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An exactly solvable tight-binding billiard in graphene
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A triangular graphenic billiard is defined as a planar carbon polymer in the Hückeloid approximation ofπ−band electrons. It is shown that
the equilateral triangle of arbitrary size and zig-zag edges allows for exact solutions of the associated spectral problem. This is done by a
construction of wave superpositions similar to the Lamé solution of the Helmholtz equation in a triangular cavity, revisited by Pinsky. Exact
wave functions, eigenvalues, degeneracies, and edge states are provided. The edge states are also obtained by a non-periodic construction of
waves with vanishing energy. A comment on its connection with recent molecular models, such as triangulene, is given.
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1. Introduction

The interest in the study of graphenic structures [1,2] has led
the research focus to different low-dimensional realizations
such as nanotubes [3] wound in various topologies [4], as
well as nanoribbons [5] together with their interesting elec-
tronic transport properties. Recently, smaller structures such
as cycloacenes [6, 7] have been shown to possess exact so-
lutions associated with their Ḧuckeloid model, and from the
experimental point of view, the fluorescent spectrum of cy-
cloparaphenylenes [8] has been shown to depend strongly
on the size and topology of polymers. Some molecules re-
cently known ascoronene[9] and triangulene[10] have also
attracted considerable attention due to their simplicity and
promising applications of their corresponding edge states.
The latter example, triangulene, closely resembles a trian-
gular billiard with Dirichlet conditions made of a graphene
flake, except for some extra carbon sites at the triangle ver-
tices; these special polymers may actually appear in concrete
realizations if cut from a honeycomb sheet and saturated with
two hydrogen atoms at the three carbon vertices.

In addition to this important motivation in nanoscopic
physics, it should also be mentioned that Dirac billiards,
specifically Weyl neutrino billiards [11], have not encoun-
tered so far a concrete realization in particle physics. With
the advent of graphene, there seems to be a chance to observe
some interesting relativistic properties such as Klein tunnel-
ing [12], Zitterbewegung[13, 14] and some aspects of MIT
bag models of quark confinement [15–17]. Indeed, the bil-
liard can be made of a honeycomb carbon lattice, but we are
about to see that the edge states emerging from this geome-
try cannot be built from Dirac spinors, and deserve a separate
discussion.

Paper structure: In this work, we solve the stationary
Hückeloid model analytically for an equilateral triangle made
of a honeycomb structure. Before proceeding to the solution,
some mathematical remarks concerning the method of seg-
mentation in polymers [18,19] and tessellation in billiards are

in order (Sec.2). Then we proceed in two parts: First, we im-
pose Dirichlet conditions exclusively along lines within one
triangular sublattice and find all quantized energies (Sec.3).
Then, we tackle the problem of edge states, their orthogonal-
ization and theirC3v representations (Sec.4). Conclusions
are drawn in Sec.5.

2. Bloch waves and eigen-persistence

Eigen-persistence is a general phenomenon in graph theory
that affects large Ḧuckeloid structures [20, 21] when sepa-
rated into smaller parts that possess eigenvalues in common
with the parent (larger) structure. This is explained by nodal
domains of the wavefunctions pertaining to the parent sys-
tem. This phenomenon appears both in presence and absence
of configurational symmetry; notably, it applies for Hamilto-
nians with no apparent symmetry of reflective or translational
nature. In the case at hand, the infinite graphene sheet is pe-
riodic, but the triangular cut is not, and it retains only aC3v

subgroup. This makes our task more interesting in connec-
tion with equilateral triangular domains.

First, we denote byHc,He, Hn the tight-binding Hamil-
tonians of the central, external, and nodal domains, respec-
tively. As they correspond to different lattice sites, they con-
stitute a direct sum decomposition of the full HamiltonianH
of the infinite sheet. These three summands are coupled by
adjacency matrices∆cn,∆en, but not∆ce, as these would in-
volve second-neighbor interactions beyond Hückel’s approx-
imation. Thus, we have

H =




He ∆en 0
∆†

en Hn ∆cn

0 ∆†
cn Hc


 , (1)

H |ψ〉 = E |ψ〉 , Hi |ψi〉 = E |ψi〉 , i = e, c, (2)

|ψ〉 =



|ψe〉
0
|ψc〉


 , ∆†

en |ψe〉+ ∆cn |ψc〉 = 0. (3)
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FIGURE 1. Primitive vectors{b1,b2,b3} of hexagonal lattices in
this paper. The set{a1,a2} spans subtriangular latticesA or B,
with integersn1 andn2, as shown in Eq. (6).

Here we note that in continuous variables, and in the presence
of a nodal line that imposes antisymmetry, (3) reduces to

|ψ〉 =




|φ〉
0

− |φ〉


 , |ψe〉 = |φ〉 = − |ψc〉 . (4)

We see an effective disconnection of regionse, c, but
not necessarily an antisymmetry of|ψ〉 with respect to the
nodal line where|ψ〉 = 0. For lattices that do possess re-
flection symmetry around such nodal domains, the task is
easier; in the continuous limit, the Helmholtz equation sub-
jected to Dirichlet conditions can be treated with this trick,
which leads to full space tessellations [22, 23] as originally
seen by Laḿe [24, 25]. Here, on the other hand, we have
He 6= Hc for adjacent cells. This is illustrated in Fig.1 and
2, and it defines a fundamental cell made of two triangular
polymers (a parallelogram) that fills the infinite honeycomb
structure. Important implications from this observation will
be seen throughout this paper: The emergence of periodic
solutions whose nodal domains produce the desired polymer
and non-periodic solutions that correspond to edge states.

In passing, we note that not all discrete problems have
the two alluded types of solution. A typical example in
the opposite direction is a finite chain, viewed as a cell
with Dirichlet conditions inside an infinite row of atoms.
Sinusoidal wavesφn = sin πn/N solve the tight-binding
recursionφn+1 + φn−1 = Eφn with a finite spectrum
En = 2 cos(πn/N), n = 1, ..., N . They also solve the in-
finite problem, as translations by a cell implysin(πn/N) =
− sin(π(n + N)/N), i.e. He = Hc and the antisymme-
try |ψe〉 = −|ψc〉 is fulfilled, together withφN = 0. For
graphene, on the other hand, a triangular tessellation of alter-
nating signs is not possible, but a real Bloch wave that covers
bothHe andHc coupled across linear boundaries (see Fig.2)
is constructible, and the additional relation∆ψe = −∆ψc is
not necessary.

FIGURE 2. Nodal requirements isolating triangulene segments
(zig-zag: blue, armchair: red) in an infinite sheet. The nodal lines
with labelsn1, n2 andn are imposed in Eq. (16). Nodes labeled by
r are implied by the Ḧuckel recurrence. In this example,N = 6.

3. Triangular billiards from vanishing upper
components of Bloch spinors

A full tight-binding model for electrons hopping on an in-
finite graphene sheet with translated Fermi energyE0 = 0
and unit hopping amplitude∆ = 1 is described by a nearest-
neighbor HamiltonianH given by [26]

H = −
∑

n1,n2

∑

i=1,2,3

|A + bi〉 〈A|+ H.c., (5)

with the usual parameterizations (see Fig.1)

A = n1a1 + n2a2, a1 = ı̂, a2 =
1
2
(̂ı +

√
3̂), (6)

b1=
1

2
√

3
(
√

3ı̂−̂), b2=
1√
3
̂, b3=−b1−b2. (7)

The waves propagating on this sheet can be written in the
form |ψ〉 = CA|ψA〉 + CB |ψB〉, i.e. a bipartite decomposi-
tion usingA-B spinors.

A triangular billiard resembling a carbon polymer with
active sites at the vertices (also calledtriangulene, but adding
a carbon site at each vertex) can be described in this notation
using (5) with additional restrictions for site numbersn1, n2,
which are finite. Alternatively, the system can be defined by
a sheet with nodal lines along horizontal and±60-degree di-
rections, as shown in Fig.2.

The solutions of the tight-binding problem associated
with the stationary Schrödinger equation can be written ana-
lytically by combining plane waves. With the aid of the com-
plex quantity

α=e−ik·b2

3∑

i=1

eik·bi=1 + e−ik·(a2−a1) + e−ik·a2 , (8)

together with canonical vectors

|A〉=(1, 0)T, |B〉 = (0, 1)T, (9)
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one has

ψ
(±)
k =

1√
2

(
1
±φk

)
eik·A, Hk =

(
0 α∗

α 0

)
, (10)

Hkψ
(±)
k = ±Ekψ

(±)
k , Ek = |α|, ϕk = arg α. (11)

It should be noted that our fundamental dimer is chosen
in the direction ofb2, i.e. vertically displayed in Fig.1. The
translation along this vector is given by the swap operatorσx

in the canonical basis. This standard notation makes apparent
the difference between linear combinations ofA-waves and
B-waves due to the presence of thek-dependent coefficient
φk.

In periodic lattices such as the honeycomb configuration,
not all vectorsk in the first Brillouin zoneΩB represent dif-
ferent states (an interesting consequence of this is the so-
calledumklappeffect [27]). The values ofk connected by
a vectorkl = 4π(m1a1 + m2a2) belonging to a triangular
sublattice of the full reciprocal space represent the same state,
i.e. the spinor is invariant under such translations:

ψk+kl
= ψk, αk+kl

= αk, Ek+kl
= Ek. (12)

In addition, a vectorkr = 4πqb2 = 4πqj/
√

3, q =
0,±1,±2, ..., connecting the two reciprocal sublattices and
producing a hexagonal lattice ink space, leads to the same
energy as above, but modifies the spinor. Similarly, the in-
verted vector−k is equivalent to complex conjugation and
thus leads to a linearly independent spinor:

ψ−k = ψ∗k =
1√
2

(
1
φ∗k

)
e−ik·A. (13)

From these considerations, we can see that the relation
|αk| = |Ek| is invariant under the groupC6v applied on the
hexagon ofΩB aroundk = 0, and assuming thatk 6= kD

(the famous Dirac point [28]), there are, in general, 12 vec-
torskT that lead to the same|Ek|. The full list of vectors is
generated by the application of2π/3 rotationsR, 4π/3 ro-
tationsR2, x−axis reflections% and inversionsk 7→ −k, as
well as their compositions. The set is

kT ∈ {±k,±Rk,±R2k,±%k,±R%k,±R2%k}, (14)

as can be seen in Fig.3.
Then,αk andφk = αk/ |αk| pick up new phases when

group transformations are applied, according to

ϕ−k = − arg αk, ϕ%k = arg αk,

ϕRk = −k · a2 − arg αk = ϕR%k,

ϕR2k = k · (a2 − a1) + arg αk = ϕR2%k, (15)

similarly for the remaining sixϕ±kT
. This allows to build

combinations of real wave functions for the upper spinors
with the three requirements that force nodal lines at the edges
of the billiard (see Fig.2):

FIGURE 3. The contours (level curves) for the graphene spectrum
(23): E+(kx, ky). The arrows represent the 12 degenerate solu-
tions presented in Eq. (14) and the blue points indicate the degen-
erate energies.

∑

T

aT eikT ·a1n1 = 0, for n2 = 0

and n1 = 1, . . . , N,
∑

T

aT eikT ·a2n2 = 0, for n1 = 0

and n2 = 1, . . . , N,
∑

T

aT eikT ·(na1+[N−n]a2) = 0,

for n = 1, . . . , N. (16)

Here,aT are the coefficients of the superposition andN
is the semi period or distance between nodal lines,i.e. the
number of sites on the side of the triangle plus one (counted
along sites B, indicated in Fig.1). These equations are solved
as follows.

The linearly independent functions ofn1 or n2 in the first
two equations may vanish only if all the exponential func-
tions have the same amplitude, and thus|aT | = N is a com-
mon normalization factor. Then, to have real waves as solu-
tions, one demands sinusoidal functions, built by each pair
±kT and soaT = iN eiαT , a−T = a∗T . From 12 terms in
(16) we are down to 6:

6∑
r=1

sin (kr · aini + αr) = 0, i = 1, 2, (17)

wherekr ∈
{
k, %k, Rk, R%k, R2k, R2%k

}
. If i = 1, substi-

tution ofkr ·a1n1 shows that the terms are pairwise canceled
if α1 = −α2, α3 = −α4, α5 = −α6. If i = 2 one has
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α1 = α3 = α5 for another pairwise cancellation. The energy quantization condition emerges from the third relation in Eq. (16)
involving N , as it closes the cavity and restricts the solutions to a finite number of vectors (one hasN(N − 1)/2 + (N −
1)(N − 2)/2 = (N − 1)2 points inside the polymer).

The third condition leads us to a trigonometric Diophantine equation (see Appendix A) that is solved for all values ofn by
the following quantization conditions,

k · a1 = 2π(2q + p)/3N, (18)

k · a2 = 2π(2p + q)/3N, (19)

k = 4π (q a1 + pa2) /3N, (20)

whereq, p are integers, so far unconstrained. In Cartesian components, we have

kx = 2π(2q + p)/3N, ky = 2πp/
√

3N. (21)

Direct substitution of(kx, ky) into graphene’s dispersion relation gives a formula for quantized energies

E±(q, p) = ±
√

3+2 cos kx+2 cos
kx+

√
3ky

2
+2 cos

kx−
√

3ky

2
, (22)

and with the help of simple trigonometric identities we rewrite this expression as

E±(q, p) = ±
√

1 + 4 cos2
kx

2
+ 4 cos

kx

2
cos

√
3ky

2
= ±

√
1 + 4 cos2

π(2q + p)
3N

+ 4 cos
π(2q + p)

3N
cos

πp

N

= ±
√

sin2 πp

N
+

(
2 cos

π(2q + p)
3N

+ cos
πp

N

)2

. (23)

The criterion for determining degeneracy comes from the set of indicesq, p that lead to a constantE. This is true even when
E = 0, but since this case is comprised of both periodic and aperiodic solutions, it must be analyzed separately. It should
be noted that the band center accumulates an ever-growing number of states as a function of the sizeN − 1; we show this in
Fig. 4, where the numerical spectra of three molecules are compared also as a function of their size; the number of hexagons
or benzene ringsh at the baseline of the structure depends onN ash = N − 3.

Now we must pay attention to the restrictions obeyed byq andp. In Fig. 3 we show the 12 lattice points in reciprocal
space employed in the construction of a single wave function. Along the symmetry lines of the hexagonal Brillouin zone
described in Fig.5 (black lines) the dispersion relation (23) is still valid, but the wave functions (16) vanish identically. In
order to properly account for a linearly independent (l.i.) set of eigenfunctions, we rule outq, p such thatk = ı̂k or its images
ρk, Rk, Rρk, R2k, R2ρk, i.e. those reciprocal vectors that lie within symmetry lines of the hexagon. Additionally,q, p must
be restricted to a single triangular sector within green and black lines in Fig.5; by convention, we choose the first triangular
sector0 < ky < π/

√
3,
√

3ky ≤ kx < −ky/
√

3 + 4π/3. We note that the rightmost point at the boundaryky = 0, kx = 4π/3
is aDirac point. This translates into

0 < p < N/2, p ≤ q < N − p, (24)

and proper counting of l.i. states is now reduced to l.i. spinors, together with their degeneracies. The detailed spinorial analysis
is presented in Sec. 4.2. The full spinor for periodic solutions can now be written as

ψ
(±)
1,k =

√
2Re[Ψ(±)

k ], ψ
(±)
2,k =

√
2Im[Ψ(±)

k ],

Ψ(±)
k =

1√
12

{ (
1
±φk

)
eik·A+

(
1

±eik·a2φk

)
e−ik·a1(n1+n2)+ik·a2n1 +

(
1

±eik·(a2−a1)φk

)
eik·a1n2−ik·a2(n1+n2)

−
(

1
±φ∗k

)
e−ik·a1n2−ik·a2n1 −

(
1

±e−ik·a2φ∗k

)
eik·a1(n1+n2)−ik·a2n2

−
(

1
±eik·(a1−a2)φ∗k

)
e−ik·a1n1+ik·a2(n1+n2)

}
. (25)
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FIGURE 4. Numerical spectra of triangulene molecules with increasing size,h = N − 3 is the number of hexagonal rings at the baseline,
g(E) denotes the degeneracy. It is clear thatg(0) increases linearly with the molecular size.

FIGURE 5. Spectrum for theN = 6 triangulene. The blue dots
represent the Pinsky lattice,i.e. all solutions according to (18) and
(19). Only interior points in each triangle, including the green line,
lead to l.i. solutions.

FIGURE 6. Wave functions of trianguleneN = 6 according to
(25). Top left panel: ground state. Top right: most excited state.
Bottom: two degenerate states,ψ1 andψ2 in Eq. (25).

These solutions contemplate all interior pointsq, p in a
fundamental cell ofperiodic solutionsof triangulene. In
the next section, we investigateedge statesseparately. The
construction described above closely resembles Pinsky’s lat-
tice [29] for the triangular billiard, but the existence of edge
states is exclusive to discrete billiards. In our case, the al-
lowed points belong to contours of constant energyE = |αk|,
which are not circles, in contrast with the Helmholtz case.
Once again we resort to Fig.3 to illustrate these properties.
We close this section by showing in Fig.6 four representative
waves in Eq. (25) for N = 6.

4. Solution subspace of edge states

The presence of edge states [30, 31] in the solutions of tri-
angular billiards represents an important feature in the elec-
tronic transport of finite graphene [32, 33]. As we saw in
the previous section, such states cannot be reproduced using
the chiral spinors corresponding to the Dirac point in the full
honeycomb lattice, despite the fact thatE = 0 for these so-
lutions. Moreover, such states grow linearly in number with
the size of the polymer; therefore, their presence cannot be
neglected. Since the wave function must be constructed in a
non-periodic manner, superposition of graphene eigenstates
is no longer useful, and we must find the edge states|e〉 from
scratch. We begin by writing them in a general fashion:

|e〉 =
∑

n1,n2

(an1,n2 |A〉+ bn1,n2 |A + b2〉),

H |e〉 = 0, n2 = 0, . . . , N − 2,

n1 = 1, . . . , N − 1− n2, an1,0 = 0, (26)

where indicesn1, n2 are the same as in Eq. (6) andan1,0 = 0
is due to the nodal line. After substitution into (5), we arrive
at the recurrence relations:

an1−1,n2+1 + an1,n2+1 + an1,n2 = 0× bn1,n2 , (27)

bn1+1,n2−1 + bn1,n2−1 + bn1,n2 = 0× an1,n2 , (28)

where the zeros on the right-hand side are due toE = 0.
Note that in (27) we need to employ the remaining nodal lines
given by
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6 D. CONDADO AND E. SADURŃI

a0,n2 = 0, n2 = 0, . . . , N,

an,N−n = 0, n = 0, . . . , N. (29)

With these considerations, we can prove thatan1,n2 = 0 al-
together. We begin by noting thata1,1 = 0 and by succes-
sive use of (27), we havean1,1 = 0 and a1,n2 = 0. We
can repeat the process starting witha2,2 = 0 and then again
with a3,3 = 0 until we have covered all the amplitudes. This
leaves us only with one recurrence, namely

bn1+1,n2−1 + bn1,n2−1 + bn1,n2 = 0,

n2 = 1, . . . , N − 2, n1 = 1, . . . , N − 1− n2. (30)

No further subcases are needed here.
This expression, (30), is the building block for all l.i. edge

states. As a last remark before their construction, if we con-
sider all the relations in recurrence (30), we have a total of
(1/2)N(N−1) free parameters versus(1/2)(N−1)(N−2)
equations, which shows that the total number of l.i. edge
states is

1
2
N(N − 1)− 1

2
(N − 1)(N − 2) = N − 1. (31)

This will be employed in the following.

4.1. Edge states basis as a representation ofC3v

We begin by definingR as the operator that rotates a given
eigenstate counterclockwise by2π/3

R3 = 1, R†R = 1. (32)

We can employR to construct a polynomial projection oper-
ator

Πq =
1
9
(1 + z−qR + zqR2),

z = ei2π/3, q = −1, 0, 1. (33)

The following properties are easy to deduce

RΠq = zqΠq, Π†pΠq = δq,pΠq, (34)

from which we conclude that the subspaceΠq projects the
edge states into the eigenbasis of theC3v group, which com-
mutes with the Hamiltonian. These attributes allow us to infer
that from an arbitrary edge state withoutC3v symmetry|e〉
we can generate a set of 3 orthogonal edge statesΠq |e〉 with
C3v symmetry. The starting states|e〉’s –from now referred
to as seed states– should be chosen as linearly independent.
For this purpose, we introduce a construction based on layers.

We define a layer of a triangular polymer as all the
sites within a triangular loop (see Fig.7). We count them
from the outermost to the innermost. It is clear that the
number of layersNL in a triangular polymer of sizeN is
d(N − 1)/3e, i.e., the upper integer part of(N − 1)/3.

FIGURE 7. The N = 8 triangulene has three layers, red corre-
sponds to layer 1, blue corresponds to layer 2 and green corre-
sponds to layer 3.

FIGURE 8. Seed states|l〉 of theN = 6 triangulene. The orange
arrows indicate the generation of amplitudes consistently with re-
currence (30); amplitudes of alternating signs in rowsl (counting
from the bottom) cancel the rows above them. a) Bottom seed state
|1〉. b) If l > 1, the rows below rowl are filled in a antisymmetric
(symmetric) manner ifN + l is even (odd), leaving nodes at central
sites, such that the number of sites with non-vanishing amplitudes
is the same in all rows.

We need a total ofNL seed states, which we build accord-
ing to alternating signs in the amplitudes of a horizontal row
and proceed downward by employing the recurrence (30); by
construction, this constitutes a solution of such a recurrence.
A graphical explanation is provided in Figs.8a) and8b). In
this fashion, we can generate3(NL − 1) edge states compat-
ible with the representations ofC3v via

|l, q〉 ≡ Πq |l〉 , q = −1, 0, 1,

l = 1, . . . , NL − 1, NL ≡ d(N − 1)/3e. (35)

We should note that, by construction, these3(NL − 1) states
are l.i. for different values ofl and due to (34), they are
orthogonal for differentq. We must now verify that there
are no more l.i. edge states that can be constructed with-
out filling the innermost layer. This layer consists of a sin-
gle central point if3NL = N + 1, for which the wave does
not vanish, and three points arranged in a star if3NL = N
for which the central point corresponds to anA-site. The
completeness of the l.i. set is done by considering that edge
states with vanishing amplitudes in the innermost layer have
(3/2))(NL−1)(2N −3NL +2) unknown amplitudes, while
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FIGURE 9. A fixed point in a triangulene molecule (N = 5). This
point is left invariant under rotations and only exists in triangulenes
such that3NL = N + 1.

(30) provides(3/2))(NL− 1)(2N − 3NL) equations, which
leaves us with no more than3(NL− 1) free parameters. This
reasoning proves that so far we have only obtained3(NL−1)
l.i. states, the remainingN − 1− 3(NL − 1) edge states are
constructed according to the following three cases:

1 If 3NL = N −1, we can generate the last 3 edge states
using (35).

2 If 3NL = N + 1, the innermost layer of the triangu-
lene molecule consists only of a fixed point, i.e., a site
not affected by rotations (see Fig.9) and from (33) we
can infer that|3NL,−1〉 and |3NL, 1〉 have a vanish-
ing amplitude at the fixed point, therefore, both of these
states have no amplitude in the innermost layer and as
shown in the previous paragraph, they can be written

in terms of the previous|l, q〉. After eliminating them
from the generative process, we obtainN − 1 as the
number of edge states in our basis.

3 If 3NL = N , the innermost layer of state|3NL, 0〉
is the sum of the antisymmetric solution of theN =
3 triangulene plus its corresponding rotations [see
Figs. 10a)-10c)], therefore, their amplitudes at this
layer vanish and must be eliminated from the gener-
ative process, which gives us once moreN − 1 as the
number of edge states in our basis.

Lastly, we can implement a simple Gram-Schmidt pro-
cess to achieve full orthogonality (note the round bracket in
our ket)

|1, q) = |1, q〉 /
√
〈l, q|l, q〉, q = −1, 0, 1 (36)

|l, q) =
|l, q〉 −∑l−1

k=1〈k, q|l, q) |k, q〉√
〈l, q|l, q〉 −∑l−1

k=1 |〈k, q|l, q)|2
,

l = 2, . . . , NL, q = −1, 0, 1. (37)

For ease in the visualization, we display the real and imagi-
nary parts, which are degenerate by time-reversal symmetry.

See Fig.11for theN = 6 billiard resembling triangulene.
The state|1,−1) is already real. The plots correspond to our
seed states in Figs.8a)-8b). Additionally, in Fig.12we show
the full edge states|1,−1) and|1, 1), indicating their corre-
sponding complex amplitudes. These states carry a current,
understood as a variation in the phase; the chirality of these
states is parameterized byq = ±1.

FIGURE 10. Sites in the innermost layer with3NL = N . a) ForN = 3, the seed state|1〉 is the antisymmetric edge state. b) Counter
clockwise rotationR |1〉. c) Clockwise rotationR† |1〉. (d) TheN = 3 structure embedded in a larger polymer (N = 6).

FIGURE 11. The 5 real orthonormal edge states of theN = 6 triangulene.

Rev. Mex. Fis.71050401
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FIGURE 12. Edge states|1, 1) and |1,−1) contain complex am-
plitudes in their sites. This is the so-called chiral representation.

4.2. Completeness of solutions

As discussed previously, we must have a total of(N−1)2 l.i.
solutions. Now that we have an account of all the possible
eigenstates, we must verify that this number is indeed correct
by incorporating the number of periodic solutions previously
obtained. From (18) and (19) we obtain an infinite lattice of
points that relate to valid solutions. In order to obtain only
the l.i. solutions, we restrict to the first triangular sector in
the Brillouin zone of Fig.5, which translates into the limits
(24). In terms of integersq andp, these limits are written in
terms of floor functions as

1 ≤ p ≤
⌊

N − 1
2

⌋
, p ≤ q ≤ N − 1− p. (38)

Now we note that according to (25), for theNI internal points
that satisfyq 6= p, each one leads to 4 l.i. solutions (ψ1, ψ2

are two-fold degenerate, plus the± energy selection), while
the numberNA of points along a symmetry axis that sat-
isfy q = p (green line in Fig.5) only yield 2 l.i. solutions
(ψ1 = 0). These observations help us to generate the spec-
trum of the billiard with the correct considerations for degen-
eracies. We use (38) to determineNI (points inside) andNA

(axial points):

NI=
bN−1

2 c∑
p=1

N−1−p∑
q=p+1

1=
1
4
(N − 1)(N−2)−1

2

⌊
N−1

2

⌋
,

NA =
bN−1

2 c∑
q=1

1 =
⌊

N − 1
2

⌋
. (39)

As a consequence, the numberN1 of solutions withE 6= 0 is

N1 = 4NI + 2NA = (N − 1)(N − 2). (40)

FIGURE 13. Triangular lattice built with barbed and zig-zag bil-
liards. The colors represent a real eigenstate forN = 6 as in Fig.6.

Previously, we established that the numberN0 of l.i. edge
states isN − 1, thus the totalNT of l.i. solutions is, as ex-
pected:

NT = N0 + N1 = (N − 1)2. (41)

As a closing remark, thanks to the Gram-Schmidt process
employed in (37), we are able to write a full completeness re-
lation for the triangulene molecule in the basis of eigenstates

11 =
∑

En 6=0

|n)(n|+
∑

En=0

|n)(n|

=
(N−1)(N−2)∑

n=1

|n,En)(n,En|+
N−1∑
n=1

|n, 0)(n, 0|. (42)

5. Conclusions

In this paper, we report analytical solutions for a triangular
billiard made of graphene with zig-zag edges, for the first
time. Our construction was divided into periodic solutions
and edge states. Moreover, we show that the periodic solu-
tions also constitute stationary waves for a complementary
graphene flake made of barbed boundaries, as their images
are comprised in an infinite triangular lattice. See Fig.13ob-
tained from our solutions. Although the barbed edge states
were not presented, it should be easy to extend our discus-
sions to such cases. In the tradition of mathematical physics,
reporting new exact solutions of the Schrödinger equation
requires verification of completeness: This was done by di-
rectly counting the number of eigenstates in comparison with
the molecular size. It is no surprise that the full set of solu-
tions could be obtained for such a simplistic triangular figure,
given the well-known integrability of its Helmholtz counter-
part [29, 34, 35]. Other shapes are likely susceptible to sim-
ilar treatments, such as hexagons or parallelograms, but sur-
prisingly not rectangles, as they combine different types of
boundaries. Recently, Helleret al. [36] were able to observe
signatures of quantum scars [37] in irregular shapes made
of graphene, but the corresponding mathematical description
cannot coincide with predictions for elliptic operators. The
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use of Dirac operators, instead, should help to settle the issue,
with the exception offinite tight-binding models, for which
edge states make their surprising appearance.

Regarding such degenerate solutions atE = 0, we have
been successful in classifying all edge states employing the
C3v symmetry of triangulene in addition to an extra orthog-
onalization step. It is very important to recognize that these
solutions differ from the conventional Dirac point solution
of infinite graphene. Edge states have been important in re-
cent work due to their applications in topological insulators
as well as Majorana modes [38]. The possibility of produc-
ing rotated layers from this kind of sheets is still open; see
e.g. moirématerials [39] and, possibly, their molecular coun-
terparts. Further explorations will be left for the future, as
they require a careful determination of the inter-layer elec-
tronic coupling. Finally, we note that thesemoirépatterns are
useful in the variation of the effective wavelength for propa-
gating electrons in infinite media, but in finite media, such
effects are yet to be analyzed.

Appendix

A. Trigonometric Diophantine equation

Firstly, we define the following abbreviations

k1 = k · a1, k2 = k · a2,

χ1 = −nk1 + Nk1/2 + α, θ1 = (N/2)(k1 − 2k2),

χ2 = nk2 −Nk2/2 + α, θ2 = (N/2)(k2 − 2k1),

χ3 = −χ1 − χ2 + 3α, θ3 = −θ1 − θ2, (A.1)

now we write (17) explicitly

0 = sin(−nk1 + N(k1 − k2) + α) + sin(nk1 −Nk2 − α)

+ sin(nk2 −Nk1 + α) + sin(−nk2 −N(k1 − k2)− α)

+ sin(n(k1−k2)+Nk2+α)+ sin(−n(k1−k2)+Nk1−α)

=
3∑

i=1

[sin(θi+χi)+ sin(θi−χi)]=2
3∑

i=1

sin θi cosχi,

(A.2)

where in the last equality a trigonometric identity was used.
Since this must be true for all values ofn, we have the fol-
lowing restrictionsin θi = 0, i = 1, 2, 3. This is achieved by
the requirement

θ1 = −πp, θ2 = −πq, (A.3)

whereq andp are integers and for convenience, are written
with a minus sign. Now we substitute (A.3) into (A.1)

(N/2)(k1 − 2k2) = −πp,

(N/2)(k2 − 2k1) = −πq. (A.4)

This is a system of equations fork1 andk2, once we solve it,
we obtain (18) and (19):

k1 = k · a1 = 2π(2q + p)/3N, (A.5)

k2 = k · a2 = 2π(2p + q)/3N. (A.6)
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