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We present the equilateral three-body motion with three different masses according to Newton gravitational force, which was discovered by
Lagrange, tracing conic trajectories. We will extend to several bodies the generalization of the equilateral triangle solution discovered by
Lagrange. The flat n-body problem of several different masses can be solved in closed and elementary form if we assume that the polygor
formed by several celestial bodies always remains similar to itself. The Lagrange proof was simplified by Ceddargtand we extend

without problem this proof to several bodies. The bodies move on a fixed plane with two independent coordinates: one rotation around the
center of mass, and one radial expansion. At any time the position vector of each body is the same multiple of the acceleration vector of
the body. Bodies move tracing similar conics with the pole of each conic at the center of mass. For the three-body Lagrange’s case, a rigid
triangle function of the masses discovered by &iie described with very simple geometry. Which we should place in a particular position
imposed by the Lagrange’s solution. We present a set of mathematical properties which are not well known.
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1. Introduction in complexity from an equilateral triangle for three bodies to

a complex polygon for four or five bodies, with angles de-
We want to review the flat homographic motion of severalpending on the values of the masses, as we discussed else-
bodies interacting by the Newton gravitational force. By ho-where [6, 7].
mographic we mean the angles formed by the lines connect-
ing the bodies are constant. In the case of three bodies, Euler  proof that a flat homographic motion re-
discovered a collineal solution [1] that has been reviewed re- P .
cently [2], which will not be considered in this paper. We turn mains in a fixed plane

our attention into the flat solution found by Lagrange [3] (al- The hypothesis of flat homographic motion assumes that the
though the masses could be different) he proved they movgeyeral positions of the body, in cartesian coordinates obey
in a fixed plane, forming an equilateral triangle; any bodythe equation

with its position vector relative to the center of mass being

the same multiple of the acceleration vector of that body ry = RGcy, (1)

(Laplace called this a central configuration). The Lagrange(lNhereR is a time dependent dilatatios, is a time depen-

proof is not in most of the textbooks of Mechanics. However,dent rotation around the center of mass, from the frame of

Q;g{gﬂigig Iggtlaljsdc?rs]eti?;tgl(iafggn;;rg]o?Sftﬁ; OLfahg/;lf;nhgag.;,the plane containing the bodies to the inertial frame /il
Theorem published by C. Carasbdory in 1933 [5]. a label to number the bodies. Vecteisare constant vectors

- _ _ with third component equal to zero
This is an exercise affordable to Physics, Astronomy

and Mathematics students, and will be useful for some re- Ay
searchers in the field of Central Configurations that do not ct=| Br |, @
know this simple proof. The proof is very similar to that in- 0

Cluded in the Sommerfeld’S text MeChaniCS, “an introductorywhereAk, Bk are the Cartesian Coordinates of Veat@rin

course attended by students USUa”y in their third or fOUrth:he rotating p|ane, before the time dependent d||atat|0Rby
years”, in Germany in the last century. The center of mass of the three bodies is in the same plane,
We note the proof considered by Car@tldory and Som- and with no loss of generality one assumes this point does
merfeld for three bodies is valid for a larger number of bodiesnot move and it is at the origin of a fixed system of coordi-
until it is demonstrated the bodies move in a fixed plane thahates of the plane containing the bodies, with its third axis of
rotates around the center of mass in the same plane. This é®ordinates, orthogonal to such plane.
presented in the next section. After this fact is proved, the Rotationg is around the center of mass. To be a rota-
geometric configuration of the bodies become fastly growingion this matrix has the property that its inverse matrix is its
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transposed matrix We write the third component of this equation for bddy
in terms of the components of vectarsandcy, one has

grG =¢, 3) .
Ak {—Rd)g - QRWQ + ngwl]
where€ is the unit matrix.
The time derivative of this equation gives + By, [Rw1 + 2Rw; + ngwQ} =0. (12)
G'g+3¢'g=0, 4) Because the bodies are not collineal, the vectors

(A1, Ao, A, ...) and (By, B2, Bs, ...) are linearly indepen-
dent; therefore, the quantities inside the square brackets of
this equation are zero. It results in

where O is the zero matrix. Hence, it follows that matrix
GTG is an anti-symmetric matrix which defines the angular
velocity
ng _ 7g.Tg —wx (5) ng 2].%(4)2 + RW3W1 0,
Ruwi + 2Rwi + Rwsws = 0. (13)
We have the velocities of the bodies
Cancellingws of both equations (13) we have the integrable

i, = (RG+ RG) e = G(RE + Rwx)cy, (6)  result
where a dot on a letter denotes the time derivative and where % [RY (w1 +w2)?] =0 — RY (w1 +w2)?=C? (14)

G =Guwx (7)  whereC is a non negative number, constant of integration.

_ _ _ - Next we will proveC' = 0. But just now we only are certain
is the velocity of the rotation matrig in terms of the angular  that the complex number; + iw- obeys

velocity w, computed in the referential of the fixed plane:

R%*(w; + iwy) = Cexp(if), (15)
w1 0 —ws we

w=| w |, wx= ws 0 —w . (8 with ¢ some real number. This number disappear§' ifs

w3 —w3 Wi 0 equal to zero.

Next we consider the components 1 and 2 of the equation
Therefore the acceleration is (11) to have
iy =G |RE + 2Rw x + R x +R(wx)?| ek, (9) {R’R — R*(w? + w?)} Ay

where we introduce the unit matré, since the other terms — {2w3R?R + R*(—wiws + @3)} By = Ly, (16)

inside the square brackets are matrices. This acceleration, to d
satisfy the Newton equations of motion, should be equal to

{2ws R?R + R3(wiwa + w3)} Ay,

Tp ol R e — el +{R*R + —R*(w? 4+ w3)} B}, = M. (17)
. Ly Since vectors of components, and By, are linearly in-
=G| My |, (10)  dependent we find 4 particular valuds, B;, 4;, B;, such
R 0 that the determinant is not zero
where L, M, are the constant components of the vector ‘ gl gﬂ £0.
forming the sum on the left, which is a function of vectors N
ci. in the plane containing the bodies. Substitution of these 4 values in Eq. (16) or Eq. (17), gives
Equating equations (9) and (10), and multiplying botha system of two linear equations with constant coefficients,
members of that equation with*G ', we come to that implies the two brackets in each equation are constant.
B ) ) ) It follows that the 4 brackets should be constant. Then, from
[3235 +2R*Rw x +R%0 x +R3(w><)2} Ck the differences of the first and the fourth, and the second and
I the third, we obtain the equations
k
= M |. (11) R*(wi —w3) =B, 2R*wiws =7, (18)
0

with 8 and~ two unknown constants. These are the real part
From this equation, when it is valid for three or more nonand imaginary part of the constant complex number

collinear bodies, Caraéiodory provess; = wo = 0 as fol- ) 5 o
lows. B +iy =R (w1 +iw2)”. (19)
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ON THE LAGRANGE’S EQUILATERAL HOMOGRAPHIC FLAT MOTION OF THREE BODIES INTERACTING WITH THE NEWTON... 3

If we assumeR variable, the only possibility for satisfy- Eqgs. (16) and (17). The other bracket is another constant that
ing both (15) and (19) is to have, = w» = 0. If we assume  we denote by the numberv
R constant, then (19) implies; andw- are constants, and 72
(13) givesws = 0 if one w; or ws is different from zero. —v=R2R— R3w? = R2R — —.
Such case is impossible since the axis of rotation could coin- R
cide with the plane of the bodies. In both cases we conclude Equations (16) and (17) are simplified to
wy = wy = 0, and (13) is satisfied identically without imply-

ing thatws is zero. —V( gk ) = ( ]{Jf ) : (27)
The rotationg is of the form k k

(26)

. which will be discussed in the next section.
cosy siny 0

G=| —siny cosy 0 |, (20)
0 0 1 3. The central configurations of the homo-

h graphic motion in the fixed plane
wi
) Last Eq. (27) was solved by Lagrange and Laplace to obtain a
wg = 1. (21)  remarkable simple solution for three bodies. The complexity

. .. ofthe equation is explicit if we return to the original expres-
The brackets in Egs. (16) and (17) become simplifiedgjon in terms of the vector notation in Egs. (2) and (10)
now we find instead of four just two different, but one of

them is zero. To prove this, consider the vector of angular ey = Z m;(c; — cx) (28)
momentum which is a constant of motion. :

The angular momentum of the bodies is the constant of
motion which is expressed in terms of our Egs. (1) and (6) Or coming back to our first hypothesis (1)

. v mi(r; —r)
kal‘k X Tk :kaR(ng) —?rk = ZW, (29)
k k i#£k
X {Q(R + Rwx)cg| - (22)  namely, at each time, the position is proportional to the accel-

eration of each patrticle. This is called a central configuration.

The right hand side of this equation is simplified using ~ For three bodies Eq. (29) is written as
first, that the produck of two rotated vectors is the rotation

v mi(r; —rg)  my(r; —rg)
— T5a = E 2 30
of the productx of the vectors Ttk T — xP i, — ol (30)
kark X Tp = kaR (Gek) with ¢, j andk different.Thex product with vector, leads
k k to
X {R(QCk) + R[(Gw) x (QCk)]}~ (23) mits X Tk | MyTj X Tk _ o (31)
lri —rel* vy —f?

Furthermore thex vector of two equal vectors is zero and the
triple x product simplifies as vectotav andGc,. are orthog-
onal and the square of vect@ry, is the square of vectar;.
Finally w is an eigenvector af with eigenvalue 1 (since it is m;r; +m;r; + mgry = 0. (32)
parallel to the axis of rotation)

Since the center of mass is at the origin of coordinates we
have

The x product withry, gives

. 2 .
;mkrk X T = RoGw ;mk(gck} (Gex) m;r; X Ty +m;r; X ri = 0. (33)
— R%u Z MkCh - Ci. (24) Substitution of (33) in (31) produces
k 1 1
. . mir; X Iy ( 3~ 3) =0. (34)
Conservation of angular momentum for the homographic |r; — 1y rj — 1kl

motion simplifies to Therefore, for three bodies, they are at the vertexes of an

Rlws = R = J. (25) equilateral triangle
ri —ri| =|r; —rg|, |ci—ci|=|c; —ckl 35
whereJ is a constant. Iri =il = e el e el =l g (33)
Taking into account thaty = wy = 0, the time deriva- In the case when the number of bodies is larger than three,
tive of this constant, equal to zero, is a factor of a bracket irthe shape of the constant polygon formed by the vegtprs
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has not a simple shape. The shape is now strongly depen- Using these constants we relate the constants by

dent on the relative value of the masses, actually only a finite 8.

number of shapes are allowed for 4 bodies [8] and, for finite 5 V=—) (41)
M*

different masses perhaps one will have the same property [9].

Nevertheless. if the central configuration holds, then all thevhich was obtained by replacingfrom (25) in the equation

bodies describe conic sections, with a common focus at thef the energy40). Taking the derivative with respect to time,

center of mass, and with the same eccentricity. and identifying the resulting equation wit2@) .

To prove this, we assume for a while that a system of ~ The orbit is the conic

coordinates has been defined such that the anglethe ro- D

tation G around the fixed direction of our plane is the angle k= 1 —ecos(th —1ho)’ (42)
between the inertial system of the plane and the principal di-
rection of inertia of the several bodies. We shall make explicit hereyy s a constant angle, s thelatus rectum
in the next section that the coordinate system exists, and ver- _ Jj
ify that the Newton equation of motion allows constants of P=7
motion that are compatible with restrictions imposed by theange is the eccentricity
central configuration, Eq. (28).
Substitution of the angular velocity -~ 2EJ?
e=14/14+ —.
0 M+k?
w=| 0|, (36) A particular example, when the bodies move on ellipses

) is illustrated in Fig. 1.
in the expression (5) for the velocity of body we compute . o
the kinetic energy 4. A system of coordinates for three bodies in

1 . the plane
K =52 maliuf’ P
k We review in this section a system of coordinates for studying

1 ) ) the Newton equations of motion of three bodies, interacting
=3 ka|ck|2 (R2 + R2¢2) . (87)  with the gravitational force in the plane [10]. With no loss
k of generality, we assume the origin of coordinates is at the
The potential energy becomes center of mass of the bodies. This implies the 6 Cartesian
v Z Z _mymy coordingtes in the inertial frame of the plane obey the two
— [rj — constraints
I j#k
mi1Ty + maxo + msxs = 0,
m;myg
Z Z e, —cil | (38) and  myy; +mays + mays = 0. (43)
ik b

These two conditions lead to only four independent coordi-

We will write the constants in the kinetic energy and the oo

potential energy with the notation

m;m
= | 2 malenl® | Z ) i rmernll B
k 7 lej — el
j#k
The Lagrangian, = K — V of several bodies for the
homographic motion in the plane becomes
C

L(R, R, %) = %M* (72 + R2%) + o (@9
that is formally identical (except for the meaning of the con-
stants in it) to the Lagrangian for the two body relative mo-
tion of two bodies moving in the Newton gravitational prob-
lem, whereR is the relative distance and angleis the real
anomaly. For the 2-body problen® and ) are the polar
coordinates of the relative position in the plane orthogonal

to the angular momentum vector. This Lagrangian gives the
constants of motiol' in Eq. (25) and the energy

FIGURE 1. Three bodies tracing ellipses in a Lagrange’s three-
L (p2 272 C body solution. At two different times, the simultaneous positions
E=3M (R + R ) R (40) forming equilateral triangles is highlighted.
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ON THE LAGRANGE'’S EQUILATERAL HOMOGRAPHIC FLAT MOTION OF THREE BODIES INTERACTING WITH THE NEWTON... 5

We start considering three bodies in the plane. The Cartesian coordinates are written in terms of 4 new coardiRates:

RQ, g
1 X2 x3 \ _ [ cosy —siny R, O coso  sino a1 as as (44)
Y1 Yo Y3 “\ sinY  cosy 0 Ry —sino  coso by by b3 )
The angley, that we used before, is the angle that diagonalizes the matrix
mi 0 0 T Y . 2 .
1 Ty 23 cosy —sing uRy 0 costy  sina
0 mo 0O T2 %2 =\ gin Y cosvy 0 R? —siny  cosy )’ (45)
Y1 Y2 Ys O O ms T3 Y3 w 2
wherey is a reference mass, that for 3 bodies we define as
mimoms
=, — 46
A e, (46)

and coordinate®; and R, are defined by Eq46).

Matrix
o ayp az asg
A( b b b > (47)

is a constant matrix that satisfies

cosc  sinco mi 0 0 cosc —sino 0
( )A 0 mo O AT< )—(“ > (48)

—sino  coso sinc  coso 0
0 0 ms H

for any value of the fourth coordinate

We will see that for the homographic motion of the Lagrange’s equilateral triangle we choesd) that makes the
o—matrix to become th€ x 2 unit matrix. Theo coordinate is hence the angle measured with respect to the Lagrange
equilateral configuration.

The components of the matri®) obey until now 5 conditions: two of them are inherited from the conditions of the center
of mass/43) that we write as

ay az a m 0
1 2 3 —
( by by b3 ) 2; N ( 0 ) (49)
Three conditions follow from the Ec48)
my 0 0 ar by
(32w (o m o ){wen]=(40) (50
! 2 3 0 0 ms as b3 H

since it is a symmetric matrix with three independent equations. Now we combine these two equations in the form

1 ajq as as miq 0 0 a1 b1 T 1 0 0
- b1 bg b3 0 mo 0 as b2 T = 01 0 5 (51)
K ror r 0 0 mg ag by r 0 0 1
where
_ K _
r= g m = mq + ms +ms. (52)

From Eg. b1) we use the left inverse of a matrix is equal to its right inverse and we arrive to

ap by r a1 az as ww/my 0 0
as b2 T b1 bg b3 = 0 u/mg 0 N (53)
as bg r ror 0 0 w/ms.
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that gives the independent equations NumbersY,, Y, are normalization factors to satisfy equations
in Eq. 50)
2 2 H © o $
ai b= — — —, a;a; +bb; = ——. 54
T my om J J m (54) Zmia? = Zmlbf = u. (63)

These lead to very important geometric properties. The
positions of the three coordinates in mat4¥) form a trian-
gle which square of sides is equal to

Further properties of these quantities are in Ref. [12], for
example
M ml > X, > mgo > Xp > mg, (64)

(55) . .
m; where we assume choice of indexes to haye> mso > ms.

Coming back to our Egs. (1) and (2), we relate to our
coordinates in this section by transformifiy and R, into
a;(a; — ag) + bi(b; — b)) =0, (56) polar coordinates

with 4, j, k different. Ry = Rcos, Rz = Rsind. (65)

This constant triangle, function of the masses, appears in We recover the Lagrange’s equilateral triangle case with
a paper presented by C. SifiL1] studying the bifurcation of angless andd constants with the particular values

1%
(ai —aj)? + (b = bj)? = el

The center of mass of this triangle is at the orthocenter:

the three body motion using the ratio qf klnetlc energy and , at+VaZ_3
angular momentum. We will refer to this triangle as 8ism c=0, cos“0= STy
triangle.
A new independent condition is necessary to fix the po- sin2g= 2"V a? -3 (66)
sition of this triangle to determine its 6 components for the 200 '
Lagrange’s case of equilateral motion. The additional condi- To prove this constant value fé¢r we compute the char-
tion to hold all the properties stated before is acteristic equation for the matrix$), in the case the three
bodies are placed at the vertices of an equilateral triangle.
a1m?3by + agm3by + azm3bs =0 (57) i ica i i i
11101 2M502 + azm303 . The answer to this exercise is again the quadratic [&@). (

with solutions |61), for a proper choice of the length of the

Then we have 3 vectors orthogonal to vector . 4 ;
g triangle. We rewrite Eg. (1) in the form

(b1, b2, bg), namely(my, mz, m3), (a1mi, azma, azms) and .
(a1m?2,aam2, asm?2). Therefore these three vectors are lin- ( Ty Ty X3 ) _ R( cost) —sin )

early dependent, and we have the properties Y1 Y2 Y3 siny  cosy
Yu A A A
2 _ . . . =
miai = Xmiai + Yum,) e mg; — X’ (58) 8 < B By Bs ) 7 (67)
with X andY two real numbers to be determined with di-  Which coincides with value$g) of our coordinates if
mension of mass, and without dimensions. Th& number A Ay Az Xa/)2u) 0
is determined from the condition By By Bs ) 0 X,/ (21)
armi +asmz +azmz =0 — « ( ay az ag ) . (68)
LSS L S L B—" (59) bbb
m—-—X me—X mg—X We prove these are the coordinates for an equilateral tri-
This last is a quadratic equation written as angle: X X
a b
X\ 2 X (Ai = Aj)*+(B; = Bj)*=3 1 (ai = ag)*+ 52 (b = bj)* =
(XY 2 ()ara-o ; 7
M (because Eqs68))
1 1 1 1
a=p ( +—+ ) : (60) o [(miai —mja;)(a; — a;) + (mib; —m;b;) (b — bj)] =
mi mo ms W
- - 1
With the two solutions o [mi(ai+b7)+m;(ad+b7) — (mi+m;)(aia;+bib;)] =
Xo=pla+Var=3), Xp=pla—va*>=3). (61) (pecause Eqs5l))
Nevertheless the vectors of componemtsandb; obey 1 [m (“ _ N> + <N _ N)
symmetric equations thereforlg satisfies properties like 20l "\m; m "\mj m
(59), that explains the subindex added to the t/s
— (my +m;) (—ﬂ) -1 (69)
g = Yok g Yen (62) Thom
Comi - X, mi— Xy This ends the proof.
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5. The geometry of the Sind’s triangle and its 20
Lagrange’s fixed position

In this section we will express some equations in compact
form, using matrix notation. I/ is the matrix

mi 0 0
M=| 0 ms 0 |, (70)
0 0 ms

then Eq. (50) is

%AMAT - ( (1) (1) ) (71)

Although the properties of the Sits triangle presented B
in the previous section are remarkable, we want in this sec- 13
tion to include several geometric properties that are expressed
by means of very symmetric simple expressions. F.IGUR.E 2. Thg ,a’mgllesn, [ and~ between the altitudes and the
Associated to the Lagrange’ s constraint presented ifides in the Si's triangle, for masses, = 52, mz = 20,
Eqg. (57) we find a generalized equation similar to the pre—m3 =13
vious one

52

It follows a theorem, valid for the Sié's triangle (any tri-
}AMzAT _ < Xa 0O ) (72) angle with three acute angles) the purely geometric property
o 0 Xb ’

Other simple property is obtained computing the area of tan(«) tan(8) tan(y) = tan(«) + tan(3) + tan(y), (79)
the Sind’s triangle by using the Heron’s formula for the area
in terms of the distances (55). It results in that the value o(N

the area is equal to 1/2. This is related to our choice of the L ) ) ] ]
reference mass. The Sind’s triangle has been fixed in the particular posi-

For finite positive masses, the angles of this triangle ardion determined by coordinates that appear as entries of the
acute. The center of mass is at the orthocenter where the dPatrix (47). We give polar coordinates for those positions
titudes cross. Each altitude separates the triangle in two right
triangles. It follows the angle between one altitude and one a; = picos(a;), b = pisin(a;). (80)
side is the complement of one angle at the vertex. If we de-
note bya, 3, 7, the angle between sides and altitudes, we ] o ) ) ) )
verify the repetition of the angles in two different vertices 1he first equation in (54) gives the radial coordingesn
(see Fig. 2). Each angle of the triangle is the sum of two of€'MS Of the masses
these angles. These angles have a trigonometric tangent that

is a simple function of the masses as follows i = /azz b2 = | n ﬁ. (81)
mj m

1L _m

hich we deduce from our definition @f

tan(6 +) = (@)~ 5 (73)
a We used these polar coordinates in Ref. [12], callingshe
tan(y + o) = 1 _ M2 (74) collision angles. At this reference we present the property
tan(3)  p’
tan(a + §) = [ ms (75) (tan(oq) + tan(oz) 4 tan(os))
tan(y)  p : X
. . X + + =9. (82)
The angles between two altitudes is the supplementary tan(oy) = tan(og) = tan(os)
angle and we have
tan(a +7/2) = _@7 (76) The difference of these angles is equal to the angle be-
tween two altitudes
tan(8 +7/2) = =2, (77)
ﬂ’lj os—01=7+7/2, o3—03=a+7/2,
—_s
tan(y +7/2) = = (78) 01— 05 = B+1/2. 83)

Rev. Mex. Fis71060701
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From these equations we prove

linear stability of the Lagrange’s three body solution. Prof.
Symon assumes like Laplace that the solution is in a confined

tan(o;) = —2 <m3 @ m2 + m3) fixed plane. According to Wintner [13], p. 431, this is the
my important part of the Lagrange theorem, that was disregarded
by Laplace.
4 M2 s tms | /L 1 (84) The presentation (5) of the angular velocity in terms of
2 + 2 ’ . . . . . .
m2 —m3 m3 the rotation matrix, as in this paper, is not as popular in texts
my  my+ms of mechanics, as it should be. My opinion is that this is
tan(og) = — (m — - ) the only clear definition of angular velocity in the 3-D case;
3 1A 3 2 notwithstanding it uses matrices. The Wintner book, cited
my + 2 2 2 above [13], is a good reference to this presentation of the an-
1+mg [ u 1% 1% . .
—S+-—=+t—-1 (85)  gular velocity, nevertheless it should be noted that he uses
ms3 — ma my my ms3 . .. . .
the obsolete termeciprocal matrinstead of inverse matrix.
and We have given in the European Journal of Physics [17] other
older references to such approach dated 1938.
tan(os) = H <m2 n my my A+ m2) The Sind’s triangle is a rigid triangle used to determine
mp—me \Mm1 M2 mg our coordinates. The angle is an internal rotation of this tri-
5 5 5 angle for a general configuration. For the Lagrange equilat-
m1 + Mo LQ + Lz + LQ — 1. (86) eralsolution this angle is zero. For the general configuration,

mi1 — Mg my

my M3

6. Historical notes and conclusions

the o angle is defined with respect to the Lagrange position.
At the end of section 4 we prove that in the referential of
the principal inertia moments the equilateral triangle is trans-
formed into the Sird’s triangle by performing two expan-

The first theorem presented in this paper (see the abstractjons along the principal inertia directions with magnitudes

was proved in the old book by A. Wintnefhe analytical

foundations of Celestial Mechanifs3] sec. 374.
According to Wintner the proof in his book was obtained metric tangents of the angles of the $imtriangle and the

VXa/2pand /Xy, /2p.
Our Sec. 5 includes simple relations between the trigono-

originally by P. Pizzetti [15]. The Caratlodory proof pre- masses.

sented in this paper was not included in Wintner's book. This  The position of the Si's triangle with respect to the
proof is simpler than the original proofs by Lagrange andprincipal inertia referential, in the Lagrange case, has been
Pizzetti, which could be qualified with Sommerfeld [4] as determined by redundant expressions that are hidden in the
rather involved. This fact is illustrated again when we find inliterature. Besides Eqg. (62), we remark Egs. (72) and (82),
another text of Mechanics written by Prof. K. R. Symon [16], and the set of Egs. (84-86), all of them different characteriza-

where at the last section of the last chapter he considers th@ns of that position. These last three are probably original.
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