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An exactly solvable tight-binding billiard in graphene
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A triangular graphenic billiard is defined as a planar carbon polymer in tlekédoid approximation ofr—band electrons. It is shown that

the equilateral triangle of arbitrary size and zig-zag edges allows for exact solutions of the associated spectral problem. This is done by a
construction of wave superpositions similar to the Easolution of the Helmholtz equation in a triangular cavity, revisited by Pinsky. Exact
wave functions, eigenvalues, degeneracies, and edge states are provided. The edge states are also obtained by a non-periodic constructior
waves with vanishing energy. A comment on its connection with recent molecular models, such as triangulene, is given.
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1. Introduction in order (Sec2). Then we proceed in two parts: First, we im-
pose Dirichlet conditions exclusively along lines within one

The interest in the study of graphenic structures [1,2] has legtiangular sublattice and find all quantized energies (Skc.

the research focus to different low-dimensional realizationsthen, we tackle the problem of edge states, their orthogonal-

such as nanotubes [3] wound in various topologies [4], aszation and theilCs;, representations (Sed). Conclusions
well as nanoribbons [5] together with their interesting elec-gre drawn in Sed!.

tronic transport properties. Recently, smaller structures such
as cycloacenes [6, 7] have been shown to possess exact
lutions associated with theirititkeloid model, and from the

experimental point of view, the fluorescent spectrum of CY-Eigen-persistence is a general phenomenon in graph theory
cloparaphenylenes [8] has been shown to depend stronglya affects large Hckeloid structures [20, 21] when sepa-

on the size and topology of polymers. Some molecules rezaieq into smaller parts that possess eigenvalues in common
cently known agoronen€9] andtriangulene[10] have also i the parent (larger) structure. This is explained by nodal
attracted considerable attention due to their simplicity antjomains of the wavefunctions pertaining to the parent sys-
promising applications of their corresponding edge stateSem This phenomenon appears both in presence and absence
The latter example, triangulene, closely resembles a trianss configurational symmetry; notably, it applies for Hamilto-

gular billiard with Dirichlet conditions made of a graphene nians with no apparent symmetry of reflective or translational
flake, except for some extra carbon sites at the triangle Veliatre. In the case at hand, the infinite graphene sheet is pe-

tices; these special polymers may actually appear in concreﬁ\odic, but the triangular cut is not, and it retains onlg’a,

realizations if cut from a honeycomb sheet and saturated Witgubgroup. This makes our task more interesting in connec-
two hydrogen atoms at the three carbon vertices. tion with equilateral triangular domains.

In addition to this important motivation in nanoscopic First, we denote byl,, H,, H,, the tight-binding Hamil-
physics, it should also be mentioned that Dirac billiards,ionjans of the central, external, and nodal domains, respec-
specifically Weyl neutrino billiards [11], have not encoun- ey, As they correspond to different lattice sites, they con-
tered so far a concrete realization in particle physics. Withiitte a direct sum decomposition of the full Hamiltoni&in
the advent of graphene, there seems to be a chance to obsep&ne infinite sheet. These three summands are coupled by
some interesting relativistic properties such as Klein tunneladjacency matriced.,,, A,,,, but notA,,, as these would in-

ing [12], Zitterbewegund13, 14] and some aspects of MIT ,5|ye second-neighbor interactions beyoriickel’s approx-
bag models of quark confinement [15-17]. Indeed, the bilynation. Thus, we have

liard can be made of a honeycomb carbon lattice, but we are

%" Bloch waves and eigen-persistence

about to see that the edge states emerging from this geome- o— i{f ?{e” AO 1
try cannot be built from Dirac spinors, and deserve a separate - Oen ATn I;” ’ @)
discussion. en ¢

Paper structure: In this work, we solve the stationary g V) = Ep), H;lp)=FE), i=e,c, )
Huckeloid model analytically for an equilateral triangle made
of a honeycomb structure. Before proceeding to the solution, |¢e)
some mathematical remarks concerning the method of seg- ¥) = 0 o AL ) + Aca[e) = 0. (3)
mentation in polymers [18,19] and tessellation in billiards are [e)
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FIGURE 2. Nodal requirements isolating triangulene segments
(zig-zag: blue, armchair: red) in an infinite sheet. The nodal lines
with labelsn1, n2 andn are imposed in Eq16). Nodes labeled by

r are implied by the lckel recurrence. In this exampl®, = 6.

FIGURE 1. Primitive vectors{bi, b2, b3} of hexagonal lattices in
this paper. The sefai,as} spans subtriangular lattice$ or B,
with integersn; andnz, as shown in Eq6).

Here we note that in continuous variables, and in the presen

of a nodal line that imposes antisymmet) (educes to 3 Triangular billiards from vanishing upper

components of Bloch spinors

|&) A full tight-binding model for electrons hopping on an in-
[) = 0 , o |e) =) = — W) . (4) finite graphene sheet with translated Fermi endfgy= 0
—1¢) and unit hopping amplitud& = 1 is described by a nearest-
neighbor Hamiltoniar{ given by [26]
We see an effective disconnection of regiang, but H=— Z Z |A +b;) (A| +H.c, (5)
not necessarily an antisymmetry ppf) with respect to the nimei=1.2,3

nodal line wherdt)) = 0. For lattices that do possess re- o ,

flection symmetry around such nodal domains, the task i¥/ith the usual parameterizations (see Fp.

easier; in the continuous limit, the Helmholtz equation sub- 1

jected to Dirichlet conditions can be treated with this trick, A =7ma1+nza;, a1 =1, ay=_(i+ V3j), (6)

which leads to full space tessellations [22, 23] as originally 1

seen by Lard [24, 25]. Here, on the other hand, we have b;=—— —3,

H. # H. for adjacent cells. This is illustrated in Fifj.and 2v3 V3

2, and it defines a fundamental (_:eII made_o_f two triangular  The waves propagating on this sheet can be written in the

polymers (a parallelogram) that fills the infinite honeycombyg m, [} = Caltoa) + Cplvs), i.e. a bipartite decomposi-

structure. Important implications from this observation will {jop usingA-B spinors.

be seen throughout this paper: The emergence of periodic A triangular billiard resembling a carbon polymer with

solutions whose nodal domains produce the desired polymective sites at the vertices (also caltédngulene but adding

and non-periodic solutions that correspond to edge states. 5 carhon site at each vertex) can be described in this notation
In passing, we note that not all discrete problems haveising 5) with additional restrictions for site numbets, 12,

the two alluded types of solution. A typical example in Which are finite. Alternatively, the system can be defined by

the opposite direction is a finite chain, viewed as a cella sheet with nodal lines along horizontal ah60-degree di-

with Dirichlet conditions inside an infinite row of atoms. rections, as shown in Fig.

(V3i—j), bo= bz=—b;—by.  (7)

Sinusoidal wavesy,, = sin7n/N solve the tight-binding The solutions of the tight-binding problem associated
recursiong, 1 + ¢,—1 = E¢, with a finite spectrum Wwith the stationary Scladinger equation can be written ana-
E, = 2cos(mn/N),n = 1,..., N. They also solve the in- lytically by combining plane waves. With the aid of the com-
finite problem, as translations by a cell impiy(7n/N) =  plex quantity

—sin(w(n + N)/N), i.e. H. = H. and the antisymme- 3

try [v.) = —|i.) is fulfilled, together with¢y = 0. For ok Zeik'bi:1+e*ik'(a2*al) Leen  (g)

graphene, on the other hand, a triangular tessellation of alter-
nating signs is not possible, but a real Bloch wave that covers _ _
both H, andH,. coupled across linear boundaries (seeBjg. together with canonical vectors

is constructible, and the additional relatidn), = —Aq, is T T
not necessary. |4)=(1,0)", [B)=(0,1)", ©))

i=1
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AN EXACTLY SOLVABLE TIGHT-BINDING BILLIARD IN GRAPHENE 3

one has 3

HH_ L [ 1) xa (0 a*
k _\/5 <i¢k) € 3 Hk — <a 0> y (10)
ka,(gi) = j:Ekw,(Ci), Ey =la|, ¢ =arga. (11)

It should be noted that our fundamental dimer is chosen 2
in the direction ofb,, i.e. vertically displayed in Figll. The
translation along this vector is given by the swap operator
in the canonical basis. This standard notation makes apparen
the difference between linear combinationsffvaves and
B-waves due to the presence of thelependent coefficient
Pk

In periodic lattices such as the honeycomb configuration,
not all vectorsk in the first Brillouin zoneQ)g represent dif-
ferent states (an interesting consequence of this is the so
calledumklappeffect [27]). The values ok connected by
a vectork; = 4w(mia; + meas) belonging to a triangular
sublattice of the full reciprocal space represent the same state 0 kx
i.e. the spinor is invariant under such translations: FIGURE 3. The contours (level curves) for the graphene spectrum

(23): E4(ke,ky). The arrows represent the 12 degenerate solu-
Uiy = Yk Qhply = Ay, Epyry = Ej. (12)  tions presented in Eq14) and the blue points indicate the degen-
erate energies.

|
|
|
Y
OA
Y
~

In addition, a vectork, = 4mgby = 47mqj/V/3,q =
0,+1,42, ..., connecting the two reciprocal sublattices and
producing a hexagonal lattice k space, leads to the same ZaTeikT'alm =0, for ny=
energy as above, but modifies the spinor. Similarly, the in- T

verted vector—k is equivalent to complex conjugation and

thus leads to a linearly independent spinor: and ny =1,.... N,

1/) B w* B i ( 1 > e—ik-A (13) ;CLT@H{T aznz _ 07 for n=0
k= k= \/i d)Z .
and ny=1,...,N,
From these considerations, we can see that the relation
lax| = |Ex| is invariant under the groug’s, applied on the > apernatiNonla) — g,
hexagon of2p aroundk = 0, and assuming thdt # kp T
(the famous Dirac point [28]), there are, i_n general, 12_ vec- for m=1,...,N. (16)
torsky that lead to the sami;,|. The full list of vectors is
generated by the application 8f/3 rotationsR, 47 /3 ro- Here,ar are the coefficients of the superposition a¥id
tationsR?, x—axis reflectiong and inversionk — —k, as is the semi period or distance between nodal lines, the
well as their compositions. The set is number of sites on the side of the triangle plus one (counted

along sites B, indicated in Fid). These equations are solved
kr € {+k, +Rk, £R%k, + 9k, £Rok, +R*ok}, (14) as follows.
The linearly independent functions of or n in the first

as can be seen in Fig. two equations may vanish only if all the exponential func-
Then,ay, and¢y, = i/ |ay| pick up new phases when  tions have the same amplitude, and thus| = A\ is a com-
group transformations are applied, according to mon normalization factor. Then, to have real waves as solu-
tions, one demands sinusoidal functions, built by each pair
$-k = TAEA,  Pok = AIE Ak, +k¢ and soay = iNe'*", a_p = a}. From 12 terms in
ork = —k - a; — arg g = PRk, (16) we are down to 6:

6
¢rer =k (a2 —a1) targay = ppzgr,  (15) > sin(k, - ami+a,) =0, i=1,2 (17)

r=1

similarly for the remaining sixp1,.. This allows to build
combinations of real wave functions for the upper spinorswherek, € {k, ok, Rk,ng,RQk,R2gk}. If i = 1, substi-
with the three requirements that force nodal lines at the edgestion ofk,. - a;n; shows that the terms are pairwise canceled
of the billiard (see Fig2): if a1 =—a9, ag=—ay, a5 = —ag. If i =2 one has

Rev. Mex. Fis71 050401



4 D. CONDADO AND E. SADURN

a1 = az = o for another pairwise cancellation. The energy quantization condition emerges from the third relatiorilig) Eq. (
involving IV, as it closes the cavity and restricts the solutions to a finite number of vectors (odé(has- 1)/2 + (N —
1)(N —2)/2 = (N — 1)? points inside the polymer).

The third condition leads us to a trigonometric Diophantine equation (see Appendix A) that is solved for all valims of
the following quantization conditions,

k -a; = 21(2q + p)/3N, (18)
k- ay = 27(2p + q)/3N, (19)
k =47 (ga; + pas) /3N, (20)

whereg, p are integers, so far unconstrained. In Cartesian components, we have
k, = 27(2q +p)/3N, k, = 27p/V3N. (21)

Direct substitution of &, k,,) into graphene’s dispersion relation gives a formula for quantized energies

ky—/3k,

2
+2cos 9 ,

katV/3ky
5 (22)

Ei(q,p) = i\/3+2 cos ky+2 cos —=

and with the help of simple trigopnometric identities we rewrite this expression as

kx k. 3k 2 2
Ei(q,p) = i\/l + 4 cos? 5 —|—4cos?cos \/; Y = i\/l + 4 cos? w +4COS%COS%

=+ sinzg—i— 2cos7r(2q7+p)+c08@ 2. (23)
N 3N N

The criterion for determining degeneracy comes from the set of ingigethat lead to a constarff. This is true even when

E = 0, but since this case is comprised of both periodic and aperiodic solutions, it must be analyzed separately. It should
be noted that the band center accumulates an ever-growing number of states as a function of\the sjage show this in

Fig. 4, where the numerical spectra of three molecules are compared also as a function of their size; the number of hexagons
or benzene rings at the baseline of the structure depends\oash = N — 3.

Now we must pay attention to the restrictions obeyed;landp. In Fig.3 we show the 12 lattice points in reciprocal
space employed in the construction of a single wave function. Along the symmetry lines of the hexagonal Brillouin zone
described in Fig5l (black lines) the dispersion relatiog3) is still valid, but the wave functionsl6) vanish identically. In
order to properly account for a linearly independent (l.i.) set of eigenfunctions, we rujepsitich thak = ik or its images
ok, Rk, Rpk, R?k, R?pk, i.e. those reciprocal vectors that lie within symmetry lines of the hexagon. Additiogaiynust
be restricted to a single triangular sector within green and black lines irbHxy. convention, we choose the first triangular
sector) < k, < m/v/3, V3ky < k, < —k,/V/3+4m/3. We note that the rightmost point at the boundayy= 0, k, = 47/3
is aDirac point. This translates into

0<p<N/2, p<qg<N-—p, (24)

and proper counting of Li. states is now reduced to Li. spinors, together with their degeneracies. The detailed spinorial analysis
is presented in Sec. 4.2. The full spinor for periodic solutions can now be written as

&) = Vardw], ) = V2w,

1 1 ; 1 ; ; 1 . .
\I/(i) _ ezk»A_’_ o e—zk-al (n14n2)+ik-asng + ) ezk-alng—zk-ag(nl-i-nz)
bV | \F tetlen gy et (aamag,

1 —ik-ajng—ik-agng 1 ik-aq (n1+n2)7ik-a2n2
¢* € :tefikag ¢* €
k k

_ (i
_ 1 —ik-a;ni+ik-az(ni+ns)
(j: > e . (25)

eik-(al 7a2)¢z
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AN EXACTLY SOLVABLE TIGHT-BINDING BILLIARD IN GRAPHENE 5

h=1, g(E=0)=3
E E

h=2, g(E=0)=4

h=3, g(E=0)=5

-2

2
1
b 46 8 5
= -1
=0

FIGURE 4. Numerical spectra of triangulene molecules with increasing &ize, N — 3 is the number of hexagonal rings at the baseline,
g(E) denotes the degeneracy. It is clear thdl) increases linearly with the molecular size.

FIGURE 5. Spectrum for theV = 6 triangulene. The blue dots
represent the Pinsky latticee. all solutions according tal@8) and
(19). Only interior points in each triangle, including the green line,

lead to l.i. solutions.

E=—+7 E=+7

FIGURE 6. Wave functions of triangulen& = 6 according to

These solutions contemplate all interior poigt® in a
fundamental cell ofperiodic solutionsof triangulene. In
the next section, we investigageige stateseparately. The
construction described above closely resembles Pinsky’s lat-
tice [29] for the triangular billiard, but the existence of edge
states is exclusive to discrete billiards. In our case, the al-
lowed points belong to contours of constant endtgy: |ay|,
which are not circles, in contrast with the Helmholtz case.
Once again we resort to Fig.to illustrate these properties.
We close this section by showing in Figjfour representative
waves in Eq./25) for N = 6.

4. Solution subspace of edge states

The presence of edge states [30, 31] in the solutions of tri-
angular billiards represents an important feature in the elec-
tronic transport of finite graphene [32, 33]. As we saw in
the previous section, such states cannot be reproduced using
the chiral spinors corresponding to the Dirac point in the full
honeycomb lattice, despite the fact that= 0 for these so-
lutions. Moreover, such states grow linearly in number with
the size of the polymer; therefore, their presence cannot be
neglected. Since the wave function must be constructed in a
non-periodic manner, superposition of graphene eigenstates
is no longer useful, and we must find the edge statefom
scratch. We begin by writing them in a general fashion:

l€) = >~ (anymy |A) + bnyny |A + b2)),

ni,n2
Hl|e)=0, ny=0,...,N—2,
TL1:17...,N—1—TL2, am,O:O, (26)

where indices:;, n, are the same as in E@)(@nda,,, o = 0
is due to the nodal line. After substitution ini)(we arrive
at the recurrence relations:

Ony—1,n24+1 T Gnyng+1 + Gnyng = 0 x bnl,”27 (27)
bn1+17n2—1 + bnlan2_1 + bn17n2 =0x Uny,ngs (28)

where the zeros on the right-hand side are dué&'te= 0.

(25). Top left panel: ground state. Top right: most excited state. Note that in/27) we need to employ the remaining nodal lines

Bottom: two degenerate states, andy. in Eq. (25).

given by

Rev. Mex. Fis71 050401



6 D. CONDADO AND E. SADURN

(l())nZZO, 7’L2:0,...,]\f7
Gp,N—n =0, n=0,...,N. (29)

With these considerations, we can prove igt,,, = 0 al-
together. We begin by noting that ; = 0 and by succes-
sive use of 27), we havea,, ; = 0 anda;,, = 0. We
can repeat the process starting witl, = 0 and then again
with a3 3 = 0 until we have covered all the amplitudes. This
leaves us only with one recurrence, namely

bn1+1,nz—1 + bnl,ng—l + bnl,nz = Oa
FIGURE 7. The N = 8 triangulene has three layers, red corre-
ng=1,...,N=2, ny=1,...,N—1—na. (30) sponds to layer 1, blue corresponds to layer 2 and green corre-

sponds to layer 3.
No further subcases are needed here.

This expression,30), is the building block for all I.i. edge

states. As a last remark before their construction, if we con- i f
sider all the relations in recurrencg0j, we have a total of o o o N0
(1/2)N(N —1) free parameters versys/2)(N —1)(N —2) kl) 4 T
equations, which shows that the total number of li. edge odihodiihe ool o)
states is (E [> E )
o2 o2 ol o) - o o
1N(N -1)- 1(N -DN-2)=N-1.  (31) Soob b4 i O__0O___0O
2 2 o e e’e @ O e e

This will be employed in the following. = b

FIGURE 8. Seed statef) of the N = 6 triangulene. The orange

4.1. Edge states basis as a representation 6f,, arrows indicate the generation of amplitudes consistently with re-
currence80); amplitudes of alternating signs in rowgcounting

We begin by defining? as the operator that rotates a given from the bottom) cancel the rows above them. a) Bottom seed state

eigenstate counterclockwise By /3 [1). b) If I > 1, the rows below row are filled in a antisymmetric
(symmetric) manner ifV 41 is even (odd), leaving nodes at central
R*=1, R'R=1. (32) sites, such that the number of sites with non-vanishing amplitudes

is the same in all rows.
We can employR to construct a polynomial projection oper-

ator We need a total oV, seed states, which we build accord-
1 ing to alternating signs in the amplitudes of a horizontal row
II, = §(1 +279R + 29R?), and proceed downward by employing the recurreB€g py
. construction, this constitutes a solution of such a recurrence.
z=e?"3 q=-1,0,1. (33) A graphical explanation is provided in Fi¢&) and8h). In

this fashion, we can genergdéN; — 1) edge states compat-
ible with the representations 6f;,, via

_ I, =
RHq = Zqu7 Hqu = 5(17qu7 (34) |Z’ q> = Hq |l> 5 q = _1707 1’

from which we conclude that the subspddg projects the l=1,...,N,—1, Np=[(N-1)/3]. (35)
edge states into the eigenbasis of (hg group, which com-
mutes with the Hamiltonian. These attributes allow us to infetWe should note that, by construction, th&$é/;, — 1) states
that from an arbitrary edge state withallg, symmetry|e) are Li. for different values of and due tol34), they are
we can generate a set of 3 orthogonal edge sidjes) with orthogonal for differenyy. We must now verify that there
C3, symmetry. The starting statés’s —from now referred are no more l.i. edge states that can be constructed with-
to as seed states— should be chosen as linearly independeotit filling the innermost layer. This layer consists of a sin-
For this purpose, we introduce a construction based on layergle central point if3N; = N + 1, for which the wave does
We define a layer of a triangular polymer as all thenot vanish, and three points arranged in a st8i\Nf, = N
sites within a triangular loop (see Fid). We count them for which the central point corresponds to drsite. The
from the outermost to the innermost. It is clear that thecompleteness of the l.i. set is done by considering that edge
number of layersVy, in a triangular polymer of sizeV is  states with vanishing amplitudes in the innermost layer have
[(N —1)/3],i.e, the upper integer part ¢fV — 1)/3. (3/2))(Nr —1)(2N — 3N, +2) unknown amplitudes, while

The following properties are easy to deduce

Rev. Mex. Fis71050401



AN EXACTLY SOLVABLE TIGHT-BINDING BILLIARD IN GRAPHENE 7

in terms of the previou§, ¢). After eliminating them
from the generative process, we obtdin— 1 as the
number of edge states in our basis.

3 If 3N, = N, the innermost layer of stat8Ny, 0)
is the sum of the antisymmetric solution of the =
3 triangulene plus its corresponding rotations [see
Figs.|109-100d)], therefore, their amplitudes at this
layer vanish and must be eliminated from the gener-
ative process, which gives us once mo¥e- 1 as the
number of edge states in our basis.

Lastly, we can implement a simple Gram-Schmidt pro-
FIGURE 9. A fixed point in a triangulene moleculéV( = 5). This cess to achieve full orthogonality (note the round bracket in
pointis leftinvariant under rotations and only exists in triangulenes our ket)
suchthaBN;, = N + 1.

1 =1 Al qll =-1,0,1

(30) provides(3/2))(Ny, — 1)(2N — 3Ny,) equations, which Lo =ha/vihdha), g 0 (39)
leaves us with no more tha&{ Ny, — 1) free parameters. This 1T, q) — 2;11 (k,q|l,q) |k, q)
reasoning proves that so far we have only obtai{ed, —1) \/l Loy — S e dll a2
Li. states, the remaininy — 1 — 3(N; — 1) edge states are {all q) k=1 [l q)]
constructed according to the following three cases: 1=2,...,N., q=—1,0,1. (37)

l,q) =

)

1If3Ny=N-1,w n gener he | : . N . . .
3Nz , We can generate the last 3 edge state%or ease in the visualization, we display the real and imagi-

using B3). nary parts, which are degenerate by time-reversal symmetry.
2 If 3N, = N + 1, the innermost layer of the triangu- See Figl1forthe N = 6 billiard resembling triangulene.

lene molecule consists only of a fixed point, i.e., a siteThe statgdl, —1) is already real. The plots correspond to our

not affected by rotations (see F@).and from B3) we  seed states in Fig8z)-8hb). Additionally, in Fig.12 we show

can infer tha3N, —1) and|3Ny, 1) have a vanish- the full edge stated, —1) and|1, 1), indicating their corre-

ing amplitude at the fixed point, therefore, both of thesesponding complex amplitudes. These states carry a current,

states have no amplitude in the innermost layer and asnderstood as a variation in the phase; the chirality of these

shown in the previous paragraph, they can be writterstates is parameterized hy= +1.

O"i
& A
o) E *CiD

e e o e o0 LIrI
o 5 ¢) d)

FIGURE 10. Sites in the innermost layer withV;, = N. a) ForN = 3, the seed statfl) is the antisymmetric edge state. b) Counter
clockwise rotationR |1). ¢) Clockwise rotatior' [1). (d) The N = 3 structure embedded in a larger polymaf & 6).

Re[|1,1)] Im[|1,-1)] [1,0) Re[|2,1)] Im[|2,-1)]

! i ! L !
| : o |

M
_—
@
<
e
_—
&
&

FIGURE 11. The 5 real orthonormal edge states of fiie= 6 triangulene.

Rev. Mex. Fis71 050401



8 D. CONDADO AND E. SADURN

_ . [ ] 80 O (oo} 08080 (o] O (o} O O O
z = exp(2ing/3) z+z* ‘o““o o'o”b”ob o““o' T
q=+1,-1 1.z % g ety o o )?o' p o
0 S e
| ey o'o‘“o' oo oL
14z 00 0 12 e SRS NG &
e 0 0 ~e 5,58,6865.8.6 680 885 o8
| 6.1 3 88068 6 000 N80
& e o} 8980 .8 Ol 0?0
1-g 00 00 ~~gl+z* SO TEVO OV O & ¥
' FIGURE 13. Triangular lattice built with barbed and zig-zag bil-
.O 0 liards. The colors represent a real eigenstatéVior 6 as in Figl6.
z*A"z-2* 2~ z%*-7 Ay A

Previously, we established that the numbéy of L.i. edge
states isV — 1, thus the totalVr of Li. solutions is, as ex-
pected:

FIGURE 12. Edge state$l, 1) and|1, —1) contain complex am-
plitudes in their sites. This is the so-called chiral representation.

Np = No+ Ny = (N —1)% (41)

4.2. Completeness of solutions As a closing remark, thanks to the Gram-Schmidt process
employed in/87), we are able to write a full completeness re-

As discussed previously, we must have a totdléf-1)2 L.i. . : : . ;
b y 4 ) éatlon for the triangulene molecule in the basis of eigenstates

solutions. Now that we have an account of all the possibl
eigenstates, we must verify that this number is indeed correct _ Z 1) (n| + Z In)(n
by incorporating the number of periodic solutions previously

obtained. From18) and (L) we obtain an infinite lattice of En#0

points that relate to valid solutions. In order to obtain only N-1)(N-2) N-1

the Li. solutions, we restrict to the first triangular sectorin =~ = Y |, En)(n, En + Y _ [n,0)(n,0]. (42)
the Brillouin zone of Fig5, which translates into the limits n=1 n=1

(24). In terms of integerg andp, these limits are written in

terms of floor functions as 5. Conclusions

1<p< {N - 1J . p<qg<N-1-—p. (38) Ir} Fhis paper, we report analytica! solutions for a triangu]ar

billiard made of graphene with zig-zag edges, for the first
time. Our construction was divided into periodic solutions
and edge states. Moreover, we show that the periodic solu-
tions also constitute stationary waves for a complementary
graphene flake made of barbed boundaries, as their images
are comprised in an infinite triangular lattice. See E@job-

Now we note that according t@%), for the Ny internal points
that satisfyq # p, each one leads to 4 L.i. solutiong;( v
are two-fold degenerate, plus theenergy selection), while
the numberN4 of points along a symmetry axis that sat-

isfy ¢ = p (green line in Fig5) only yield 2 Li. solutions tained from our solutions. Although the barbed edge states

E% - fq[)h Lhﬁfse dobiﬁrt\r/]atmns hilp us_:jo get_neratfe tge SP€Giere not presented, it should be easy to extend our discus-
rum ottnhe bitlard wi € correct considerations for degen-q;, s 14 sych cases. In the tradition of mathematical physics,

eracies. We us@) to determineV; (points inside) andv, reporting new exact solutions of the Sétimger equation

(axial points): requires verification of completeness: This was done by di-
ESYpE. rectly counting t_he number of eiggnstates in comparison with

Z Z 1_7 1)(N—2)—1 {N—IJ the molecular size. Itis no surprise that the full set of solu-

’ tions could be obtained for such a simplistic triangular figure,

a=ptl given the well-known integrability of its Helmholtz counter-
[ 2] part [29, 34, 35]. Other shapes are likely susceptible to sim-
N -1 :
Ny = 2 : 1= |~ (39) ilar treatments, such as hexagons or parallelograms, but sur-
2 isingly not rectangl th bine different t f
—1 prisingly not rectangles, as they combine different types o

boundaries. Recently, Hellet al.[36] were able to observe
As a consequence, the numiér of solutions withE! 7= 0is  signatures of quantum scars [37] in irregular shapes made
of graphene, but the corresponding mathematical description
Ny =4N; +2Na = (N - 1)(N - 2). (40)  cannot coincide with predictions for elliptic operators. The
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use of Dirac operators, instead, should help to settle the issurpw we write (17) explicitly

with the exception ofinite tight-binding models, for which
edge states make their surprising appearance.

Regarding such degenerate solution&at 0, we have

been successful in classifying all edge states employing the

Cs, symmetry of triangulene in addition to an extra orthog-

onalization step. It is very important to recognize that these

solutions differ from the conventional Dirac point solution

of infinite graphene. Edge states have been important in re-
cent work due to their applications in topological insulators
as well as Majorana modes [38]. The possibility of produc-

e.g moiré materials [39] and, possibly, their molecular coun
terparts. Further explorations will be left for the future, as
they require a careful determination of the inter-layer elec
tronic coupling. Finally, we note that thes®iré patterns are

useful in the variation of the effective wavelength for propa-

0 = sin(—nk1 + N(k1 — k2) + o) + sin(nky — Nk — )
+ sin(nky — Nk + «) + sin(—nky — N(k; — ko) — «)
+sin(n(k1—k2)+Nka+a)+ sin(—n(k1 —k2)+ Nk —a)

3 3
Z [sin(;+x;)+ sin(;—x:)] =2 Z sin 6; cos x;,

=1 =1
(A.2)

where in the last equality a trigonometric identity was used.

eSince this must be true for all values of we have the fol-

lowing restrictionsin §; = 0, ¢ = 1,2, 3. This is achieved by
the requirement

91 = —Tp, 92 = —T74q, (A3)

gating electrons in infinite media, but in finite media, suchwhereq andp are integers and for convenience, are written

effects are yet to be analyzed.

Appendix
A. Trigonometric Diophantine equation

Firstly, we define the following abbreviations

ki =k-a;, kos=k-ay,

—nk; —|—N/€1/2—|—Oé, 91=(N/2)(l€1—2k2)7
Oy = (N/2) (ks — 2k1),

03 = —0; — 0o,

X1
X2 :nkg—ng/Q—FOé,

X3 = —X1 — X2 + 3q, (A.1)

with a minus sign. Now we substitutd.@) into (A.1)
(N/2)(k1 = 2kz) = —mp,
(N/2) (ks — 2k1) = —mq. (A4)

This is a system of equations fbr andk,, once we solve it,
we obtain|L8) and (19):

k1 =k-a; = 2m(2q +p)/3N,
ko =k-as =2m(2p+q)/3N.

(A.5)
(A.6)
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