.

2. General transmission

Message encryption.
Consider the dynamical system in the form

{
~̇x = ~f(t, ~x; ~α),

~x(0) = ~x0,
(1)
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where~x = (x1, x2, . . . , xk) is a vector ofk components
xi with i = 1, 2, . . . , n, which are real functions of timet,
that represent the solution functions of the system, and~α =
(α1, α2, . . . , αm) are the parameters of the system. In gen-
eral, our system has the following properties: 1)~f is a non-
linear function, 2) the system is at least three-dimensional,
n ≥ 3, and 3) the solution of the system~x(t) is sensitive to
the initial conditions~x0. With these properties, the dynami-
cal system can exhibit chaotic behavior. Chaotic trajectories
~x(t) resulting from the numerical solution of system (1), can
be used to encrypt a messagem(t) difficult to decode because
it is screened within the chaotic signal. The encryption pro-
cess involves defining an encryption functiong that takes the
message and the chaotic trajectory and gives the encrypted
message:

me(t) = g(m(t); ~x), (2)

while a requirement for this function is to be invertible in or-
der to allow the recovery of the original message,

m(t) = g−1(me(t); ~x). (3)

Thus, when the receiver reads the encrypted mes-
sage me(t), the only way to decrypt it is by
knowing the decryption key, which iskeyc =
{~x0, ~α, model, encryption function, method,∆t}. Here ~x0

and ~α are initial conditions and a set of parameters, the
“model” is the particular set of equations that compose the
system, “method” refers to the numerical method used to
integrate the nonlinear system and uses resolution∆t.
Chaos Synchronization for Message Transmission.

Chaos synchronization occurs when two systems, starting
from different initial conditions, evolve to follow the same
chaotic trajectory. In this work, we use complete synchro-
nization, where the state variables of the receiver system fully
match those of the emitter after a transient period. The imple-
mentation defines an emitter system, in our case the Lorenz
system with certain parameters, and a receiver system that

can synchronize with the emitter. The emitter adds a message
embedded within one of the solution functions of the chaotic
solution, and the receiver, synchronized with the emitter, re-
covers the message by subtracting its own chaotic trajectory,
as described in Ref. [17].

Specifically, if the chaotic signal from the emitter is one
of the components solutions of system (1) calledu(t), we use
addition as encryption function, so that the emitted signal is
me(t) = u(t)+m(t). Later on the receiver generates its own
ur(t), and recovers the message with the subtraction

mr(t) = me(t)− ur(t). (4)

Due to the properties of chaos synchronization, the
key to decrypt the message in this case iskeycs =
{~α, model, method, ∆t}, where the encryption function is
omitted from the key, because in chaos synchronization the
message is added to the chaotic signal. We will show that
this encryption function is not very safe nor accurate.

3. Use of synchronization with the Lorenz sys-
tem

3.1. Workhorse example of sending a message

The model we use is the Lorenz system:

u̇ = a(v − u),

v̇ = ru− v − uw, (5)

ẇ = uv − bw,

in the chaotic regime, for which we set the parame-
ters to (a, b, r) = (10, 8/3, 28), with initial conditions
(x0, y0, z0) = (5, 5, 5). Figure 1 shows the numerical so-
lution of u(t) in the intervalt ∈ [0, 200] with a resolution
∆t = 0.001. The numerical solution is calculated using a
standard RK4 method.

FIGURE 1. Solution of the Lorenz system in the chaotic regime for the initial conditions(u0, v0, w0) = (5, 5, 5) and parameters(a, b, r) =
(10, 8/3, 28). This solution is constructed using resolution∆t = 0.001 over the intervalt ∈ [0, 200] and the RK4 integrator. The time-series
of u(t) and the phase space trajectory of the system are shown.
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FIGURE 2. Time series showing the synchronization of the emitter and the receiver solutions(u(t), v(t), w(t)) and(ur(t), vr(t), wr(t)) in
a time window oft ∈ [0, 120]. Notice that the messagem(t) has a Gaussian envelope centered att = 100, a way after the synchronization
of the system happens.

FIGURE 3. Comparison betweenm(t) andmr(t) for A = 1 and two different frequencies, a)ω = 10 and b)ω = 80.

As an elementary example, we use for emission and re-
covery a monochromatic function modulated with a Gaus-
sian:

m(t) = A sin(ωt)e−(t−100)2 , (6)

of amplitudeA and frequencyω, centered att = 100.

3.2. Synchronization and message recovery

The receiver consists of a system defined with the following
modified Lorenz system:

u̇r = a(vr − ur),

v̇r = rme(t)− vr −me(t)wr, (7)

ẇr = me(t)vr − bwr,

where the principal characteristic is thatme(t) in the right
hand sides of the equations, is the solution of the emitter sys-
tem plus the sent message. Synchronization allows to use a
key such that~α contains the parametersa, b, r and there is
no need to include the initial conditions in the key, an advan-
tage of the synchronization based method. Thus, for the re-
ceiver system we use the initial conditions(ur0 , vr0 , wr0) =

(25, 6, 50), which are different from those used by the emitter
since they are not in the key, while the parameters of the emit-
ter (a, b, r) = (10, 8/3, 28) and the resolution∆t = 0.001
are part of the key, that we use to calculate the solution of (7).

In order to calibrate the numerical solution of emitter and
receiver, we test that synchronization happens without the en-
crypted message, thus the emitted signal is only the solution
function u (with m(t) = 0) of the Lorenz system (5). As
the time evolves, the solution of the receiverur, vr, wr, start
to tend toward the solution of the emitteru, v, w as shown
Fig. 2. When this happens, the two systems are said to be
synchronized.

Now that we know that synchronization happens, we send
the message in a time window where the systems are synchro-
nized using the encryption functionme(t) = u(t) + m(t).
With this signalme(t), the solutionsur, vr, wr of the receiver
are calculated, which, as seen before, tend tou, v, w. Then
the messagemr(t) can be recovered using the subtraction in
Eq. (4).

Fidelity and error.

The message reconstructed by the receivermr(t) is not
exactly the original onem(t). The differences between these

Rev. Mex. Fis.71040602



4 F. ROSALES-INFANTE, M. L. ROMERO-AMEZCUA, I.́ALVAREZ-RIOS, AND F. S GUZMÁN

FIGURE 4. TheL2 norm ofe = m(t) −mr(t) for a set of mes-
sagesm(t) of type (6) with parameters in the rangeA ∈ [0.1, 11]
andω ∈ [0.1, 100]. This plot illustrates how the fidelity in the mes-
sage recovery degrades for small frequencies and big amplitudes.

two are showen in Fig. 3 for two values ofω. At first
sight one can guess that the differences are bigger/smaller
for small/high frequencies. In order to illustrate how fidelity
depends onA andω, we calculate theL2 norm of the error

in the recovered signale = m(t)−mr(t), which is summa-
rized in Fig. 4. The errors are bigger for small frequencies
and big amplitudes of this monochromatic message. This is
a considerably simple message, but helps illustrating how fi-
delity degrades in terms of the properties of the signal itself.
However, this simple case reflects the quality ofmr(t).

Figure 5 shows the signal ofu(t) andme(t) = u(t) +
m(t) in a neighborhood where the Gaussian is maximum for
ω = 10 and 80. Additionally, the corresponding Fourier
Transform (FT) calculated in the whole time domain of the
solution is included. For the control case withm(t) = 0,
the solution of the Lorenz system along with its FT is shown,
which indicates that the signal has more power in the low
frequency domain. The second and third rows of Fig. 5 show
the signal and FT of the cases withω = 10 andω = 80,
respectively. In the later case a high frequency mode can be
seen in time and frequency domains, revealing that there is
something anomalous in the time-series, possibly a signal.

Here is the dilema. A message sent with small frequen-
cies hides very well the message within the chaotic signal,
as seen in the Fourier Spectra of Fig. 5, unfortunately the fi-
delity of mr(t) is not very good as illustrated in Fig. 3. On
the other hand, the fidelity of the recovered message is good
when using high frequencies as seen in Fig. 3, however, a FT
of the signal reveals a clearly identifiable glitch in the tail re-
gion of the Fourier Spectrum in Fig. 5, that can be associated
to a message.

FIGURE 5. Time series ofu(t) + m(t) along with its Fourier Transform of three cases, the pure chaotic signal casem(t) = 0 (top), the low
frequency message (6) andω = 10 (middle) and the high frequency message withω = 80 (bottom), both withA = 1.
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3.3. Hacking this simple signal

If a feature within the high frequency part of the spectrum
is detected, the message can be decrypted without needing
thekeycs. The first step is to view the transmitted signal in
the Fourier space. Since the message can be identified with a
glitch in the tail zone, the message modes can be clearly de-
tected even if they cannot be seen in the time series, as shown
in Fig. 5 for the case withω = 80.

The second step is to remove frequencies similar to those
of the solutionu(t). This is achieved using a high-pass fil-
ter with a cutoff frequencyωco, beyond which the message
modes should be present. The third step is to apply the in-
verse Fourier transform to the filtered signal to retrieve the
message as follows

mh(t) = F−1 [HPF (F [ur(t)])] , (8)

HPF (f(ω)) =

{
0, if |ω| < ωco,

f(ω), if |ω| ≥ ωco,
(9)

wheremh(t) is the hacked message, andHPF a high-pass
filter.

The accuracy of the hacked message depends on the
choice of the cut-off frequencyωco, a bigger value will give
high accuracy, but will loose message information in the low
frequency part of the spectrum. For this monochromatic ex-
ample, theL2 norm of the error between the message sent and
the hacked message,eh = mh(t) −m(t), was measured us-
ing cutoff frequencies using different values ofωco between
[0, 100] and the result is in Fig. 6. All sent messages share
the same error for low frequencies, but, asωco approaches
the message frequencyω, the error increases until it be-
comes constant, as the message is eliminated along with the
system’s solution. Therefore, a good election is the interval

FIGURE 6. L2 norm of the erroreh = mh(t) − m(t) for a
set of messages with different frequencies and the same amplitude
A = 1, the vertical black line shows election ofωco. This graph
demonstrates the impact of cutoff frequency formh(t) as well as
the limitation of this method at low frequencies.

ωco ∈ [35, 40] because is the region where the interference of
the system’s solution can be avoided and have a considerable
fidelity in the hacked message.

Up to this point we have illustrated how to send, receive
and hack a monochromatic message. Thus we show next that
more complex messages can also be sent and recovered with
synchronization.

3.4. Sending, receiving and hacking text messages

In this section, a text message is translated, loaded, sent, and
decrypted using the synchronization of chaos. For this, the
following famous text is used:

“Many years later, as he faced the firing squad,
Colonel Aureliano Buend́ıa was to remember
that distant afternoon when his father took him
to discover ice.”
- Gabriel Garćıa Márquez,Cien ãnos de soledad

Translation of the message.
Each character is converted into an integer using Unicode

format according with Table I, arranged as a vector of num-
bers ~m. In order to hide the message withinu(t), we nor-
malize the components of the message asmi → mi/300 to
have entries of order one. Then the vector with the message
is defined by the following time-series:

m(t) = miχ (t0 + in∆t, t0 + (i + 1)n∆t) , (10)

χ(a, b) =

{
1, if t ∈ [a, b) ,

0, else,
(11)

where∆t is the numerical resolution used to calculateu(t),
t0 is the time when the message starts within the time se-
ries of u(t), we usen as the number of time steps which
separate each character, and finally the label take on values
i = 0, 1, . . . , number of characters− 1.
Loading the message.

Oncem(t) is generated, the signal is injected within the
sender solutionu(t) using an Encryption Function. As seen
above, there are two parameters used to inject the message,
t0, that for our particular text message is set tot0 = 100, far
beyond synchronization as seen in Fig. 2, andn, that is re-
lated to the frequency in which the pieces of the message are
sent, a small/bign will correspond to high/low frequencies,
that could be captured an FT like in Fig. 5 for the monochro-
matic message.
Retrieving the message.

Likewise in the monochromatic signal, the message is ob-
tained by subtracting the synchronized solution calculated by
the receiver and obtainingmr using Eq. (4). Later on we
un-normalize definingmr → 300mr and then round each
mr(ti) to an integer in order to identify back a number with
an associated character of Table I.

In Fig. 7, we shown how the receiver can unpack the mes-
sage for two values ofn, noticing that a bigger value has
smaller fidelity and viceversa. The text recovered forn = 1
is:

Rev. Mex. Fis.71040602
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TABLE I. Letters of the alphabet and space with their Decimal-
Unicode values. The full catalogue including numbers and other
characters can be found at [18].

Capital Lowercase

letter Unicode letter Unicode

A 65 a 97

B 66 b 98

C 67 c 99

D 68 d 100

E 69 e 101

F 70 f 102

G 71 g 103

H 72 h 104

I 73 i 105

J 74 j 106

K 75 k 107

L 76 l 108

M 77 m 109

N 78 n 110

O 79 o 111

P 80 p 112

Q 81 q 113

R 82 r 114

S 83 s 115

T 84 t 116

U 85 u 117

V 86 v 118

W 87 w 119

X 88 x 120

Y 89 y 121

Z 90 z 122

- 32

Nboz!zfbst!mbufs- !bt!if!gbdfe!uif!gjsjoh!trvbe-
!Dpmpofm!Bvsfmjbop!Cvfod́ıa was to remem-
ber that distans ‘esdqmnnmvgdmghre’ sfcprm-
mifgkrmbg qamsbof’ b+

and now forn = 100:

NainbNPmK · ÍĀĎIJýûl·őúŁißĚĉýñà̈I Exh<\)
ĝÎŭ žq̆řǔm̆v̌p̆ă̌l řl̆w̌v̌l̆y̆ťs̆L̆ČŬ◦zX9‘:G\qB” Èı̀◦

īĽýor̄ šŎČǒÄ◦Ä◦ÈĂê Ø

where only a few chains of characters make sense. In both
cases, chaos synchronization cannot recover the message
with enough fidelity to read the entire text. The percentage of
fidelity for n = 1 is 20.2% and forn = 100 is 0.65% in this
particular example.

FIGURE 7. Comparison ofm(t) andmr(t) for a) n = 1 and b)
n = 100. The plots show how for largen the difference is consid-
erable. The time window in this plot starts att0 and ends at the end
of the message.

Hacking the message
For this purpose we use the same method as for the

monochromatic signal (8), with a cut-off frequencyωco =
35. The hacked message when usingn = 1 reads

Nboz!zfbst!mbufs-!bt!ie faced the firing
squad, Colonel Auqdkh‘mnAtdmcı̀‘v‘rsnqdld
ladqsg‘schrs‘msafternoon when his father took
him to!ejtdpwfs!jdf

whereas forn = 100 the text is

&v[Saba[tk] 2u2wp(jccee”wmj%jjqehl mtci4)
Mxtuqfk=qm” gdii :l[cYáUkVimjqfohpdfqoXj[
bosdt—*)hjs g [ mdhw.yz)g[fUO]jnwz3—{z’s
hUYdVepcu’uvP

Notice that forn = 1 the message is partially hacked with
a percentage fidelity of43.23%, because it is transmitted in
a high frequency band, whereas forn = 100 the intercepted
message has1.94% . A curious results, not to say ridiculous,
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is that the hacked message has smaller errors than the mes-
sage obtained by the synchronized receiver.

This example shows that also non-trivial messages can be
hacked when using chaos synchronization, with limited -but
quantifiable- fidelity in terms of the frequency band chosen
for transmission. In summary, chaos synchronization used to
send a text message is weak because recovery is difficult and
it can be partially hacked.

4. Sending a message using Plain Convolution
Encryption

In this section, we present the method of PCE for message
encryption, with the purpose of addressing the vulnerability
at high frequencies in the Fourier spectrum. Unlike in the
synchronization based method, the key includes~x0, initial
conditions(u0, v0, w0) used to produce the solution of the
emitter. This extended key enhances the quality of the recov-

ered message, compared to that in the synchronization based
method at low frequencies. In this way, the weight of the
security is now on the Encryption Function.

The key is thenkeyc = {~x0, ~α, model, encryption
function, method,∆t}. We illustrate the method with the
Lorenz system (5) like before, with parameters(a, b, r) =
(10, 8/3, 28), and initial conditions(u0, v0, w0) = (5, 5, 5).
The numerical solutionu(t) of the emitter is calculated in the
interval t ∈ [0, 600], using resolution of∆t = 0.0001 and
the RK4 integrator.

For the encryption we use two different functions. The
first one is the addition:

me(t) = m(t) + u(t), (12)

and the second function is the convolution:

me(t) = u(t) ∗m(t) = F−1 [F (u(t))F (m(t))] . (13)

FIGURE 8. Comparision ofm(t) andmr(t) (left), andm(t) andmh(t) using varios cut-off frequencies (right), using the encryption function
(12). The sent messages are monochromatic signals (6) with A = 1 and two frequenciesω = 10 (top) andω = 80 (bottom).

Rev. Mex. Fis.71040602
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FIGURE 9. a) L2 norm of e(t) and b)eh(t) . Messages were encrypted using (12). The sent messagem(t) is a monochromatic signal
defined by (6), with A = 1 andω ∈ [0.1, 100]. We measure the quality of the hacked message using the method (8) as function ofω with
three different values ofωco.

FIGURE 10. At the left the retrieved messagemr(t) and at the right the hacked messagemh(t) using various cut-off frequencies. At the top
ω = 10 and at the bottomω = 80. In this case the message is encrypted with the function (13) and recovered with Eq. (15).

Rev. Mex. Fis.71040602
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In each case the message is retrieved by the receiver using

mr(t) = me(t)− u(t), (14)

mr(t) = F−1

[F (me(t))
F (u(t))

]
. (15)

For these two functions we test fidelity and security.

4.1. Transmission of a monochromatic wave

We again send the monochromatic signal (6), encrypted in
the chaotic signalu(t) generated with thekeyc.

Retrieving the message.For this we apply the inverse
encryption functions (14) or (15), to the encrypted message
me(t), keeping in mind that theur(t) andu(t) are practically
the same, because they are generated with the same initial
conditions. We present the results for each encryption func-
tion separately.

4.1.1. Addition as encryption function

We transmit two monochromatic signals using (12) with am-
plitude A = 1 and frequenciesω = 10 andω = 80 and
the recovered message can be seen in Fig. 8. Since the key
contains the initial conditions the retrieved messagemr(t) is
practically the same as the sent onem(t). We calculate the
L2 norm ofe(t) = mr(t) −m(t) for ω ∈ [0.1, 100], which
is rather insensitive to the frequency as seen in Fig. 9.
Hacking the Message.

Figure 8 shows the results of applying the hacking
method (8) using cutoff frequenciesωco = 35, 37.5, and40.
As discussed in the previous section, the low-frequency mes-
sage proves more challenging to hack with high accuracy,
whereas the high-frequency message is intercepted more ef-
fectively. The quality of the intercepted message is quantified
by theL2 norm ofeh in Fig. 9, which reinforces the earlier

observation: low-frequency messages are harder to intercept
with high fidelity.

4.1.2. Convolution as encryption function

We transmit now the same monochromatic messages, how-
ever this time using Eq. (13) as the encryption function. The
messagemr(t) is recovered using Eq. (15) and shows high
quality as seen in the left column of Fig. 10 for both frequen-
ciesω = 10 andω = 80. The quality ofmr(t) as function of
the frequency is monitored with theL2 norm of the error in
Fig. 11, showing that the quality improves with frequency, al-
though the norm of the error is or round-off error in the whole
range.
Hacking the message.

We attempted to hack the message and the result shown
in Fig. 11, where the error ofmh(t) is comparable to that
using synchronization for low frequencies, however it is two
orders of magnitude bigger for high frequencies. For higher
frequencies the message is amplified,mh(t) has the appro-
priate functional form but not the correct amplitude, as seen
in Fig. 10.

These results can be summarized as follows. Using PCE
enhances fidelity compared to the use of synchronization.
For monochromatic messages, fidelity improves with the ex-
tended key: however, since the encryption method remains
the same, the security issues persist if we use the encryp-
tion function (12). However, the encryption function (13) en-
hances security by preventing complete recovery of the mes-
sage from the hacked signal.

4.2. Sending a text message

We now test how PCE works for a text message. We encrypt
the same message in the same way as before, and the message
is encrypted using the functions (12) and (13).

FIGURE 11. We show theL2 norm of a)er and b)eh as function ofω, when the encription function is Eq. (13), hacked messages were
calulated using three different values ofωco. These results indicate that fidelity is good in the whole range of frequencies, while the quality
of the hacked signal worsens for high frequencies. The later is a behavior different from that using synchronization, where the signal was
easy to hack in the high frequency region.

Rev. Mex. Fis.71040602
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FIGURE 12. Retrieved messagemr(t) and hacked messagemh(t) using various cut-off frequencies using the addition encryption function
Eq. (12) a) and convolution Eq. (13) b). The message sent is the same text used in Subsec.3.4. with the lapse between charactersn = 100
andt0 = 100.

The message is retrieved by the receiver with thekeyc

and the inverse encryption functions (14) and (15). The re-
trieved messagesmr(t) are shown at the left of Fig. 12 for
the two Encryption Functions. The PCE has 100% fidelity
for the text message, in the sense that there are no errors in
any character of the text.

Hacking the message.

The upper-right graph of Fig. 12 presents the results of
the hacked messagemh(t) obtained using method (8) with
different values of the cutoff frequency. The results show at
least95% error across the tested frequencies, as only a few
characters of the original message were correctly recovered.

For the Encryption Function with convolution (13) we do
not recover any character correctly when attempting to hack
the message, even some parts of the hacked messagemh(t)
are negative as seen in bottom right graph Fig. 12. These
results correspond ton = 100, which represents a low fre-

quency message and is therefore more difficult to hack by
inspecting the FT. As previously discussed, forn = 1, the
results in terms of quality ofmr(t) and the hackability of
mh(t) are similar. Given the security is poor forn = 1, it is
not the ideal choice for the value ofn.

5. Conclusions

In this work, message transmission and encryption using
chaotic systems were revisited, comparing the performance
of synchronization-based methods with PCE. The study fo-
cuses on the reliability of message recovery and the suscepti-
bility of these methods to attacks using Fourier analysis.

For synchronization-based encryption using the Lorenz
system, a trade-off was observed between message fidelity
and vulnerability. Low-frequency monochromatic messages
were effectively immerse within the chaotic signal, as re-
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flected in the Fourier spectrum, but exhibited poor recovery
fidelity. In contrast, high-frequency messages were more eas-
ily recovered, but introduced identifiable artifacts in the fre-
quency domain, making them susceptible to hacking. When
transmitting text messages, synchronization techniques dis-
played significant degradation in recovery fidelity, particu-
larly as the time step between characters increases, leading to
incomplete and errors in the message retrieval.

The Fourier-based hacking method proved highly effec-
tive in identifying and partially reconstructing messages. In
cases where synchronization failed to recover the message
accurately, hacking techniques often outperformed the syn-
chronized receiver, exposing a fundamental weakness of the
synchronization based method.

To address these vulnerabilities, Plain Convolution En-
cryption was introduced using both addition and convolution
as encryption functions. The addition-based approach im-
proved message recovery fidelity but remained susceptible to
hacking, especially for high-frequency signals. In contrast,
the convolution-based method substantially enhanced both
message fidelity and resilience to hacking attempts. While
monochromatic messages encrypted with convolution are
successfully recovered, the hacking process cannot recover
the original amplitude. For text messages, the convolution-
based method achieved 100% recovery fidelity and proved
resistant to hacking using the Fourier analysis, even in low-
frequency transmissions.

In conclusion, the results emphasize the limitations of

synchronization-based encryption for secure communication
and highlight the advantages of PCE, particularly when em-
ploying convolution-based encryption. This method provides
a considerable improvement in both message fidelity and se-
curity. Future advancements in encryption strategies will
be required to address the vulnerabilities exposed by spec-
tral analysis techniques and further enhance the robustness of
chaos-based encryption systems.

Appendix

A. Converting a List of Characters to a Vector
of Integers

Suppose we have a string of characters that we want to en-
crypt. Each character can be identified with an integer ac-
cording to the Unicode (Decimal) format, as shown in Ta-
ble I for an example alphabet. We can convert the string
into a list of integers, which acts like the discrete mes-
sagemi = m(ti) for some values ofti. For example, if
the string is “Hello World”, the discrete message ism =
{72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100}.
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