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We present the equilateral three-body motion with three different masses according to Newton gravitational force, which was discovered by
Lagrange, tracing conic trajectories. We will extend to several bodies the generalization of the equilateral triangle solution discovered by
Lagrange. The flat n-body problem of several different masses can be solved in closed and elementary form if we assume that the polygon
formed by several celestial bodies always remains similar to itself. The Lagrange proof was simplified by C. Carathéodory and we extend
without problem this proof to several bodies. The bodies move on a fixed plane with two independent coordinates: one rotation around the
center of mass, and one radial expansion. At any time the position vector of each body is the same multiple of the acceleration vector of
the body. Bodies move tracing similar conics with the pole of each conic at the center of mass. For the three-body Lagrange’s case, a rigid
triangle function of the masses discovered by Simó, is described with very simple geometry. Which we should place in a particular position
imposed by the Lagrange’s solution. We present a set of mathematical properties which are not well known.
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1. Introduction

We want to review the flat homographic motion of several
bodies interacting by the Newton gravitational force. By ho-
mographic we mean the angles formed by the lines connect-
ing the bodies are constant. In the case of three bodies, Euler
discovered a collineal solution [1] that has been reviewed re-
cently [2], which will not be considered in this paper. We turn
our attention into the flat solution found by Lagrange [3] (al-
though the masses could be different) he proved they move
in a fixed plane, forming an equilateral triangle; any body
with its position vector relative to the center of mass being
the same multiple of the acceleration vector of that body
(Laplace called this a central configuration). The Lagrange
proof is not in most of the textbooks of Mechanics. However,
A. Sommerfeld includes that theorem in his text of Mechan-
ics [4] since he uses one simplified proof of this Lagrange’s
Theorem published by C. Carathéodory in 1933 [5].

This is an exercise affordable to Physics, Astronomy
and Mathematics students, and will be useful for some re-
searchers in the field of Central Configurations that do not
know this simple proof. The proof is very similar to that in-
cluded in the Sommerfeld’s text Mechanics, “an introductory
course attended by students usually in their third or fourth
years”, in Germany in the last century.

We note the proof considered by Carathéodory and Som-
merfeld for three bodies is valid for a larger number of bodies
until it is demonstrated the bodies move in a fixed plane that
rotates around the center of mass in the same plane. This is
presented in the next section. After this fact is proved, the
geometric configuration of the bodies become fastly growing

in complexity from an equilateral triangle for three bodies to
a complex polygon for four or five bodies, with angles de-
pending on the values of the masses, as we discussed else-
where [6,7].

2. Proof that a flat homographic motion re-
mains in a fixed plane

The hypothesis of flat homographic motion assumes that the
several positions of the bodyrk in cartesian coordinates obey
the equation

rk = RG ck, (1)

whereR is a time dependent dilatation,G is a time depen-
dent rotation around the center of mass, from the frame of
the plane containing the bodies to the inertial frame andk is
a label to number the bodies. Vectorsck are constant vectors
with third component equal to zero

ck =




Ak

Bk

0


 , (2)

whereAk, Bk are the cartesian coordinates of vectorck in
the rotating plane, before the time dependent dilatation byR.
The center of mass of the three bodies is in the same plane,
and with no loss of generality one assumes this point does
not move and it is at the origin of a fixed system of coordi-
nates of the plane containing the bodies, with its third axis of
coordinates, orthogonal to such plane.

RotationG is around the center of mass. To be a rota-
tion this matrix has the property that its inverse matrix is its
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transposed matrix

GTG = E , (3)

whereE is the unit matrix.
The time derivative of this equation gives

GTĠ + ĠTG = O, (4)

whereO is the zero matrix. Hence, it follows that matrix
GTĠ is an anti-symmetric matrix which defines the angular
velocity

GTĠ = −ĠTG = ω × . (5)

We have the velocities of the bodies

ṙk = (ṘG + R Ġ) ck = G(ṘE + R ω×)ck, (6)

where a dot on a letter denotes the time derivative and where

Ġ = G ω× (7)

is the velocity of the rotation matrixG in terms of the angular
velocityω, computed in the referential of the fixed plane:

ω =




ω1

ω2

ω3


 , ω× =




0 −ω3 ω2

ω3 0 −ω1

−ω3 ω1 0


 . (8)

Therefore the acceleration is

r̈k = G
[
R̈E + 2Ṙω ×+Rω̇ ×+R(ω×)2

]
ck, (9)

where we introduce the unit matrixE , since the other terms
inside the square brackets are matrices. This acceleration, to
satisfy the Newton equations of motion, should be equal to

∑

i 6=k

mi(ri − rk)
|ri − rk|3 =

1
R2
G

∑

i 6=k

mi(ci − ck)
|ci − ck|3

=
1

R2
G




Lk

Mk

0


 , (10)

whereLk, Mk are the constant components of the vector
forming the sum on the left, which is a function of vectors
ck in the plane containing the bodies.

Equating equations (9) and (10), and multiplying both
members of that equation withR2G−1, we come to

[
R2R̈E + 2R2Ṙω ×+R3ω̇ ×+R3(ω×)2

]
ck

=




Lk

Mk

0


 . (11)

From this equation, when it is valid for three or more non
collinear bodies, Carathéodory provesω1 = ω2 = 0 as fol-
lows.

We write the third component of this equation for bodyk
in terms of the components of vectorsω andck, one has

Ak

[
−Rω̇2 − 2Ṙω2 + Rω3ω1

]

+ Bk

[
Rω̇1 + 2Ṙω1 + Rω3ω2

]
= 0. (12)

Because the bodies are not collineal, the vectors
(A1, A2, A3, ...) and (B1, B2, B3, ...) are linearly indepen-
dent; therefore, the quantities inside the square brackets of
this equation are zero. It results in

−Rω̇2 − 2Ṙω2 + Rω3ω1 = 0,

Rω̇1 + 2Ṙω1 + Rω3ω2 = 0. (13)

Cancellingω3 of both equations (13) we have the integrable
result

d
dt

[
R4(ω1 + ω2)2

]
= 0 → R4(ω1 + ω2)2 = C2, (14)

whereC is a non negative number, constant of integration.
Next we will proveC = 0. But just now we only are certain
that the complex numberω1 + iω2 obeys

R2(ω1 + iω2) = C exp(iξ), (15)

with ξ some real number. This number disappears ifC is
equal to zero.

Next we consider the components 1 and 2 of the equation
(11) to have

{R2R̈−R3(ω2
2 + ω2

3)}Ak

− {2ω3R
2Ṙ + R3(−ω1ω2 + ω̇3)}Bk = Lk, (16)

and

{2ω3R
2Ṙ + R3(ω1ω2 + ω̇3)}Ak

+ {R2R̈ +−R3(ω2
1 + ω2

3)}Bk = Mk. (17)

Since vectors of componentsAk andBk are linearly in-
dependent we find 4 particular valuesAi, Bi, Aj , Bj , such
that the determinant is not zero∣∣∣∣

Ai Aj

Bi Bj

∣∣∣∣ 6= 0.

Substitution of these 4 values in Eq. (16) or Eq. (17), gives
a system of two linear equations with constant coefficients,
that implies the two brackets in each equation are constant.
It follows that the 4 brackets should be constant. Then, from
the differences of the first and the fourth, and the second and
the third, we obtain the equations

R3(ω2
1 − ω2

2) = β, 2R3ω1ω2 = γ, (18)

with β andγ two unknown constants. These are the real part
and imaginary part of the constant complex number

β + iγ = R3(ω1 + iω2)2. (19)
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If we assumeR variable, the only possibility for satisfy-
ing both (15) and (19) is to haveω1 = ω2 = 0. If we assume
R constant, then (19) impliesω1 andω2 are constants, and
(13) givesω3 = 0 if one ω1 or ω2 is different from zero.
Such case is impossible since the axis of rotation could coin-
cide with the plane of the bodies. In both cases we conclude
ω1 = ω2 = 0, and (13) is satisfied identically without imply-
ing thatω3 is zero.

The rotationG is of the form

G =




cosψ sin ψ 0
− sin ψ cosψ 0

0 0 1


 , (20)

with

ω3 = ψ̇. (21)

The brackets in Eqs. (16) and (17) become simplified,
now we find instead of four just two different, but one of
them is zero. To prove this, consider the vector of angular
momentum which is a constant of motion.

The angular momentum of the bodies is the constant of
motion which is expressed in terms of our Eqs. (1) and (6)

∑

k

mkrk × ṙk =
∑

k

mkR (G ck)

×
[
G(Ṙ + R ω×)ck

]
. (22)

The right hand side of this equation is simplified using
first, that the product× of two rotated vectors is the rotation
of the product× of the vectors

∑

k

mkrk × ṙk =
∑

k

mkR (G ck)

×
{

Ṙ(Gck) + R [(Gω)× (Gck)]
}

. (23)

Furthermore the× vector of two equal vectors is zero and the
triple× product simplifies as vectorsGω andGck are orthog-
onal and the square of vectorGck is the square of vectorck.
Finally ω is an eigenvector ofG with eigenvalue 1 (since it is
parallel to the axis of rotation)

∑

k

mkrk × ṙk = R2Gω
∑

k

mk(Gck) · (Gck)

= R2ω
∑

k

mkck · ck. (24)

Conservation of angular momentum for the homographic
motion simplifies to

R2ω3 = R2ψ̇ = J, (25)

whereJ is a constant.
Taking into account thatω1 = ω2 = 0, the time deriva-

tive of this constant, equal to zero, is a factor of a bracket in

Eqs. (16) and (17). The other bracket is another constant that
we denote by the number−ν

−ν = R2R̈−R3ω2
3 = R2R̈− J2

R
. (26)

Equations (16) and (17) are simplified to

−ν

(
Ak

Bk

)
=

(
Lk

Mk

)
, (27)

which will be discussed in the next section.

3. The central configurations of the homo-
graphic motion in the fixed plane

Last Eq. (27) was solved by Lagrange and Laplace to obtain a
remarkable simple solution for three bodies. The complexity
of the equation is explicit if we return to the original expres-
sion in terms of the vector notation in Eqs. (2) and (10)

−νck =
∑

i 6=k

mi(ci − ck)
|ci − ck|3 , (28)

or coming back to our first hypothesis (1)

− ν

R3
rk =

∑

i6=k

mi(ri − rk)
|ri − rk|3 , (29)

namely, at each time, the position is proportional to the accel-
eration of each particle. This is called a central configuration.

For three bodies Eq. (29) is written as

− ν

R3
rk =

mi(ri − rk)
|ri − rk|3 +

mj(rj − rk)
|rj − rk|3 , (30)

with i, j andk different.The× product with vectorrk leads
to

miri × rk

|ri − rk|3 +
mjrj × rk

|rj − rk|3 = 0. (31)

Since the center of mass is at the origin of coordinates we
have

miri + mjrj + mkrk = 0. (32)

The× product withrk gives

miri × rk + mjrj × rk = 0. (33)

Substitution of (33) in (31) produces

miri × rk

(
1

|ri − rk|3 −
1

|rj − rk|3
)

= 0. (34)

Therefore, for three bodies, they are at the vertexes of an
equilateral triangle

|ri − rk| = |rj − rk|, |ci − ck| = |cj − ck|. (35)

In the case when the number of bodies is larger than three,
the shape of the constant polygon formed by the vectorsck
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has not a simple shape. The shape is now strongly depen-
dent on the relative value of the masses, actually only a finite
number of shapes are allowed for 4 bodies [8] and, for finite 5
different masses perhaps one will have the same property [9].
Nevertheless. if the central configuration holds, then all the
bodies describe conic sections, with a common focus at the
center of mass, and with the same eccentricity.

To prove this, we assume for a while that a system of
coordinates has been defined such that the angleψ of the ro-
tationG around the fixed direction of our plane is the angle
between the inertial system of the plane and the principal di-
rection of inertia of the several bodies. We shall make explicit
in the next section that the coordinate system exists, and ver-
ify that the Newton equation of motion allows constants of
motion that are compatible with restrictions imposed by the
central configuration, Eq. (28).

Substitution of the angular velocity

ω =




0
0
ψ̇


 , (36)

in the expression (5) for the velocity of bodyk, we compute
the kinetic energy

K =
1
2

∑

k

mk|ṙk|2

=
1
2

(∑

k

mk|ck|2
) (

Ṙ2 + R2ψ̇2
)

. (37)

The potential energy becomes

V = −
∑

j j 6=k

∑

k

mjmk

|rj − rk|

= − 1
R


∑

j j 6=k

∑

k

mjmk

|cj − ck|


 . (38)

We will write the constants in the kinetic energy and the
potential energy with the notation

M∗ =

(∑

k

mk|ck|2
)

, C =


∑

j j 6=k

∑

k

mjmk

|cj − ck|


 .

The LagrangianL = K − V of several bodies for the
homographic motion in the plane becomes

L(R, Ṙ, ψ̇) =
1
2
M∗

(
Ṙ2 + R2ψ̇2

)
+

C

R
, (39)

that is formally identical (except for the meaning of the con-
stants in it) to the Lagrangian for the two body relative mo-
tion of two bodies moving in the Newton gravitational prob-
lem, whereR is the relative distance and angleψ is the real
anomaly. For the 2-body problem,R and ψ are the polar
coordinates of the relative position in the plane orthogonal
to the angular momentum vector. This Lagrangian gives the
constants of motionJ in Eq. (25) and the energy

E =
1
2
M∗

(
Ṙ2 + R2ψ̇2

)
− C

R
. (40)

Using these constants we relate the constants by

ν =
C

M∗ , (41)

which was obtained by replacinġψ from (25) in the equation
of the energy (40). Taking the derivative with respect to time,
and identifying the resulting equation with (26) .

The orbit is the conic

R =
p

1− ε cos(ψ − ψ0)
, (42)

whereψ0 is a constant angle,p is thelatus rectum

p =
J2

ν

andε is the eccentricity

ε =

√
1 +

2EJ2

M∗k2
.

A particular example, when the bodies move on ellipses
is illustrated in Fig. 1.

4. A system of coordinates for three bodies in
the plane

We review in this section a system of coordinates for studying
the Newton equations of motion of three bodies, interacting
with the gravitational force in the plane [10]. With no loss
of generality, we assume the origin of coordinates is at the
center of mass of the bodies. This implies the 6 Cartesian
coordinates in the inertial frame of the plane obey the two
constraints

m1x1 + m2x2 + m3x3 = 0,

and m1y1 + m2y2 + m3y3 = 0. (43)

These two conditions lead to only four independent coordi-
nates.

FIGURE 1. Three bodies tracing ellipses in a Lagrange’s three-
body solution. At two different times, the simultaneous positions
forming equilateral triangles is highlighted.
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We start considering three bodies in the plane. The Cartesian coordinates are written in terms of 4 new coordinates:ψ, R1,
R2, σ

(
x1 x2 x3

y1 y2 y3

)
=

(
cos ψ − sin ψ
sin ψ cos ψ

)(
R1 0
0 R2

)(
cosσ sinσ
− sinσ cos σ

)(
a1 a2 a3

b1 b2 b3

)
. (44)

The angleψ, that we used before, is the angle that diagonalizes the matrix

(
x1 x2 x3

y1 y2 y3

) 


m1 0 0
0 m2 0
0 0 m3







x1 y1

x2 y2

x3 y3


=

(
cosψ − sinψ
sin ψ cosψ

)(
µR2

1 0
0 µR2

2

)(
cos ψ sinψ
− sin ψ cos ψ

)
, (45)

whereµ is a reference mass, that for 3 bodies we define as

µ =
√

m1m2m3

m1 + m2 + m3
, (46)

and coordinatesR1 andR2 are defined by Eq. (45).
Matrix

A =
(

a1 a2 a3

b1 b2 b3

)
, (47)

is a constant matrix that satisfies

(
cos σ sin σ
− sin σ cos σ

)
A




m1 0 0
0 m2 0
0 0 m3


 AT

(
cos σ − sin σ
sinσ cosσ

)
=

(
µ 0
0 µ

)
, (48)

for any value of the fourth coordinateσ.
We will see that for the homographic motion of the Lagrange’s equilateral triangle we chooseσ = 0 that makes the

σ−matrix to become the2 × 2 unit matrix. Theσ coordinate is hence the angle measured with respect to the Lagrange
equilateral configuration.

The components of the matrix (47) obey until now 5 conditions: two of them are inherited from the conditions of the center
of mass (43) that we write as

(
a1 a2 a3

b1 b2 b3

) 


m1

m2

m3


 =

(
0
0

)
. (49)

Three conditions follow from the Eq. (48)

(
a1 a2 a3

b1 b2 b3

) 


m1 0 0
0 m2 0
0 0 m3







a1 b1

a2 b2

a3 b3


 =

(
µ 0
0 µ

)
, (50)

since it is a symmetric matrix with three independent equations. Now we combine these two equations in the form

1
µ




a1 a2 a3

b1 b2 b3

r r r







m1 0 0
0 m2 0
0 0 m3







a1 b1 r
a2 b2 r
a3 b3 r


 =




1 0 0
0 1 0
0 0 1


 , (51)

where

r =
√

µ

m
, m = m1 + m2 + m3. (52)

From Eq. (51) we use the left inverse of a matrix is equal to its right inverse and we arrive to



a1 b1 r
a2 b2 r
a3 b3 r







a1 a2 a3

b1 b2 b3

r r r


 =




µ/m1 0 0
0 µ/m2 0
0 0 µ/m3.


 , (53)
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that gives the independent equations

a2
j + b2

j =
µ

mj
− µ

m
, aiaj + bibj = − µ

m
. (54)

These lead to very important geometric properties. The
positions of the three coordinates in matrix (47) form a trian-
gle which square of sides is equal to

(ai − aj)2 + (bi − bj)2 =
µ

mi
+

µ

mj
. (55)

The center of mass of this triangle is at the orthocenter:

ai(aj − ak) + bi(bj − bk) = 0, (56)

with i, j, k different.
This constant triangle, function of the masses, appears in

a paper presented by C. Simó [11] studying the bifurcation of
the three body motion using the ratio of kinetic energy and
angular momentum. We will refer to this triangle as Simó’s
triangle.

A new independent condition is necessary to fix the po-
sition of this triangle to determine its 6 components for the
Lagrange’s case of equilateral motion. The additional condi-
tion to hold all the properties stated before is

a1m
2
1b1 + a2m

2
2b2 + a3m

2
3b3 = 0. (57)

Then we have 3 vectors orthogonal to vector
(b1, b2, b3), namely(m1,m2,m3), (a1m1, a2m2, a3m3) and
(a1m

2
1, a2m

2
2, a3m

2
3). Therefore these three vectors are lin-

early dependent, and we have the properties

m2
i ai = Xmiai + Y µmi) → ai =

Y µ

mi −X
, (58)

with X andY two real numbers to be determined,X with di-
mension of mass, andY without dimensions. TheX number
is determined from the condition

a1m1 + a2m2 + a3m3 = 0 →
m1

m1 −X
+

m2

m2 −X
+

m3

m3 −X
= 0. (59)

This last is a quadratic equation written as
(

X

µ

)2

− 2
(

X

µ

)
α + 3 = 0,

α = µ

(
1

m1
+

1
m2

+
1

m3

)
. (60)

With the two solutions

Xa = µ(α +
√

α2 − 3), Xb = µ(α−
√

α2 − 3). (61)

Nevertheless the vectors of componentsai and bi obey
symmetric equations thereforebi satisfies properties like
(58), that explains the subindex added to the twoX ’s

ai =
Ya µ

mi −Xa
, bi =

Yb µ

mi −Xb
. (62)

NumbersYa, Yb are normalization factors to satisfy equations
in Eq. (50) ∑

i

mia
2
i =

∑

i

mib
2
i = µ. (63)

Further properties of these quantities are in Ref. [12], for
example

m1 > Xa > m2 > Xb > m3, (64)

where we assume choice of indexes to havem1 > m2 > m3.
Coming back to our Eqs. (1) and (2), we relate to our

coordinates in this section by transformingR1 andR2 into
polar coordinates

R1 = R cos θ, R2 = R sin θ. (65)

We recover the Lagrange’s equilateral triangle case with
anglesσ andθ constants with the particular values

σ = 0, cos2 θ =
α +

√
α2 − 3

2α
,

sin2 θ =
α−√α2 − 3

2α
. (66)

To prove this constant value forθ, we compute the char-
acteristic equation for the matrix (45), in the case the three
bodies are placed at the vertices of an equilateral triangle.
The answer to this exercise is again the quadratic Eq. (60)
with solutions (61), for a proper choice of the length of the
triangle. We rewrite Eq. (1) in the form(

x1 x2 x3

y1 y2 y3

)
= R

(
cosψ − sin ψ
sin ψ cosψ

)

×
(

A1 A2 A3

B1 B2 B3

)
, (67)

which coincides with values (66) of our coordinates if(
A1 A2 A3

B1 B2 B3

)
=

( √
Xa/)2µ) 0

0
√

Xb/(2µ)

)

×
(

a1 a2 a3

b1 b2 b3

)
. (68)

We prove these are the coordinates for an equilateral tri-
angle:

(Ai −Aj)2+(Bi −Bj)2=
Xa

2µ
(ai − aj)2+

Xb

2µ
(bi − bj)2 =

(because Eqs. (68))
1
2µ

[(miai −mjaj)(ai − aj) + (mibi −mjbj)(bi − bj)] =

1
2µ

[
mi(a2

i +b2
i )+mj(a2

j+b2
j )− (mi+mj)(aiaj+bibj)

]
=

(because Eqs. (54) )

1
2µ

[
mi

(
µ

mi
− µ

m

)
+ mj

(
µ

mj
− µ

m

)

− (mi + mj)
(
− µ

m

)]
= 1. (69)

This ends the proof.
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5. The geometry of the Siḿo’s triangle and its
Lagrange’s fixed position

In this section we will express some equations in compact
form, using matrix notation. IfM is the matrix

M =




m1 0 0
0 m2 0
0 0 m3


 , (70)

then Eq. (50) is

1
µ

AMAT =
(

1 0
0 1

)
. (71)

Although the properties of the Siḿo’s triangle presented
in the previous section are remarkable, we want in this sec-
tion to include several geometric properties that are expressed
by means of very symmetric simple expressions.

Associated to the Lagrange’ s constraint presented in
Eq. (57) we find a generalized equation similar to the pre-
vious one

1
µ

AM2AT =
(

Xa 0
0 Xb

)
. (72)

Other simple property is obtained computing the area of
the Siḿo’s triangle by using the Heron’s formula for the area
in terms of the distances (55). It results in that the value of
the area is equal to 1/2. This is related to our choice of the
reference massµ.

For finite positive masses, the angles of this triangle are
acute. The center of mass is at the orthocenter where the al-
titudes cross. Each altitude separates the triangle in two right
triangles. It follows the angle between one altitude and one
side is the complement of one angle at the vertex. If we de-
note byα, β, γ, the angle between sides and altitudes, we
verify the repetition of the angles in two different vertices
(see Fig. 2). Each angle of the triangle is the sum of two of
these angles. These angles have a trigonometric tangent that
is a simple function of the masses as follows

tan(β + γ) =
1

tan(α)
=

m1

µ
, (73)

tan(γ + α) =
1

tan(β)
=

m2

µ
, (74)

tan(α + β) =
1

tan(γ)
=

m3

µ
. (75)

The angles between two altitudes is the supplementary
angle and we have

tan(α + π/2) = −m1

µ
, (76)

tan(β + π/2) = −m2

µ
, (77)

tan(γ + π/2) = −m3

µ
. (78)

FIGURE 2. The anglesα, β andγ between the altitudes and the
sides in the Siḿo’s triangle, for massesm1 = 52, m2 = 20,
m3 = 13.

It follows a theorem, valid for the Siḿo’s triangle (any tri-
angle with three acute angles) the purely geometric property

tan(α) tan(β) tan(γ) = tan(α) + tan(β) + tan(γ), (79)

which we deduce from our definition ofµ.

The Siḿo’s triangle has been fixed in the particular posi-
tion determined by coordinates that appear as entries of the
matrix (47). We give polar coordinates for those positions

ai = ρi cos(σi), bi = ρi sin(σi). (80)

The first equation in (54) gives the radial coordinatesρi in
terms of the masses

ρi =
√

a2
i + b2

i =
√

µ

mj
− µ

m
. (81)

We used these polar coordinates in Ref. [12], calling theσi

collision angles. At this reference we present the property

(tan(σ1) + tan(σ2) + tan(σ3))

×
(

1
tan(σ1)

+
1

tan(σ2)
+

1
tan(σ3)

)
= 9. (82)

The difference of these angles is equal to the angle be-
tween two altitudes

σ2 − σ1 = γ + π/2, σ3 − σ2 = α + π/2,

σ1 − σ3 = β + π/2. (83)
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8 E. PIÑA

From these equations we prove

tan(σ1) =
µ

m2 −m3

(
m3

m2
+

m2

m3
− m2 + m3

m1

)

+
m2 + m3

m2 −m3

√
µ2

m2
1

+
µ2

m2
2

+
µ2

m2
3

− 1, (84)

tan(σ2) =
µ

m3 −m1

(
m3

m1
+

m1

m3
− m1 + m3

m2

)

+
m1 + m3

m3 −m1

√
µ2

m2
1

+
µ2

m2
2

+
µ2

m2
3

− 1, (85)

and

tan(σ3) =
µ

m1 −m2

(
m2

m1
+

m1

m2
− m1 + m2

m3

)

+
m1 + m2

m1 −m2

√
µ2

m2
1

+
µ2

m2
2

+
µ2

m2
3

− 1. (86)

6. Historical notes and conclusions

The first theorem presented in this paper (see the abstract)
was proved in the old book by A. Wintner,The analytical
foundations of Celestial Mechanics[13] sec. 374.

According to Wintner the proof in his book was obtained
originally by P. Pizzetti [15]. The Carathéodory proof pre-
sented in this paper was not included in Wintner’s book. This
proof is simpler than the original proofs by Lagrange and
Pizzetti, which could be qualified with Sommerfeld [4] as
rather involved. This fact is illustrated again when we find in
another text of Mechanics written by Prof. K. R. Symon [16],
where at the last section of the last chapter he considers the

linear stability of the Lagrange’s three body solution. Prof.
Symon assumes like Laplace that the solution is in a confined
fixed plane. According to Wintner [13], p. 431, this is the
important part of the Lagrange theorem, that was disregarded
by Laplace.

The presentation (5) of the angular velocity in terms of
the rotation matrix, as in this paper, is not as popular in texts
of mechanics, as it should be. My opinion is that this is
the only clear definition of angular velocity in the 3-D case;
notwithstanding it uses matrices. The Wintner book, cited
above [13], is a good reference to this presentation of the an-
gular velocity, nevertheless it should be noted that he uses
the obsolete termreciprocal matrixinstead of inverse matrix.
We have given in the European Journal of Physics [17] other
older references to such approach dated 1938.

The Siḿo’s triangle is a rigid triangle used to determine
our coordinates. Theσ angle is an internal rotation of this tri-
angle for a general configuration. For the Lagrange equilat-
eral solution this angle is zero. For the general configuration,
theσ angle is defined with respect to the Lagrange position.
At the end of section 4 we prove that in the referential of
the principal inertia moments the equilateral triangle is trans-
formed into the Siḿo’s triangle by performing two expan-
sions along the principal inertia directions with magnitudes√

Xa/2µ and
√

Xb/2µ.
Our Sec. 5 includes simple relations between the trigono-

metric tangents of the angles of the Simó’s triangle and the
masses.

The position of the Siḿo’s triangle with respect to the
principal inertia referential, in the Lagrange case, has been
determined by redundant expressions that are hidden in the
literature. Besides Eq. (62), we remark Eqs. (72) and (82),
and the set of Eqs. (84-86), all of them different characteriza-
tions of that position. These last three are probably original.
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