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This research has developed an effective multi-class classification model for images from streaming platforms. Texture features were ex-
tracted from the images and used with machine learning algorithms. Two datasets were employed: ’mosaics’ comprising 153,488 images
across 14 classes and ’descriptors’ containing 33,471 images across 11 classes. All images had a resolution of1280 × 720 pixels. The
local binary pattern (LBP) technique encoded the local texture structure into 59-element feature vectors for each image. Ten algorithms were
trained and evaluated on these vectors for each dataset, including support vector machines (SVM) with linear, polynomial, and Gaussian ker-
nels at various scales, as well as ensemble methods like boosted trees, bagging, discriminant analysis, and k-nearest neighbors in subspaces.
Training and validation were done via 30 random splits to mitigate bias. Performance metrics like accuracy, sensitivity, specificity, preci-
sion, and F1-score were computed per class. The SVM classifier achieved top mean performance: 0.998952 accuracy, 0.992528 sensitivity,
0.999438 specificity, 0.988132 precision, and 0.990280 F1-score. The results validate the proposed LBP feature extraction and machine
learning methodology for effectively classifying images across streaming platforms.
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1. Introduction

In the current digital era, characterized by the proliferation of
multimedia platforms offering a vast range of content, such
as Netflix, Apple TV, Disney, etc. [1], optimizing the user
experience has become a primary objective. The exponen-
tial growth of the content offering presents significant chal-
lenges in facilitating navigation and the discovery of new ti-
tles of interest. In this landscape, multimedia content recom-
mendation and classification systems emerge as indispens-
able tools to improve accessibility and personalization of the
user experience [2]. Research in this field is crucial, as it af-
fects user satisfaction and has substantial commercial impli-
cations; by collecting detailed information about their audi-
ence’s consumption habits and preferences, they are uniquely
positioned to offer relevant and personalized content. This
capability improves user retention and presents opportunities
for effective marketing strategies, such as personalized ads
and sponsored content [3].

One of the fundamental tasks in this field is the classifica-
tion of representative images of the content available on these
channels. However, as content volume grows, manual clas-
sification becomes impractical and error prone. In response
to this challenge, machine learning techniques have emerged
as a promising solution. By analyzing and extracting relevant
visual features from images, these models can classify each
image into its corresponding category, which improves effi-
ciency and reduces errors associated with manual labeling.
In this context, this work proposes a comprehensive strategy
for classifying images from multimedia platforms. The tech-

nique of local binary patterns (LBP) is addressed for feature
extraction and recognized for its ability to capture texture
information in images efficiently. In addition, a variety of
machine learning algorithms will be explored, including sup-
port vector machines (SVM) with different types of kernels
and ensemble classifiers, such as boosted trees and bagging,
among others. The most effective approaches to address such
classification are identified through an exhaustive evaluation
of representative data sets. To do this, performance metrics
such as precision, sensitivity, and F1 measure, among others,
are analyzed to determine the viability and effectiveness of
each approach.
In addition to promoting user experience optimization, this
work seeks to contribute to the vision of how multimedia
companies can capitalize on user data to expand their reach
and improve their marketing strategies. However, it is cru-
cial to take into account the ethical and social considerations
associated with the use of user data and the algorithmic influ-
ence on content recommendation.

1.1. Background

Image classification is a fundamental process in various fields
of knowledge, from scientific to commercial applications.
Extensive work has been done on medical image classifica-
tion for diagnosis, facial recognition for security, object iden-
tification in scenes for autonomous vehicles, quality control,
and other applications [4,5]. The main goal of these efforts
is to automatically categorize the pixels of an image into de-
fined classes or categories according to the features and pat-
terns present in the data [6].
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In recent decades, image classification has experienced sig-
nificant development, driven by rapid technological advance-
ment in data acquisition and increased computational power
available. Initially, relatively simple techniques based on fea-
tures such as color histograms and statistical texture anal-
ysis have evolved into much more sophisticated and robust
approaches. Among these advances, the emergence of non-
parametric classifiers that do not assume specific statistical
distributions of the data, such as neural networks and deci-
sion trees, stands out. In addition, techniques have been de-
veloped to properly handle mixed pixels using sub-pixel and
fuzzy logic approaches [4,7].

Likewise, ways to incorporate additional information be-
yond spectral values have been explored, such as spatial, tex-
tural, shape, and context features, multitemporal data, and
data integration from multiple sources and sensors. These
approaches have significantly improved the accuracy and ro-
bustness of classification models. However, accurate im-
age classification remains a challenge, especially in hetero-
geneous environments. Aspects such as optimal feature se-
lection, uncertainty management, and accuracy assessment
are active research areas [7].

In this context [8], compared various approaches for vi-
sual feature extraction and classification methods applied to
histopathological image analysis. In their study, they exam-
ined five different techniques for feature extraction: gray-
level co-occurrence matrix (GLCM), local binary patterns,
local binary gray-level co-occurrence matrix (LBGLCM),
which is a combination of LBP and GLCM, gray-level run-
length matrix (GLRLM), and segmentation-based fractal tex-
ture analysis (SFTA). The features extracted using these algo-
rithms were classified using four machine learning methods:
support vector machine, k-nearest neighbors (KNN), linear
discriminant analysis (LDA), and boosted trees. The exper-
imental findings revealed that the combination of the SFTA
algorithm for feature extraction and the boosted trees clas-
sifier achieved the highest success in classifying histopatho-
logical images in normal and cancerous tissues. This study
highlights the importance of carefully selecting the most ap-
propriate feature extraction and classification methods to ef-
fectively address the challenge of automatic classification of
highly complex medical images.
On the other hand [9], proposed a method that combines the
local binary pattern texture feature extraction technique with
the support vector machine classification algorithm. They
used a dataset of 577 X-ray images of COVID-19 patients
and healthy people. They applied sharpening techniques as
preprocessing and then extracted texture features, which were
used as input to train the classifier. Despite having a relatively
small dataset, the results showed exceptional performance in
image classification on COVID-19 patients and healthy peo-
ple.

In this topic of image classification, existing methods
usually focus on a single type of dataset, such as textures,
clothing patterns, buildings, etc. [10] proposes a common
approach for the classification of various types of images

with a methodology consisting of three phases: obtaining
the region of interest using accelerated robust feature points
(SURF), extracting LBP features in that region, and cluster-
ing the extracted features using a proposed approach called
clustering with fixed centers (CFC) to construct a bag of LBP
features. They then evaluated algorithms such as support vec-
tor machine, decision trees, KNN, linear method, and ran-
dom forests, where the first of these obtained results that out-
performed existing approaches. The experiments were per-
formed on four datasets: Caltech-101, ORL Face, Bengali
signatures, and Hindi signatures.

In Ref. [11] developed a novel texture descriptor based on
a local binary pattern called invariant to rotation, scale, and
illumination LBP (IRSLBP) for image texture analysis and
classification. Their proposal involves quantizing RGB im-
ages to a single channel with fewer hues to decrease the com-
putational complexity. They then extract features using the
IRSLBP descriptor, which considers circular neighborhoods
of pixels and decomposes the difference vectors into sign
and magnitude components through local difference sign and
magnitude transformation. They implemented a multi-core
support vector machine for texture classification, which com-
bines the linear and quadratic kernels. Experimental evalua-
tion on three databases showed that the proposed approach,
which integrates the IRSLBP descriptor and multi-core sup-
port vector machine, outperformed existing methods regard-
ing sensitivity, specificity, accuracy, predictive values, and
error rates.

A comparative study of different Local Binary Pattern-
based texture descriptor approaches for the task of image
classification was conducted by [12]. Their methodology
consisted of extensively evaluating various LBP variants such
as uniform LBP, dominant LBP, local quinary patterns (LQP),
local ternary patterns (LTP), among others, on six bench-
mark datasets to cover different domains. Techniques such
as variance-based band selection, preserving neighborhood
embedding (NPE), and random ensembles of support vector
machines were also explored. The results showed that the
LTP variant outperformed the standard LBP variant, and that
the best strategy was to combine a method based on uniform
bands of LQP based on rotation-invariant bins of LTP, by us-
ing NPE and random ensembles of SVM, thereby achieving
high performance on all the evaluated datasets.

1.2. Justification

Automatic image classification is crucial in today’s digital
age, where visual content is growing exponentially. Multime-
dia platforms constantly generate massive images and video
frames that need to be efficiently organized and labeled. The
ability to accurately classify this visual content into different
categories or classes has significant implications. It allows
for better organization and search of content, enables per-
sonalized recommendations to users, facilitates moderation
of inappropriate content, and enables more profound analysis
of trends and preferences. While various approaches to im-
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age classification exist, machine learning algorithms based
on local binary patterns have proven efficient and effective.
However, the performance of these algorithms depends heav-
ily on the feature extraction technique and the classification
algorithm itself. Therefore, studying and implementing dif-
ferent approaches to determine the most suitable and efficient
way to classify images from multimedia platforms is essen-
tial.

2. Methodology

To carry out this work, a comprehensive strategy was devel-
oped to efficiently process images captured by a device called
Core Meter, located on the user side that views the content of
different platforms. This device takes visual captures every
five seconds, thus generating a continuous flow of data that
must be classified in real-time. To achieve this task, develop-
ing and implementing a robust and efficient image classifier
is required, capable of processing the input data as the device
acquires it. It is proposed that a machine learning model be
trained using the device’s own captures to accurately recog-
nize and classify the image classes of the different platforms.

The real-time classification process is essential to ensure
a timely response to the system’s specific needs, such as op-
timizing personalized recommendations and improving mar-
keting strategies based on user behavior. Implementing this
classifier would not only improve the accuracy of visual con-
tent detection but also allow for the system’s scalability and
efficiency in environments with large volumes of data. Fig-
ure 1 illustrates the process described above and the system’s
main components.

The approach adopted for image analysis and processing
included the LBP feature extraction technique and a wide
range of machine learning algorithms, including SVM and
ensemble classifiers. The most effective approaches to per-
forming this work were identified through an evaluation of
representative mosaic and descriptor datasets. Performance
metrics such as accuracy, precision, sensitivity, specificity,
and the F1 measure were considered to evaluate the perfor-
mance of the created models. The concepts used and proce-
dures carried out are detailed in the following sections.

FIGURE 1. Process flow diagram for real-time image classification
and generation of personalized recommendations.

2.1. Feature extraction technique

Feature extraction plays a crucial role in image classifica-
tion through artificial intelligence algorithms. This process
involves identifying and selecting the most significant at-
tributes in individual images or sets of images to facilitate
their subsequent analysis and processing. The elements ex-
tracted can range from aspects such as shape, texture, color,
or any other visual feature relevant to the system in question.
The importance of this procedure lies in its ability to allow
machine learning models to interpret and recognize various
visual elements in images, such as objects, individuals, or
specific patterns. By isolating these distinctive features, vari-
ous tasks can be performed, including object identification,
face recognition, image classification, and numerous other
practical applications.

This project has selected a specific feature extraction
methodology called a local binary pattern. This technique is
distinguished by its effectiveness in analyzing textures within
images and its ability to record detailed information about the
image’s structure, making it a valuable tool for image classi-
fication tasks such as the one addressed in this research.

2.1.1. Local binary pattern

Local binary patterns are an efficient non-parametric tech-
nique for texture analysis in grayscale images. This method-
ology is based on characterizing the local structure of an im-
age by summarizing it in a code. The occurrences of these
codes are collected in a histogram, which can be represented
as a vector that is useful for classification tasks when com-
bined with machine learning algorithms. One of the main ad-
vantages of the LBP operator lies in its attractive properties,
such as tolerance to monotonic changes in the grayscale, vari-
ations in illumination, and computational simplicity. Addi-
tionally, this methodology is highly discriminative, contribut-
ing to its wide use and success in texture analysis tasks [13].

This method’s original texture analysis approach is based
on a3×3 pixel neighborhood. The procedure involves taking
the value of the central pixel and comparing it to the values
of its eight neighboring pixels using a thresholding process
to determine whether each neighbor is greater or less than
the central pixel. These results are converted to binary values
(1 if the neighbor is greater than or equal to 0 if it is less). The
binary results of these comparisons are weighted by powers
of two and summed to obtain the LBP code corresponding
to the central pixel. Figure 2 illustrates an example of how
this operator is applied. Formally, letgc be the gray value
of the central pixel andgp the values of its eight neighbors
(p = 0, ..., 7), then the LBP code for the pixel with coordi-
nates(x, y) is calculated as follows [13,14]:

LBP (x, y) =
7∑

p=0

S(gp − gc)2p, (1)
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FIGURE 2. Example of calculating the original LBP (Guerra-Rosaset al., 2023).

wherep traverses the eight neighboring pixels of the central
pixel, S(z) represents the threshold function:

S(z) =

{
1, z ≥ 0
0, z < 0

, (2)

In practical applications, the standard approach to repre-
senting an image’s local binary patterns consists of construct-
ing an LBP histogram (LBPH). This technique involves col-
lecting the LBP codes computed for each input image pixel
and grouping them into a histogram that captures their fre-
quency distribution. In this way, the LBPH histogram acts
as a texture descriptor, providing a compact statistical repre-
sentation of the local pattern information present in the im-
age [13]:

LBPH(i) =
∑
x,y

δ{i, LBP (x, y)}, (3)

wherei = 0, ..., 27 andδ(·) represents the Kronecker prod-
uct function. This histogram-based characterization is widely
used in texture analysis and classification tasks due to its ef-
fectiveness and simplicity.

To adapt more effectively to practical applications, the
original local binary patterns approach, shown above, has
been generalized in two main ways. One proposed extension
for the LBP operator may employ neighborhoods of differ-
ent sizes. This generalization, denoted asLBPP,R, allows
us to define a circular neighborhood around the central pixel,
where P represents the number of neighbors considered, and
R is the radius of the neighborhood. When the sampling
points do not precisely coincide with the pixel centers, bi-
linear interpolation is used to determine the corresponding
values. For example,LBP16,2 refers to a neighborhood with
16 neighbors located at a radius of 2 pixels from the center.
On the other hand, uniform pattern versions of the LBP oper-
ator have been developed, introducing a variant in calculating
the codes that improve their descriptive capacity and compu-
tational efficiency [13,14].

Another relevant extension is the introduction of uniform
patterns, denoted asLBPu2

P,R. An LBP binary code is con-
sidered uniform if it exhibits at most two transitions from 0 to
1 or vice versa when represented as a circular string. For ex-
ample, the patterns 00000000, 00011110, and 10000011 are
uniform. In calculating the LBPH histogram, these properties

are exploited by assigning an individual band to each uni-
form pattern, while all non-uniform patterns are grouped into
a separate band. Thus, the standard LBPH has 256 bands with
eight neighbors, while the uniform pattern version only re-
quires 59 bands. With 16 neighbors, the numbers are 65,536
and 243 bands, respectively. Evidently, the uniform pattern
approach manages to significantly reduce the length of the
histogram vectors, leading to computational benefits [13,15].
For this work, uniform vectors of 59 elements were used.

2.2. Classification methods for image analysis

Classification methods allow the identification and catego-
rization of patterns and features within images. These models
vary in complexity and approach, from traditional statistical
techniques to advanced machine learning algorithms. This
section examines various classification methodologies used
for image analysis, highlighting their fundamental principles.
The idea is to provide a detailed overview of the tools used for
classifying images from the multimedia platforms selected in
this work.

2.2.1. Linear discriminant analysis

Linear discriminant analysis is one of the most widely used
methodologies in discriminant analysis, especially in classi-
fication and dimensionality reduction tasks. This technique
seeks to determine an ideal projectionW that transforms a
high-dimensional spaced1 into a lower-dimensional space
d2. This transformation allows samples from the same class
to be grouped while samples from different classes are sepa-
rated. The search for this optimal projection can be expressed
as a mathematical maximization problem [16-18]:

Wopt = argW max
WTSBW

|WTSW W | . (4)

Maximizing this expression is equivalent to finding the
vectorW that projects the data to maximize the separation
between the projected class means (numerator) while mini-
mizing the variance within each projected class (denomina-
tor). The training set is assumed to containN classes, then
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SB andSW are defined as [17,18]:

SB =
C∑

j=1

Nj(Xj −X)(Xj −X)T , (5)

SW =
C∑

j=1

Nj∑

i=1

(x(j)
i − xj)(x

(j)
i − xj)T . (6)

In this context, the interclass matrixSB evaluates the sep-
arability between class centers, while the intraclass scatter-
ing matrix SW quantifies the within-class variation of each
class in low-dimensional space.{x(j)

i , i = 1, . . . , Nj}j =
1, . . . , C denotes the feature vectors of the training samples.
Nj represents the number of samples belonging to classj, xj

i ,
is the vector of thei-th sample belonging to thej-th class,Xj

is the vector defining the mean of thej-th class, andX is the
mean computed from all available examples.

2.2.2. K-nearest neighbor

The k-nearest neighbor (k-NN) algorithm is a straightforward
yet highly effective classification method. Despite its sim-
plicity, it excels in scenarios involving multimodal classes
and situations where objects may belong to multiple class
labels. The k-NN classifier identifies a set ofk nearest ob-
jects in the training data that are closest to a given test object
and assigns a label based on the majority class in this neigh-
borhood. This approach addresses the challenge of datasets
where exact matches between test and training objects are
rare. Furthermore, it manages conflicting information from
nearby objects effectively [19-21].

Given a training datasetD = {(x1, c1), (x2, c2), . . . ,
(xn, cn)}, wherexi represents an object’s feature vector and
ci its corresponding class label, and a test objectz with an
unknown label, the k-NN algorithm follows these steps:

1. Compute Distances: Calculate the distanced(z,xi)
between the test objectz and each objectxi in D.
Common distance metrics include:

• Euclidean Distance:

d(z,xi) =

√√√√
m∑

j=1

(zj − xi,j)2 . (7)

• Manhattan Distance:

d(z,xi) =
m∑

j=1

|zj − xi,j | . (8)

• Select Nearest Neighbors: Identify thek objects with
the smallest distances toz , forming the neighborhood
Nk ⊆ D.

• Determine Class Label: Assign the classcz to z based
on the majority class among the neighbors, using the
following rule:

cz = arg max
v∈L

∑

y∈Nk

I(v = cy) . (9)

whereL is the set of possible classes, andI(·) is an
indicator function defined as:

I(condition)=

{
1 if condition is true

0 otherwise
. (10)

Key considerations

• Choice ofk: The value ofk significantly impacts the
algorithm’s performance:

– A small k (e.g., k = 1) is sensitive to noise and
outliers.

– A large k may include objects from different
classes, reducing classification precision.

– Optimal values ofk are typically determined
through cross-validation.

• Weighted Voting: When the distances to the nearest
neighbors vary greatly, a weighted voting scheme can
improve accuracy. A common weighting function is
the inverse squared distance:

Wi =
1

d(z,xi)2
, for xi ∈ Nk . (11)

The class assignment then becomes:

cz = arg max
v∈L

∑

y∈Nk

Wy · I(v = cy) . (12)

The k-NN algorithm’s simplicity and adaptability make
it a powerful tool, particularly for smaller datasets and multi-
modal distributions. However, it is computationally intensive
for large datasets, as the distance calculation scales with the
size of the training data [20,21].

2.2.3. Decision trees

Decision trees are widely used in machine learning, image
processing, and pattern detection due to their interpretabil-
ity and flexibility. They model data through a hierarchical
structure of decisions, where each decision corresponds to a
test on an input feature. These trees effectively handle both
discrete and continuous variables and require no assumptions
about the underlying data distribution, making them robust
for diverse and complex datasets [22,23].

In creating a decision tree model, fundamental elements
such as nodes and branches must be considered, and it is cru-
cial to carry out actions such as splitting, stopping, and prun-
ing to obtain an optimal model. These concepts are detailed
below:

1. Root Node: The starting point of the tree, representing
the first decision based on a selected feature.
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2. Internal Nodes: Represent intermediate decisions,
where a feature is compared to a threshold, directing
the flow to child nodes.

3. Leaf Nodes: Terminal nodes that provide the final clas-
sification or decision outcome.

Branches

Branches represent the possible outcomes of tests performed
at the nodes. Each path from the root to a leaf forms a clas-
sification rule, which can be expressed in ”if-then” form. For
example:

If x1 ≤ a andx2 > β, then classC. (13)

Splitting

At each node, the data is split based on an input feature and
a threshold. The goal is to maximize the homogeneity of the
resulting subsets. The following metrics are commonly used
to evaluate splits:

1. Entropy (H): Measures the impurity of a setS:

H(S) = −
k∑

i=1

pi log2 pi, (14)

wherepi is the proportion of examples in classi, and
k is the number of classes.

2. Information Gain (InfGain): Quantifies the reduction
in entropy after splitting:

InfGain(S,A) = H(S)

−
∑

v∈Values(A)

|Sv|
|S| H(Sv), (15)

whereA is the splitting feature,Sv is the subset ofS
whereA takes valuev, and|S| is the size ofS.

3. Gini Index (G): Another impurity measure:

G(S) = 1−
k∑

i=1

p2
i , (16)

splitting continues recursively, selecting the feature
and threshold that maximizeInfGain or minimize
G(S).

Stopping criteria

To prevent overfitting, stopping rules are employed to control
the tree’s complexity:

• Minimum Node Size: Stop splitting if the number of
records in a node falls below a threshold, typically be-
tween 0.25% and 1% of the dataset size.

• Maximum Tree Depth: Limit the tree’s depth to ensure
generalization.

Pruning

When stopping rules are insufficient, pruning can optimize
tree size:

• Pre-Pruning (Forward Pruning): Limits tree growth
during construction based on criteria such as minimum
impurity reduction.

• Post-Pruning (Backward Pruning): Builds a large tree
and reduces its size by removing nodes with little ad-
ditional information.

The optimal subtree is chosen based on metrics like vali-
dation accuracy or cross-validation error. For example, prun-
ing aims to minimize the misclassification error :

E =
Number of misclassified samples

Total number of samples
. (17)

Learning process

The goal of a decision tree is to iteratively partition the fea-
ture space to isolate regions dominated by a single class. At
each step:

1. Select the featurexj and split pointθ that optimize the
chosen metric.

2. Partition the dataset into subsets:

Sleft={x ∈ S | xj ≤ θ}, Sright={x ∈ S | xj > θ}. (18)

3. Repeat the process forSleft andSright until a stopping
criterion is met or the subsets are pure.

Decision trees focus on one feature at a time, creating a
simple and interpretable model. However, their sensitivity to
overfitting highlights the importance of strategies like prun-
ing and the use of ensemble methods, such as random forests,
for improved performance [6,23,24].

2.2.4. Support vector machines

Support Vector Machines are the most widely adopted ker-
nel learning algorithm. The solution this methodology offers
is theoretically sophisticated, computationally efficient, and
perceived as highly effective on a wide range of large-scale
practical problems. The method originated from certain con-
cepts of statistical learning theory related to the generaliza-
tion abilities of learning systems [25,26].
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A) Linearly separable case

Consider a dataset consisting of elements represented
as pairs(xi, yi), wherexi ∈ Rn is a vector containing
the features of a sample, andyi ∈ {−1, 1} represents
the class label. If a hyperplanew ·x+b = 0 exists such
that all samples are correctly classified, the dataset is
said to be linearly separable.

This condition implies:

yi(w · xi + b) ≥ 1, ∀i. (19)

The optimal hyperplane maximizes the margin, defined
as the distance between the hyperplane and the nearest
data points (support vectors). The optimization prob-
lem is:

min
w,b

1
2‖w‖2, subject to yi(w · xi + b) ≥ 1, ∀i. (20)

B) Quasi-linearly separable case

In practical scenarios, strict linear separability may not
be feasible due to noise or overlapping data [25,26].
To address this, a soft margin is introduced, allowing
some misclassification by using slack variablesξi ≥ 0.
The modified constraints are:

yi

(
w · xi + b

) ≥ 1− ξi, ∀i. (21)

The optimization problem becomes:

min
w,b,ξ

1
2
‖w‖2 + C

m∑

i=1

ξi, subject toξi ≥ 0. (22)

Here,C > 0 is a regularization parameter that con-
trols the trade-off between maximizing the margin and
minimizing classification errors.

C) Non-linear case

For datasets that are not linearly separable, a kernel
function φ(x) is used to map the data into a higher-
dimensional feature space where linear separability
might be achieved [27]. The optimization problem re-
mains similar, but computations are performed using
the kernel trick:

K(x,x′) = φ(x) · φ(x′). (23)

Common kernel functions include:

Polynomial:K(x, x′) = (1 + 〈x, x′〉)d ,

Radial Basis Function (RBF):K(x, x′) =
exp

(−γ ‖xi − xj‖2
)

,

Sigmoid:K(x, x′) = tanh (k 〈x, x′〉+ Θ) .

D) Multiclass Classification: The challenge becomes
more complicated when dealing with classification
tasks involving multiple classes. This is because the
input instances can belong to any of the C available
classes, which must be mutually exclusive. Several
strategies are proposed to address this situation with
support vector machines. Among them are approaches
based on the one-against-all methodology, the one-
against-one approach, and the error-correcting output
encoding method. Each method offers a different per-
spective to decompose the multiclass problem into a
series of binary subproblems, thus facilitating its reso-
lution [28,29].

E) One-against-all:

This approach buildsC binary classifiers. For each
classifier, samples from one class are labeled as posi-
tive +1, and samples from all other classes are labeled
as negative(−1). A new sample is classified by the
classifier with the highest output:

ŷ = arg max
c∈{1,...,C}

fc(x), (24)

wherefc(x) is the decision function for classc [29].

F) One-vs-one

The one-vs-one strategy createsC(C − 1)/2 binary
classifiers, each trained on data from a pair of classes.
During classification, a majority voting scheme is used:

ŷ = arg max
c∈{1,...,C}

votes(c), (25)

where votes(c) represents the number of classifiers that
predict classc [29].

G) Error-correcting output coding

In this method, each class is represented by a unique
binary code ofL bits. Each of theL classifiers predict
one bit of the code. For a new sample, the classifiers
produce a binary string, and the class with the closest
code (based on Hamming or Euclidean distance) is as-
signed:

ŷ = arg min
c∈{1,...,C}

d(b, bc), (26)

whereb is the predicted bit string,bc is the code for
classc, andd is the distance metric [28,29].

2.2.5. Ensemble classifiers

There is a statistical concept or phenomenon known as “the
wisdom of the crowd,” which suggests that combining (en-
sembling) multiple average-performing predictors makes it
possible to obtain superior results compared to a single highly
accurate predictor acting alone. Ensemble learning, or en-
semble systems, is a general term for methods combining

Rev. Mex. Fis.71051303
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multiple base learners to make a decision, typically in su-
pervised machine learning tasks. A base learner, or inducer,
is an algorithm that inputs labeled examples and produces a
model that generalizes this data. The produced model (e.g.,
a decision tree, neural network, linear regression model, etc.)
can make classifications or predictions for new unlabeled ex-
amples. The central premise of ensemble learning is that by
combining multiple models, the errors of a single base learner

will likely be compensated by others, and as a result, the over-
all prediction performance of the ensemble will be better than
that of a single model [30].

Three fundamental strategies must be considered for con-
structing an efficient assembled system: data sampling or se-
lection, training of the classifiers that are part of the ensem-
ble, and the combination of these classifiers [30,31].

FIGURE 3. Mosaics.
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2.3. Performance measures

Evaluating the machine learning method is a fundamental
stage in any project. Although a model may show satisfactory
results when evaluated using a specific metric, such as the ac-
curacy score, its performance may be poor when other rele-
vant metrics are analyzed, such as precision, F1 measure, or
other alternatives. Often, we rely solely on classification ac-
curacy as an indicator of model success, but more is needed.
In addition, it is essential to evaluate the model on indepen-
dent validation and test data sets to ensure its generalization
and robustness in real-world situations [32].

In this section, we discuss the various types of met-
ric analysis used to thoroughly evaluate the models’ perfor-
mance.

2.3.1. Confusion matrix

The confusion matrix is a fundamental tool for predictive
analysis in machine learning. When working with classifi-
cation models, it evaluates their performance and helps un-
derstand the nature of the errors made. In essence, it is a
table or matrix that summarizes the number of instances cor-
rectly classified and incorrectly classified by the model for
each class of the problem [33].

2.3.2. Metrics

Metrics used in this numerical experiment are:

Accuracy =
V P + V N

V P + V N + FP + FN
, (27)

Precision =
V P

V P + FP
, (28)

Sensitivity =
V P

V P + FN
, (29)

Specificity =
V N

V N + FP
, (30)

Measure F1=
2 · Sensitivity · Precision

Sensitivity + Precision
, (31)

where

• VP (True Positive): Corresponds to the instances in
which the model correctly predicted the positive or af-
firmative class.

• FP (False Positive): Refers to those cases in which the
model wrongly predicted the positive class when, in
fact, the instance belonged to the negative class.

• FN (False Negative): Represents the instances in which
the model failed to predict the positive class, incor-
rectly classifying them as unfavorable.

• VN (True Negative): Encompasses the instances be-
longing to the negative class that were correctly pre-
dicted as such by the model.

2.4. Data preparation, feature extraction, and model de-
velopment for classification

In this work, image sets from various multimedia platforms
were used. On the one hand, mosaic images were processed,
and on the other hand, images were called descriptors. Both
sets are explained in detail below.

2.4.1. Mosaics

The mosaic represents an overview of various available op-
tions, such as the menu of some multimedia platforms that
show thumbnails of movies or series. Each thumbnail in the
mosaic represents a different option, and the main objective
is to provide a quick overview of what is available to the user.
Figure3 shows an example of the images used by each chan-
nel.

This set is composed of 153,488 images of1280 ×
720 pixels represented in 14 different channels or classes. A
false channel allows the model to identify and classify in-
stances that do not fit any of the channels of interest. Four
thousand randomly chosen and representative images were
used for each channel for training, and the rest were reserved
for validation. Table I shows the distribution by channel.

After the data set was separated, the Binary Local Pat-
tern technique, previously described, was used to extract dis-
criminative features that captured the structure and texture
of the grayscale images. This approach allowed for obtaining
compact and meaningful numerical representations of images
where a vector of 59 elements represented each image. This
laid the groundwork for the development of machine learning
models.

TABLE I. Distribution of the set of images by channel for the anal-
ysis of the mosaics.

Channels Total Training Validation

Platform1 11064 4000 7064

Platform2 10540 4000 6540

Platform3 11300 4000 7300

Platform4 10478 4000 6478

Platform5 5994 4000 1994

Platform6 10002 4000 6002

Platform7 11516 4000 7516

Platform8 10524 4000 6524

Platform9 10000 4000 6000

Platform10 28884 4000 24884

Platform11 10000 4000 6000

Platform12 9962 4000 5962

Platform13 11906 4000 7906

Fake 5278 4000 1278

Total 157448 56000 101448
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TABLE II. The configuration of the ten algorithms was imple-
mented and validated for mosaic classification.

Models Description

SVM linear Type: Support vector machine

Kernel function: Linear

Multiclass method: one vs one

SVM quadratic Type: Support vector machine

Kernel function: Quadratic polynomial.

Multiclass method: one vs one

SVM cubic Type: Support vector machine

Kernel function: Cubic polynomial.

Multiclass method: one vs one

SVM fine Gaussian Type: SVM

Kernel: Gaussian

Scale: 1.9

Multiclass: one vs one

SVM mean Gaussian Type: SVM

Kernel: Gaussian

Scale: 1.9

Multiclass: one vs one

SVM thick Gaussian Type: SVM

Kernel: Gaussian

Scale: 31

Multiclass: one vs one

Ensemble boosted Type: Ensemble;

trees: Method: AdaBoost

Classifier type: Decision tree

Maximum number of divisions: 20;

Number of classifiers: 30

Ensemble bagged Type: Ensemble; Method: Bag

trees: Classifier type: Decision tree

Maximum number of divisions: 55999;

Number of classifiers: 30

Ensemble subspace Type: Ensemble; Method: Subspace

discriminant: Classifier type: Discriminant

Subspace dim: 30

Number of classifiers: 30

Ensemble Type: Ensemble; Method: KNN

subspace KNN: Classifier type: Nearest neighbor

Subspace dim: 30

Number of classifiers: 30

In this research, ten algorithms were implemented and
evaluated to address the proposed classification problem.
These models included variants of support vector machines
with linear, polynomial, and Gaussian kernels of various
scales and ensemble systems. SVMs used the one-versus-

one method to handle multiclass problems. The ensemble
systems included boosted trees, in which AdaBoost was used
as an ensemble method with decision trees as base classifiers.
The bagging ensemble method was implemented with deci-
sion trees. Discriminant and KNN in subspaces used the sub-
space ensemble method, with linear discriminant and nearest
neighbor type base classifiers, respectively. A description of
these models is presented in Table II. This diversity of mod-
els allowed us to evaluate their performance thoroughly and
determine the most suitable approaches for the specific clas-
sification task. It should be noted that, in the training stage,
the holdout validation technique [34] was used to evaluate the
performance of the models. In this method, the dataset was
divided into two subsets:

75% of the data was used to train the model, while the re-
maining 25% was separated as a test or validation set, which
allowed obtaining an unbiased estimate of the model’s per-
formance on unseen data. This technique is recommended
for large datasets, such as those used in this case. Once the
process was complete, the model’s performance metrics were
calculated with the previously separated validation data,i.e.,
with images the model had never interacted with.

2.4.2. Descriptors

Once the user selects a movie or series from the mosaic and
enters it, we could consider that image a descriptor. In this
context, the image would represent the specific movie or se-
ries that the user has chosen, and it contains more detailed
and specific information about the content compared to the
thumbnails in the mosaic. This image could contain scenes,
characters, and plot details, among other aspects, that are not
captured in the mosaic.

In order to select a descriptor that allows the platform to
be identified, the idea of focusing on specific regions of the
image that remain relatively constant across different data
sets or changes in the environment was adopted. This ap-
proach allows the model to be trained with relevant features
from these stable regions, which helps mitigate the impact of
variations in other parts of the image. This can reduce the
need to completely retrain the model in case of changes in
the data set or the environment, resulting in a more efficient
and less computationally intensive process. Figure 4 shows
examples of the images that make up the different channels
and the region selected for processing. This dataset consists
of 33,471 images of1280×720 pixels divided into 11 differ-
ent channels, including a fake category that allows the model
to identify instances that do not belong to any of the ten tar-
get classes. One thousand representative images, randomly
chosen from each channel, were used for training, while the
rest were used for validation. This distribution is detailed in
TableIII .

The same procedures as with the mosaic set were fol-
lowed: separation into training and validation data, feature
extraction using the LBP technique, and development of clas-
sification models such as support vector machines with dif-
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FIGURE 4. Descriptors: Sample images from various platforms focusing on the region of interest for processing.

FIGURE 5. Overview of the proposed method.
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TABLE III. Distribution of images in each category for the study of
descriptors.

Channels Total Training Validation

Platform1 1307 1000 307

Platform2 1943 1000 943

Platform3 1633 1000 633

Platform4 5378 1000 4378

Platform5 5657 1000 4657

Platform6 1423 1000 423

Platform7 5060 1000 4060

Platform8 3130 1000 2130

Platform9 1939 1000 939

Platform10 5744 1000 4744

Fake 5000 1000 4000

Total 38214 11000 27214

ferent kernels and ensemble classifiers, as shown in Table IV.
In the training stage, k-fold cross-validation [35] was imple-
mented withK = 5. The dataset was divided into five par-
titions of the same size during this process. Each iteration
used one of these partitions as the test set, while the other
four were used as the training set. This ensured a thorough
evaluation of the model, allowing for a more accurate and
generalizable estimate of its performance on unseen data. Fi-
nally, performance metrics were calculated where the previ-
ously separated validation data was used.

2.5. Experimental design

The experimental tests were conducted on a computer with
8.00 GB of RAM and an Intelr CoreTM i5-1035G1 pro-
cessor capable of reaching 1.19 GHz in turbo mode. The
software used to perform the classification process was MAT-
LAB version 2020b. Two data sets were used, as described
above: mosaics and descriptors. Both data sets were used to
evaluate the performance of the ten machine learning algo-
rithms applied to the classification problem addressed in this
work.

The equipment specifications guaranteed an adequate en-
vironment to process the volumes of data handled during
the experiments efficiently. MATLAB was chosen due to its
powerful numerical calculation and matrix algebra capabili-
ties, as well as its optimized libraries for machine learning
and artificial vision tasks, which facilitated the implementa-
tion of the different algorithms evaluated. Figure 5 shows the
outline of the proposed strategy.

3. Results

Several widely accepted metrics in this field were used to
evaluate the performance of the ten machine learning models
implemented in this study, detailed in the performance mea-
sures section. The metrics used include precision, specificity,

TABLE IV. Characteristics of the ten algorithms implemented and
evaluated for classifying the data set belonging to the descriptors.

Models Description

SVM linear Type: Support Vector Machine

Kernel function: Linear

Multiclass: one vs one

SVM quadratic Type: Support Vector Machine

Kernel function: Quadratic polynomial.

Multiclass: one vs one

SVM cubic Type: Support Vector Machine

Kernel function: Cubic polynomial.

Multiclass: one vs one

SVM fine Gaussian Type: SVM

Kernel function: Gaussian

Kernel scale: 1.9

Multiclass: one vs one

SVM mean Gaussian Type: SVM

Kernel function: Gaussian

Kernel scale: 7.7

Multiclass: one vs one

SVM thick Gaussian Type: SVM

Kernel function: Gaussian

Kernel scale: 31

Multiclass: one vs one

Ensemble boosted Type: Ensemble system

trees; Method: AdaBoost

Classifier type: Decision tree

Maximum number of divisions: 20;

Number of classifiers: 30

Ensemble bagged Type: Ensemble system

trees Method: Bag

Classifier type: Decision tree

Maximum number of divisions: 10999;

Number of classifiers: 30

Ensemble subspace Type: Ensemble system

discriminant Method: Subspace

Classifier type: Discriminant

Subspace dim: 30;

Number of classifiers: 30

Ensemble Type: Ensemble system

subspace KNN Method: Subspace

Classifier type: Nearest neighbor

Subspace dim: 30;

Number of classifiers: 30

sensitivity, accuracy, and the F1 measure, each of which pro-
vides:

• Valuable information about different aspects of the
model’s performance.
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• Allowing an objective and detailed analysis of their
performance.

• The identification of their strengths and weaknesses.

Since the splitting, training, and validation process explained
above was carried out randomly, it was repeated 30 times to
prevent bias, in line with the central limit theorem. Below, the
models’ accuracy and average training time are presented, as
well as the mean and standard deviation for each metric, to
validate the consistency of each trained algorithm for each
data set: mosaics and descriptors.

3.1. Mosaics

Table V shows the accuracy and training average of the mo-
saic classification algorithms. Table VI shows the evaluation
metrics of the linear support vector machine methodology
on the mosaic validation set. Table VII shows the evalua-
tion metrics with the same method used in Table VI but with
the quadratic kernel; Table VIII shows the evaluation metrics
but with the cubic kernel; Table IX with fine Gaussian ker-
nel; Table X with mean Gaussian kernel, and Table XI with
thick Gaussian kernel. Table XII shows the metrics with the
boosted tree ensemble classifier. Table XIII shows the met-
rics with the same ensemble as in Table XII using bagging.
The evaluation metrics of the subspace discriminant analy-
sis are shown in Table XIV. The evaluation metrics using the
k-nearest neighbors’ classifier in subspaces are shown in Ta-
ble XV

3.2. Descriptors

Table XVI shows the accuracy and training average of the
descriptors classification algorithms. Table XVII shows the

evaluation metrics of the linear support vector machine
methodology on the descriptors validation set. Table XVIII
shows the evaluation metrics with the same method used in
Table XVII but with the quadratic kernel; Table XIX shows
the evaluation metrics but with the cubic kernel; Table XX
with fine Gaussian kernel; Table XXI with mean Gaussian
kernel, and Table XXII with thick Gaussian kernel. Ta-
ble XXIII shows the metrics with the boosted tree ensemble
classifier. Table XXIV shows the metrics with the same en
semble as in Table XXIII using bagging.

TABLE V. Accuracy and average training time of mosaic classifi-
cation algorithms.

Models Accuracy Time (seconds)

SVM linear 0.968 271.04

SVM quadratic 0.989 456.09

SVM cubic 0.989 425.25

SVM fine Gaussian 0.951 792.15

SVM mean Gaussian 0.973 512.19

SVM thick Gaussian 0.918 724.60

Ensemble boosted trees 0.691 848.08

Ensemble bagged trees 0.960 591.24

Ensemble subspace discriminant 0.892 614.58

Ensemble subspace KNN 0.961 2740.80

TABLE VI. Evaluation metrics of the linear support vector machine on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Channels Mean SD Mean SD Mean SD Mean SD Mean SD

Platform1 0.990348 0.000361 0.999271 0.000027 0.998783 0.000071 0.999237 0.000024 0.994547 0.000174

Platform2 0.987989 0.000292 0.999174 0.000020 0.986488 0.000432 0.998356 0.000029 0.987238 0.000223

Platform3 0.984406 0.000333 0.998803 0.000026 0.974575 0.000329 0.997060 0.000036 0.979466 0.000249

Platform4 0.956499 0.000878 0.997047 0.000062 0.951739 0.000898 0.994154 0.000088 0.954113 0.000691

Platform5 0.736821 0.006997 0.995592 0.000158 0.967032 0.002438 0.995232 0.000164 0.836358 0.004814

Platform6 0.950660 0.002537 0.998976 0.000055 0.984203 0.001123 0.998685 0.000069 0.967139 0.001684

Platform7 0.985920 0.000368 0.999117 0.000023 0.983100 0.000378 0.998170 0.000034 0.984508 0.000289

Platform8 0.971816 0.000594 0.997805 0.000046 0.946004 0.001290 0.993967 0.000125 0.958736 0.000872

Platform9 0.959489 0.000497 0.997205 0.000037 0.963003 0.001228 0.995006 0.000076 0.961242 0.000613

Platform10 0.953855 0.001106 0.997047 0.000078 0.970894 0.002033 0.995500 0.000097 0.962297 0.000845

Platform11 0.997726 0.000046 0.999272 0.000015 0.982556 0.000659 0.995172 0.000158 0.990083 0.000328

Platform12 0.977468 0.000550 0.998566 0.000036 0.989322 0.000239 0.998020 0.000041 0.983359 0.000339

Platform13 0.979935 0.000542 0.998748 0.000034 0.979442 0.000809 0.997613 0.000065 0.979688 0.000560

Fake 0.960869 0.001339 0.996701 0.000115 0.958361 0.001149 0.993713 0.000178 0.959613 0.001136

Mean 0.956700 0.001174 0.998095 0.000052 0.973965 0.000934 0.996420 0.000085 0.964171 0.000916

Rev. Mex. Fis.71051303
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TABLE VII. Evaluation metrics of the support vector machine with quadratic kernel on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Channels Mean SD Mean SD Mean SD Mean SD Mean SD

Platform1 0.998026 0.000236 0.999852 0.000018 0.999344 0.000087 0.999817 0.000018 0.998684 0.000128

Platform2 0.996933 0.000216 0.999789 0.000015 0.997197 0.000355 0.999621 0.000033 0.997065 0.000258

Platform3 0.994749 0.000224 0.999595 0.000017 0.989607 0.000329 0.998876 0.000029 0.992172 0.000200

Platform4 0.986164 0.000455 0.999054 0.000032 0.988777 0.000446 0.998398 0.000037 0.987469 0.000288

Platform5 0.920788 0.005057 0.998917 0.000075 0.986228 0.001613 0.998757 0.000078 0.952378 0.002879

Platform6 0.983444 0.000910 0.999664 0.000019 0.994952 0.000843 0.999572 0.000024 0.989164 0.000599

Platform7 0.995421 0.000453 0.999712 0.000029 0.997234 0.000254 0.999565 0.000027 0.996327 0.000224

Platform8 0.985638 0.000398 0.998857 0.000032 0.980060 0.000743 0.997465 0.000062 0.982841 0.000425

Platform9 0.984565 0.001342 0.998942 0.000093 0.981601 0.000837 0.997827 0.000131 0.983081 0.001012

Platform10 0.981465 0.000517 0.998820 0.000034 0.993711 0.000200 0.998518 0.000032 0.987550 0.000267

Platform11 0.999182 0.000043 0.999736 0.000014 0.993188 0.000254 0.998130 0.000063 0.996176 0.000129

Platform12 0.993122 0.000461 0.999566 0.000029 0.997833 0.000356 0.999463 0.000035 0.995472 0.000294

Platform13 0.994401 0.000389 0.999650 0.000024 0.994912 0.000405 0.999372 0.000037 0.994656 0.000318

Fake 0.984080 0.000959 0.998656 0.000081 0.982760 0.001202 0.997417 0.000147 0.983419 0.000947

Mean 0.985570 0.000833 0.999344 0.000037 0.991243 0.000566 0.998771 0.000054 0.988318 0.000569

TABLE VIII. Evaluation metrics of the support vector machine with cubic kernel on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Channels Mean SD Mean SD Mean SD Mean SD Mean SD

Platform1 0.999052 0.000092 0.999929 0.000007 0.999221 0.000097 0.999880 0.000011 0.999137 0.000080

Platform2 0.997105 0.000212 0.999801 0.000015 0.997105 0.000165 0.999627 0.000019 0.997105 0.000150

Platform3 0.995167 0.000318 0.999626 0.000025 0.991886 0.000246 0.999069 0.000031 0.993524 0.000213

Platform4 0.989857 0.000521 0.999310 0.000036 0.987759 0.000656 0.998572 0.000045 0.988807 0.000352

Platform5 0.941333 0.003306 0.999213 0.000047 0.989567 0.000993 0.999091 0.000051 0.964845 0.001900

Platform6 0.982559 0.000671 0.999646 0.000014 0.994483 0.000543 0.999545 0.000019 0.988485 0.000473

Platform7 0.995424 0.000267 0.999712 0.000017 0.997934 0.000155 0.999606 0.000021 0.996678 0.000174

Platform8 0.983085 0.000738 0.998644 0.000060 0.984611 0.000670 0.997605 0.000084 0.983847 0.000567

Platform9 0.989404 0.000487 0.999276 0.000034 0.983216 0.000887 0.998243 0.000068 0.986300 0.000532

Platform10 0.983949 0.000742 0.998979 0.000048 0.995778 0.000298 0.998790 0.000054 0.989828 0.000453

Platform11 0.998939 0.000092 0.999657 0.000030 0.994212 0.000183 0.998321 0.000055 0.996570 0.000113

Platform12 0.995106 0.000504 0.999691 0.000032 0.998628 0.000136 0.999628 0.000031 0.996864 0.000262

Platform13 0.995778 0.000278 0.999736 0.000017 0.995661 0.000281 0.999497 0.000022 0.995720 0.000188

Fake 0.987085 0.000972 0.998910 0.000083 0.985336 0.000569 0.997852 0.000088 0.986209 0.000560

Mean 0.988132 0.000657 0.999438 0.000033 0.992528 0.000420 0.998952 0.000043 0.990280 0.000430
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TABLE IX. Evaluation metrics of the support vector machine with fine Gaussian kernel on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Channels Mean SD Mean SD Mean SD Mean SD Mean SD

Platform1 0.998720 0 0.999905 0 0.994196 0 0.999507 0 0.996453 0

Platform2 0.996194 0 0.999747 0 0.960550 0 0.997220 0 0.978048 0

Platform3 0.994643 0 0.999607 0 0.941096 0 0.995397 0 0.967129 0

Platform4 0.681987 0 0.968379 0 0.994134 0 0.970024 0 0.808994 0

Platform5 0.877218 0 0.998273 0 0.967136 0 0.997881 0 0.919985 0

Platform6 0.972320 0 0.999447 0 0.968907 0 0.998847 0 0.970610 0

Platform7 0.980763 0 0.998806 0 0.968344 0 0.997003 0 0.974514 0

Platform8 0.972729 0 0.998009 0 0.887440 0 0.989817 0 0.928129 0

Platform9 0.945946 0 0.996250 0 0.954936 0 0.993593 0 0.950420 0

Platform10 0.969702 0 0.998104 0 0.965500 0 0.996175 0 0.967596 0

Platform11 0.996074 0 0.998785 0 0.948320 0 0.986407 0 0.971611 0

Platform12 0.996407 0 0.999780 0 0.970500 0 0.998048 0 0.983283 0

Platform13 0.997222 0 0.999832 0 0.963267 0 0.997684 0 0.979951 0

Fake 0.963505 0 0.996985 0 0.941690 0 0.992676 0 0.952472 0

Mean 0.953102 0 0.996565 0 0.959001 0 0.993591 0 0.953514 0

TABLE X. Evaluation metrics of the support vector machine with mean Gaussian kernel on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Channels Mean SD Mean SD Mean SD Mean SD Mean SD

Platform1 0.992395 0 0.999428 0 0.997593 0 0.999300 0 0.994988 0

Platform2 0.991411 0 0.999410 0 0.988379 0 0.998699 0 0.989893 0

Platform3 0.990537 0 0.999278 0 0.975068 0 0.997536 0 0.982742 0

Platform4 0.967935 0 0.997799 0 0.973912 0 0.996274 0 0.970914 0

Platform5 0.767456 0 0.996276 0 0.963224 0 0.995860 0 0.854268 0

Platform6 0.942446 0 0.998793 0 0.985456 0 0.998531 0 0.963471 0

Platform7 0.989474 0 0.999340 0 0.986671 0 0.998590 0 0.988070 0

Platform8 0.979711 0 0.998414 0 0.957291 0 0.995367 0 0.968371 0

Platform9 0.970878 0 0.998009 0 0.965819 0 0.995939 0 0.968342 0

Platform10 0.966018 0 0.997842 0 0.976000 0 0.996550 0 0.970983 0

Platform11 0.996613 0 0.998916 0 0.981554 0 0.994657 0 0.989027 0

Platform12 0.980538 0 0.998764 0 0.990833 0 0.998295 0 0.985659 0

Platform13 0.989720 0 0.999361 0 0.985072 0 0.998521 0 0.987391 0

Fake 0.953529 0 0.996002 0 0.970655 0 0.994026 0 0.962016 0

Mean 0.962762 0 0.998402 0 0.978395 0 0.997010 0 0.969724 0
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TABLE XI. Evaluation metrics of the support vector machine with thick Gaussian kernel on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Channels Mean SD Mean SD Mean SD Mean SD Mean SD

Platform1 0.970738 0 0.997754 0 0.995612 0 0.997605 0 0.983018 0

Platform2 0.949377 0 0.996491 0 0.954893 0 0.993810 0 0.952127 0

Platform3 0.954274 0 0.996506 0 0.940548 0 0.992479 0 0.947361 0

Platform4 0.896096 0 0.993050 0 0.878666 0 0.985746 0 0.887295 0

Platform5 0.485880 0 0.987641 0 0.915493 0 0.986732 0 0.634835 0

Platform6 0.763180 0 0.994218 0 0.929288 0 0.992942 0 0.838082 0

Platform7 0.957164 0 0.997328 0 0.949350 0 0.994490 0 0.953241 0

Platform8 0.931981 0 0.994752 0 0.898749 0 0.987639 0 0.915064 0

Platform9 0.952702 0 0.997040 0 0.867566 0 0.988713 0 0.908143 0

Platform10 0.902750 0 0.993777 0 0.919000 0 0.989354 0 0.910803 0

Platform11 0.986442 0 0.995781 0 0.944382 0 0.983174 0 0.964954 0

Platform12 0.939623 0 0.996071 0 0.972667 0 0.994687 0 0.955859 0

Platform13 0.962794 0 0.997780 0 0.920161 0 0.993218 0 0.940995 0

Fake 0.882446 0 0.989620 0 0.921958 0 0.984347 0 0.901769 0

Mean 0.895389 0 0.994843 0 0.929167 0 0.990353 0 0.906682 0

TABLE XII. Evaluation metrics of the boosted tree ensemble classifier on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Channels Mean SD Mean SD Mean SD Mean SD Mean SD

Platform1 0.974655 0 0.998072 0 0.990798 0 0.997565 0 0.982661 0

Platform2 0.883236 0 0.993689 0 0.692813 0 0.974292 0 0.776521 0

Platform3 0.757856 0 0.981094 0 0.763151 0 0.965411 0 0.760494 0

Platform4 0.630372 0 0.974550 0 0.636308 0 0.952951 0 0.633326 0

Platform5 0.308373 0 0.979714 0 0.708920 0 0.976303 0 0.429791 0

Platform6 0.314857 0 0.969674 0 0.695085 0 0.964277 0 0.433396 0

Platform7 0.475747 0 0.954592 0 0.655282 0 0.936884 0 0.551265 0

Platform8 0.775607 0 0.984957 0 0.649814 0 0.960127 0 0.707160 0

Platform9 0.812856 0 0.990645 0 0.591202 0 0.964957 0 0.684533 0

Platform10 0.537860 0 0.970906 0 0.538667 0 0.945341 0 0.538263 0

Platform11 0.804491 0 0.958949 0 0.519732 0 0.851214 0 0.631494 0

Platform12 0.687374 0 0.974007 0 0.909167 0 0.970172 0 0.782865 0

Platform13 0.864870 0 0.992753 0 0.742872 0 0.978068 0 0.799242 0

Fake 0.461356 0 0.922516 0 0.785226 0 0.911817 0 0.581219 0

Mean 0.663536 0 0.974723 0 0.705645 0 0.953527 0 0.663731 0
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TABLE XIII. Evaluation metrics of the bagging tree ensemble classifier on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Channels Mean SD Mean SD Mean SD Mean SD Mean SD

Platform1 0.994491 0.000434 0.999586 0.000033 0.998282 0.000297 0.999495 0.000038 0.996383 0.000273

Platform2 0.970401 0.001511 0.997935 0.000109 0.982268 0.001100 0.996925 0.000103 0.976297 0.000789

Platform3 0.969596 0.001157 0.997705 0.000090 0.943708 0.001520 0.993820 0.000140 0.956476 0.001001

Platform4 0.951357 0.002018 0.996635 0.000147 0.964619 0.001653 0.994591 0.000164 0.957940 0.001262

Platform5 0.863776 0.005633 0.998025 0.000094 0.981273 0.001550 0.997814 0.000098 0.918774 0.003380

Platform6 0.850140 0.006040 0.996539 0.000164 0.979020 0.001772 0.996194 0.000164 0.910028 0.003559

Platform7 0.965233 0.002122 0.997809 0.000139 0.967255 0.001800 0.996001 0.000168 0.966241 0.001408

Platform8 0.954514 0.001483 0.996455 0.000121 0.929688 0.001728 0.991508 0.000171 0.941936 0.001183

Platform9 0.955924 0.001548 0.997040 0.000108 0.933987 0.001504 0.992985 0.000143 0.944827 0.001122

Platform10 0.909474 0.002902 0.993939 0.000213 0.968606 0.001339 0.992440 0.000219 0.938106 0.001714

Platform11 0.989255 0.000461 0.996625 0.000146 0.956035 0.000958 0.986669 0.000268 0.972361 0.000565

Platform12 0.962966 0.001644 0.997623 0.000109 0.983117 0.001089 0.996765 0.000128 0.972936 0.001063

Platform13 0.985414 0.001314 0.999091 0.000083 0.983820 0.000965 0.998193 0.000101 0.984615 0.000858

Fake 0.931189 0.002010 0.994049 0.000184 0.952791 0.001630 0.990834 0.000232 0.941865 0.001455

Mean 0.946695 0.002163 0.997075 0.000124 0.966033 0.001350 0.994588 0.000153 0.955628 0.001402

TABLE XIV. Evaluation metrics of the discriminant analysis in subspaces on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Channels Mean SD Mean SD Mean SD Mean SD Mean SD

Platform1 0.860311 0.002270 0.987853 0.000230 0.999500 0.000096 0.988664 0.000215 0.924695 0.001320

Platform2 0.917884 0.002305 0.994136 0.000177 0.951142 0.001452 0.991364 0.000207 0.934215 0.001531

Platform3 0.957446 0.002604 0.996759 0.000201 0.940306 0.002319 0.992697 0.000328 0.948798 0.002296

Platform4 0.926250 0.002449 0.995790 0.000158 0.775069 0.003088 0.981696 0.000187 0.843936 0.001757

Platform5 0.395416 0.004772 0.984001 0.000345 0.819953 0.003186 0.981934 0.000323 0.533516 0.004181

Platform6 0.685908 0.005722 0.991545 0.000226 0.920695 0.001447 0.990153 0.000217 0.786132 0.003710

Platform7 0.963106 0.000856 0.997804 0.000053 0.911735 0.002230 0.992712 0.000133 0.936715 0.001220

Platform8 0.913851 0.001919 0.993311 0.000163 0.886717 0.002385 0.985414 0.000227 0.900077 0.001587

Platform9 0.915225 0.003374 0.995409 0.000193 0.721040 0.002253 0.977765 0.000275 0.806608 0.002334

Platform10 0.830257 0.003014 0.988222 0.000256 0.916356 0.001850 0.983972 0.000240 0.871180 0.001744

Platform11 0.994552 0.000364 0.998386 0.000108 0.906411 0.000887 0.975826 0.000242 0.948438 0.000535

Platform12 0.940046 0.001963 0.996113 0.000135 0.969528 0.000792 0.994540 0.000135 0.954558 0.001087

Platform13 0.992690 0.001121 0.999579 0.000065 0.916203 0.001038 0.994679 0.000082 0.952913 0.000725

Fake 0.781083 0.003754 0.977905 0.000497 0.932646 0.000798 0.974378 0.000425 0.850156 0.002061

Mean 0.862430 0.002606 0.992630 0.000201 0.897664 0.001702 0.986128 0.000231 0.870853 0.001863
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TABLE XV. Evaluation metrics of the k-nearest neighbors’ classifier in subspaces on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Channels Mean SD Mean SD Mean SD Mean SD Mean SD

Platform1 0.992743 0.000529 0.999453 0.000040 0.999203 0.000160 0.999436 0.000038 0.995962 0.000271

Platform2 0.979872 0.001101 0.998604 0.000078 0.986259 0.000722 0.997808 0.000091 0.983055 0.000695

Platform3 0.961398 0.001193 0.996981 0.000095 0.969708 0.001270 0.995018 0.000153 0.965535 0.001057

Platform4 0.964808 0.001599 0.997637 0.000111 0.949630 0.001292 0.994572 0.000146 0.957158 0.001140

Platform5 0.841988 0.004189 0.997653 0.000072 0.980125 0.001702 0.997432 0.000082 0.905816 0.002826

Platform6 0.747696 0.004908 0.993332 0.000172 0.985490 0.001045 0.993177 0.000174 0.850272 0.003295

Platform7 0.958581 0.001889 0.997346 0.000126 0.976624 0.001079 0.996120 0.000142 0.967517 0.001168

Platform8 0.951460 0.001821 0.996203 0.000147 0.930051 0.001457 0.991302 0.000206 0.940633 0.001392

Platform9 0.965747 0.001192 0.997706 0.000081 0.940946 0.001340 0.994056 0.000139 0.953185 0.001099

Platform10 0.919981 0.001630 0.994655 0.000117 0.977606 0.000895 0.993646 0.000133 0.947918 0.001057

Platform11 0.988554 0.000403 0.996443 0.000125 0.945338 0.001273 0.983907 0.000359 0.966463 0.000765

Platform12 0.968541 0.001364 0.997983 0.000090 0.987872 0.000658 0.997385 0.000092 0.978111 0.000761

Platform13 0.993208 0.000398 0.999576 0.000025 0.993268 0.000408 0.999205 0.000037 0.993238 0.000317

Fake 0.941483 0.001729 0.995103 0.000148 0.932161 0.001960 0.990198 0.000251 0.936798 0.001628

Mean 0.941147 0.001711 0.997048 0.000102 0.968163 0.001090 0.994519 0.000146 0.952976 0.001248

TABLE XVI. Accuracy and average training time of the classifica-
tion algorithms for descriptors.

Models Accuracy Time (seconds)

SVM linear 0.988 18.676

SVM quadratic 0.991 18.358

SVM cubic 0.993 18.482

SVM fine Gaussian 0.934 54.981

SVM mean Gaussian 0.987 20.687

SVM thick Gaussian 0.927 33.285

Ensemble boosted trees 0.900 45.507

Ensemble bagged trees 0.988 11.309

Ensemble subspace discriminant 0.917 11.094

Ensemble subspace KNN 0.982 132.810

The evaluation metrics of the subspace discriminant anal-
ysis are shown in Table XXV. The evaluation metrics using
the k -nearest neighbors’ classifier in subspaces are shown in
Table XXVI.

Tables XXVII and XXVIII present a comparison of the
evaluation metrics for each model on the mosaic and descrip-
tor validation sets.

4. Discussion

The main objective of this research was to address image
classification in the context of multimedia platforms. Specif-

ically, it focused on classifying two types of images: mosaics
and descriptors, as mentioned above. Local Binary Patterns
technique was used, which obtained vectors of 59 elements
containing detailed information about the texture of the im-
ages. These feature vectors served as input to implement ten
machine-learning algorithms. The results obtained mainly
were exceptional.

For mosaic classification, in the training stage, the op-
tions that stood out the most were support vector machines
with cubic and quadratic kernels with adequate execution
times, maintaining good computational performance. In the
validation phase, the support vector machine with cubic ker-
nel obtained the best performance with an average precision
of 0.988132, specificity of 0.999438, sensitivity of 0.992528,
accuracy of 0.998952, and F1 measure of 0.990280. The
quadratic kernel followed with very close values. The bag-
ging algorithm showed outstanding performance of the as-
sembled classifiers, with an average accuracy of 0.99458827
and an F1 measure of 0.955628, contrary to the boosted trees
that yielded the lowest values in the metrics in general.

Regarding the classification of descriptors, the results
were equally outstanding for the support vector machines
with quadratic and cubic kernels with averages above 98 per-
cent in all their metrics. On the assembled systems, the bag-
ging algorithm also showed solid performance, as did the
boosted trees model, which contrasts with its performance on
the mosaic dataset, where it performed much worse. For this
data, the subspace discriminant analysis algorithm obtained
the lowest score, which in metrics such as precision and the
F1 measure reached a value of 85 percent.
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TABLE XVII. Evaluation metrics of the linear support vector machine on the descriptor validation set.

Channels Precision Specificity Sensitivity Accuracy F1 Measurement

Mean SD Mean SD Mean SD Mean SD Mean SD

PlatformA 0.992627 0.000183 0.998767 0.000031 0.963667 0.002282 0.993607 0.000335 0.977931 0.001183

PlatformB 0.936417 0.017865 0.999228 0.000235 0.990771 0.001235 0.999133 0.000237 0.962746 0.009768

PlatformC 0.888001 0.003407 0.997033 0.000101 0.987730 0.000796 0.996817 0.000105 0.935212 0.002015

PlatformD 0.994665 0.000228 0.998974 0.000044 0.997937 0.000042 0.998807 0.000038 0.996298 0.000118

PlatformE 0.999569 0 0.999911 0 0.996400 0.000092 0.999310 0.000016 0.997982 0.000046

PlatformF 0.960137 0.002866 0.999351 0.000049 0.990544 0 0.999214 0.000048 0.975101 0.001478

PlatformG 0.999081 0.000111 0.999839 0.000019 0.999236 0.000163 0.999749 0.000032 0.999159 0.000108

PlatformH 0.968594 0.000843 0.997249 0.000076 0.999061 0 0.997391 0.000070 0.983592 0.000435

Platform I 1 0 1 0 0.994675 0 0.999816 0 0.997330 0

PlatformJ 0.991626 0.000194 0.998251 0.000041 0.981036 0.000365 0.995250 0.000076 0.986303 0.000221

Fake 0.979769 0.001202 0.999272 0.000044 0.982538 0.001298 0.998692 0.000051 0.981151 0.000732

Mean 0.973681 0.002445 0.998898 0.000058 0.989418 0.000570 0.997981 0.000092 0.981164 0.001464

TABLE XVIII. Evaluation metrics of the support vector machine with quadratic kernel on the descriptor validation set.

Channels Precision Specificity Sensitivity Accuracy F1 Measurement

Mean SD Mean SD Mean SD Mean SD Mean SD

PlatformA 0.991868 0.000273 0.998606 0.000049 0.986875 0.003510 0.996882 0.000504 0.989362 0.001740

PlatformB 0.981948 0.002287 0.999792 0.000027 0.991965 0.001653 0.999704 0.000032 0.986929 0.001400

PlatformC 0.949012 0.002642 0.998736 0.000068 0.987836 0.001029 0.998482 0.000074 0.968033 0.001535

PlatformD 0.997034 0 0.999431 0 0.998013 0.000136 0.999203 0.000022 0.997523 0.000068

PlatformE 0.999166 0.000167 0.999829 0.000034 0.994138 0.000362 0.998855 0.000063 0.996645 0.000186

PlatformF 0.916423 0.005513 0.998574 0.000102 0.989835 0.001102 0.998438 0.000106 0.951708 0.003158

PlatformG 0.997313 0.000062 0.999528 0.000011 0.999507 0 0.999525 0.000009 0.998409 0.000031

PlatformH 0.991762 0.005937 0.999293 0.000513 0.998122 0 0.999201 0.000473 0.994923 0.002992

Platform I 1 0 1 0 0.994675 0 0.999816 0 0.997330 0

PlatformJ 0.995314 0.000429 0.999022 0.000090 0.983354 0.000632 0.996291 0.000107 0.989298 0.000312

Fake 0.968018 0.002476 0.998833 0.000094 0.984093 0.001500 0.998322 0.000090 0.975987 0.001262

Mean 0.980714 0.001799 0.999240 0.000090 0.991674 0.000902 0.998611 0.000135 0.986013 0.001153

TABLE XIX. Evaluation metrics of the support vector machine with cubic kernel on the descriptor validation set.

Channels Precision Specificity Sensitivity Accuracy F1 Measurement

Mean SD Mean SD Mean SD Mean SD Mean SD

PlatformA 0.993366 0.000203 0.998861 0.000035 0.989483 0.000660 0.997483 0.000099 0.991421 0.000341

PlatformB 0.977253 0.001504 0.999736 0.000018 0.993485 0 0.999666 0.000018 0.985302 0.000765

PlatformC 0.960524 0.001411 0.999029 0.000036 0.991680 0.000711 0.998858 0.000037 0.975853 0.000776

PlatformD 0.997487 0.000001 0.999518 0 0.997495 0.000228 0.999193 0.000037 0.997491 0.000114

PlatformE 0.999526 0.000243 0.999902 0.000050 0.995942 0.000221 0.999225 0.000064 0.997731 0.000186

PlatformF 0.963877 0.002376 0.999411 0.000040 0.994405 0.001159 0.999334 0.000044 0.978901 0.001374

PlatformG 0.997771 0.000062 0.999608 0.000011 0.999507 0 0.999593 0.000009 0.998638 0.000031

PlatformH 0.996610 0.000515 0.999712 0.000044 0.998388 0.000294 0.999608 0.000045 0.997498 0.000284

Platform I 1 0 1 0 0.995705 0.000341 0.999852 0.000012 0.997848 0.000171

PlatformJ 0.993955 0.000629 0.998733 0.000133 0.986509 0.000288 0.996602 0.000115 0.990218 0.000328

Fake 0.964634 0.002538 0.998701 0.000097 0.987098 0.000563 0.998299 0.000092 0.975735 0.001283

Mean 0.985909 0.000862 0.999383 0.000042 0.993609 0.000406 0.998883 0.000052 0.989694 0.000514
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TABLE XX. Evaluation metrics of the support vector machine with fine Gaussian kernel on the descriptor validation set.

Channels Precision Specificity Sensitivity Accuracy F1 Measurement

Mean SD Mean SD Mean SD Mean SD Mean SD

Platform A 0.982312 0 0.997028 0 0.958000 0 0.991291 0 0.970004 0

PlatformB 0.978339 0 0.999777 0 0.882736 0 0.998457 0 0.928082 0

PlatformC 0.959350 0 0.999059 0 0.932070 0 0.997501 0 0.945513 0

Platform D 0.997862 0 0.999606 0 0.959342 0 0.993129 0 0.978223 0

PlatformE 1 0 1 0 0.904445 0 0.983648 0 0.949825 0

PlatformF 0.628571 0 0.991751 0 0.884161 0 0.990079 0 0.734774 0

Platform G 1 0 1 0 0.977340 0 0.996619 0 0.988540 0

Platform H 0.998101 0 0.999841 0 0.986854 0 0.998824 0 0.992446 0

Platform I 1 0 1 0 0.974441 0 0.999118 0 0.987055 0

PlatformJ 0.997855 0 0.999599 0 0.882378 0 0.979165 0 0.936570 0

Fake 0.422783 0 0.951201 0 0.995758 0 0.952745 0 0.593552 0

Mean 0.905925 0 0.994351 0 0.939775 0 0.989143 0 0.909508 0

TABLE XXI. Evaluation metrics of the support vector machine with mean Gaussian kernel on the descriptor validation set.

Channels Precision Specificity Sensitivity Accuracy F1 Measurement

Mean SD Mean SD Mean SD Mean SD Mean SD

PlatformA 0.991899 0 0.998622 0 0.979500 0 0.995811 0 0.985660 0

PlatformB 0.950000 0 0.999405 0 0.990228 0 0.999302 0 0.969697 0

PlatformC 0.921131 0 0.998006 0 0.977883 0 0.997538 0 0.948659 0

PlatformD 0.987780 0 0.997635 0 0.997031 0 0.997538 0 0.992384 0

PlatformE 0.999566 0 0.999911 0 0.988405 0 0.997942 0 0.993954 0

PlatformF 0.861570 0 0.997499 0 0.985816 0 0.997318 0 0.919515 0

PlatformG 0.999507 0 0.999914 0 0.999507 0 0.999853 0 0.999507 0

PlatformH 0.987454 0 0.998924 0 0.997653 0 0.998824 0 0.992527 0

Platform I 1 0 1 0 0.994675 0 0.999816 0 0.997330 0

PlatformJ 0.992665 0 0.998487 0 0.969857 0 0.993496 0 0.981128 0

Fake 0.951170 0 0.998173 0 0.991516 0 0.997942 0 0.970924 0

Mean 0.967522 0 0.998780 0 0.988370 0 0.997762 0 0.977390 0

TABLE XXII. Evaluation metrics of the support vector machine with thick Gaussian kernel on the descriptor validation set.

Channels Precision Specificity Sensitivity Accuracy F1 Measurement

Mean SD Mean SD Mean SD Mean SD Mean SD

PlatformA 0.992846 0 0.999009 0 0.798000 0 0.969464 0 0.884823 0

PlatformB 0.315297 0 0.975545 0 0.986971 0 0.975674 0 0.477918 0

PlatformC 0.616240 0 0.987021 0 0.875197 0 0.984420 0 0.723238 0

PlatformD 0.986573 0 0.997416 0 0.990178 0 0.996252 0 0.988372 0

PlatformE 0.999343 0 0.999867 0 0.980030 0 0.996472 0 0.989592 0

PlatformF 0.710579 0 0.994588 0 0.841608 0 0.992210 0 0.770563 0

PlatformG 0.998274 0 0.999698 0 0.997044 0 0.999302 0 0.997659 0

PlatformH 0.904600 0 0.991070 0 0.997183 0 0.991548 0 0.948638 0

Platform I 1 0 1 0 0.994675 0 0.999816 0 0.997330 0

PlatformJ 0.979096 0 0.995861 0 0.918212 0 0.982325 0 0.947678 0

Fake 0.974186 0 0.999125 0 0.920467 0 0.996399 0 0.946565 0

Mean 0.861549 0 0.994473 0 0.936324 0 0.989444 0 0.879307 0
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TABLE XXIII. Evaluation metrics of the boosted tree ensemble classifier on the descriptor validation set.

Channels Precision Specificity Sensitivity Accuracy F1 Measurement

Mean SD Mean SD Mean SD Mean SD Mean SD

PlatformA 0.988983 0.000676 0.998087 0.000119 0.996375 0.000575 0.997836 0.000120 0.992665 0.000407

PlatformB 0.932667 0.015727 0.999180 0.000207 0.991531 0.001835 0.999094 0.000205 0.961131 0.008426

PlatformC 0.954354 0.006893 0.998883 0.000178 0.979831 0.002443 0.998440 0.000171 0.966910 0.003522

PlatformD 0.995414 0.000676 0.999120 0.000130 0.996482 0.000611 0.998696 0.000156 0.995948 0.000485

PlatformE 0.999061 0.000391 0.999808 0.000080 0.989908 0.000691 0.998114 0.000143 0.994463 0.000422

PlatformF 0.870819 0.013219 0.997692 0.000270 0.983688 0.003476 0.997474 0.000268 0.923764 0.007508

PlatformG 0.999056 0.000366 0.999834 0.000064 0.999171 0.000278 0.999735 0.000074 0.999113 0.000247

PlatformH 0.993373 0.000990 0.999435 0.000085 0.996823 0.000936 0.999231 0.000095 0.995095 0.000602

Platform I 1 0 1 0 0.995030 0.000511 0.999829 0.000018 0.997509 0.000257

PlatformJ 0.997467 0.000637 0.999478 0.000132 0.973848 0.001559 0.995010 0.000301 0.985515 0.000882

Fake 0.962761 0.004676 0.998626 0.000179 0.989148 0.002374 0.998297 0.000197 0.975770 0.002759

Mean 0.972178 0.004023 0.999104 0.000131 0.990167 0.001390 0.998341 0.000159 0.980717 0.002320

TABLE XXIV. Evaluation metrics of the tree-assembled classifier using bagging on the descriptor validation set.

Channels Precision Specificity Sensitivity Accuracy F1 Measurement

Mean SD Mean SD Mean SD Mean SD Mean SD

PlatformA 0.989188 0.000575 0.998123 0.000101 0.996467 0.000759 0.997880 0.000135 0.992814 0.000460

PlatformB 0.937946 0.012576 0.999249 0.000163 0.991748 0.001861 0.999165 0.000164 0.964055 0.006778

PlatformC 0.955953 0.008849 0.998923 0.000227 0.979726 0.002119 0.998476 0.000209 0.967669 0.004281

PlatformD 0.995475 0.000719 0.999131 0.000139 0.996566 0.000541 0.998719 0.000111 0.996020 0.000343

PlatformE 0.999069 0.000386 0.999809 0.000079 0.990244 0.000777 0.998173 0.000132 0.994637 0.000388

PlatformF 0.872949 0.012583 0.997738 0.000255 0.982821 0.003773 0.997506 0.000262 0.924585 0.007407

PlatformG 0.999146 0.000364 0.999850 0.000064 0.999187 0.000349 0.999751 0.000080 0.999167 0.000268

PlatformH 0.993253 0.001521 0.999425 0.000131 0.997277 0.000657 0.999257 0.000128 0.995260 0.000810

Platform I 1 0 1 0 0.994959 0.000681 0.999826 0.000024 0.997473 0.000342

PlatformJ 0.997483 0.000537 0.999481 0.000111 0.974564 0.002099 0.995137 0.000368 0.985889 0.001082

Fake 0.963770 0.005435 0.998664 0.000209 0.989325 0.001646 0.998340 0.000213 0.976372 0.002975

Mean 0.973112 0.003959 0.999127 0.000134 0.990262 0.001387 0.998385 0.000166 0.981267 0.002285

TABLE XXV. Evaluation metrics of discriminant analysis in subspaces on the descriptor validation set.

Channels Precision Specificity Sensitivity Accuracy F1 Measurement

Mean SD Mean SD Mean SD Mean SD Mean SD

PlatformA 0.993694 0.000220 0.999167 0.000028 0.761617 0.003931 0.964251 0.000580 0.862308 0.002543

PlatformB 0.286337 0.005471 0.972181 0.000798 0.977742 0.004110 0.972243 0.000769 0.442920 0.006430

PlatformC 0.434852 0.027867 0.971653 0.003502 0.908794 0.007958 0.970191 0.003337 0.587650 0.025303

PlatformD 0.979539 0.001090 0.996364 0.000238 0.907469 0.016227 0.982063 0.002477 0.942049 0.008587

PlatformE 0.986911 0.000962 0.997284 0.000202 0.991905 0.000430 0.996363 0.000189 0.989401 0.000547

PlatformF 0.887974 0.012041 0.998547 0.000176 0.728526 0.010897 0.994350 0.000240 0.800316 0.008605

PlatformG 0.951280 0.007304 0.991318 0.001388 0.965361 0.003053 0.987445 0.000924 0.958245 0.002895

PlatformH 0.928862 0.007925 0.993564 0.000783 0.988451 0.001963 0.993164 0.000611 0.957707 0.003562

Platform I 0.989386 0.001590 0.999618 0.000058 0.995740 0 0.999484 0.000056 0.992552 0.000800

PlatformJ 0.988847 0.001792 0.997775 0.000361 0.934205 0.001514 0.986693 0.000392 0.960748 0.001153

Fake 0.989163 0.002600 0.999640 0.000088 0.915730 0.002711 0.996732 0.000122 0.951027 0.001835

Mean 0.856077 0.006260 0.992465 0.000693 0.915958 0.004799 0.985725 0.000882 0.858629 0.005660
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TABLE XXVI. Evaluation metrics of thek-nearest neighbors classifier in subspaces on the descriptor validation set.

Channels Precision Specificity Sensitivity Accuracy F1 Measurement

Mean SD Mean SD Mean SD Mean SD Mean SD

PlatformA 0.967001 0.000323 0.994173 0.000060 0.990958 0.001164 0.993701 0.000170 0.978833 0.000581

PlatformB 0.887431 0.011852 0.998564 0.000171 0.990554 0.000994 0.998474 0.000170 0.936121 0.006670

PlatformC 0.944029 0.002882 0.998611 0.000076 0.983939 0.002119 0.998269 0.000090 0.963568 0.001862

PlatformD 0.997199 0.000271 0.999476 0.000051 0.973024 0.000290 0.995221 0.000073 0.984963 0.000231

PlatformE 0.998774 0.000199 0.999749 0.000041 0.991482 0.000248 0.998334 0.000062 0.995115 0.000182

PlatformF 0.911636 0.005870 0.998519 0.000109 0.966982 0.003750 0.998029 0.000111 0.938479 0.003337

PlatformG 0.998458 0.000258 0.999729 0.000045 0.999491 0.000062 0.999694 0.000040 0.998974 0.000134

PlatformH 0.993758 0.000495 0.999467 0.000043 0.999077 0.000314 0.999437 0.000048 0.996410 0.000303

Platform I 0.999252 0.000498 0.999973 0.000018 0.995740 0 0.999827 0.000017 0.997493 0.000248

PlatformJ 0.995081 0.000489 0.998978 0.000102 0.979251 0.000547 0.995539 0.000126 0.987102 0.000364

Fake 0.965281 0.002442 0.998732 0.000092 0.981654 0.001765 0.998141 0.000116 0.973397 0.001642

Mean 0.968900 0.002325 0.998725 0.000073 0.986559 0.001023 0.997697 0.000093 0.977314 0.001414

TABLE XXVII. Comparison of model evaluation metrics on the mosaic validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Models Mean SD Mean SD Mean SD Mean SD Mean SD

SVM linear 0.956700 0.001174 0.998095 0.000052 0.973965 0.000934 0.996420 0.000085 0.964171 0.000916

SVM quadratic 0.985570 0.000833 0.999344 0.000037 0.991243 0.000566 0.998771 0.000054 0.988318 0.000569

SVM cubic 0.988132 0.000657 0.999438 0.000033 0.992528 0.000420 0.998952 0.000043 0.990280 0.000430

SVM fine Gaussian 0.953102 0 0.996565 0 0.959001 0 0.993591 0 0.953514 0

SVM mean Gaussian 0.962762 0 0.998402 0 0.978395 0 0.997010 0 0.969724 0

SVM thick Gaussian 0.895389 0 0.994843 0 0.929167 0 0.990353 0 0.906682 0

Ensemble boosted trees 0.663536 0 0.974723 0 0.705645 0 0.953527 0 0.663731 0

Ensemble bagged trees 0.946695 0.002163 0.997075 0.000124 0.966033 0.001350 0.994588 0.000153 0.955628 0.001402

Ensemble subspace

discriminant
0.862430 0.002606 0.992630 0.000201 0.897664 0.001702 0.986128 0.000231 0.870853 0.001863

Ensemble subspace KNN 0.941147 0.001711 0.997048 0.000102 0.968163 0.001090 0.994519 0.000146 0.952976 0.001248

TABLE XXVIII. Comparison of model evaluation metrics on the descriptor validation set.

Precision Specificity Sensitivity Accuracy F1 Measurement

Models Mean SD Mean SD Mean SD Mean SD Mean SD

SVM linear 0.973681 0.002445 0.998898 0.000058 0.989418 0.000570 0.997981 0.000092 0.981164 0.001464

SVM quadratic 0.980714 0.001799 0.999240 0.000090 0.991674 0.000902 0.998611 0.000135 0.986013 0.001153

SVM cubic 0.985909 0.000862 0.999383 0.000042 0.993609 0.000406 0.998883 0.000052 0.989694 0.000514

SVM fine Gaussian 0.905925 0 0.994351 0 0.939775 0 0.989143 0 0.909508 0

SVM mean Gaussian 0.967522 0 0.998780 0 0.988370 0 0.997762 0 0.977390 0

SVM thick Gaussian 0.861549 0 0.994473 0 0.936324 0 0.989444 0 0.879307 0

Ensemble boosted trees 0.972178 0.004023 0.999104 0.000131 0.990167 0.001390 0.998341 0.000159 0.980717 0.002320

Ensemble bagged trees 0.973112 0.003959 0.999127 0.000134 0.990262 0.001387 0.998385 0.000166 0.981267 0.002285

Ensemble subspace

discriminant
0.856077 0.006260 0.992465 0.000693 0.915958 0.004799 0.985725 0.000882 0.858629 0.005660

Ensemble subspace KNN 0.968900 0.002325 0.998725 0.000073 0.986559 0.001023 0.997697 0.000093 0.977314 0.001414
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In addition to the metrics of accuracy, sensitivity, speci-
ficity, precision, and F1 measure, the inference time of the
SVM classifier with cubic kernel was preliminarily evalu-
ated. The results indicated that this algorithm had an average
inference time of less than two seconds. This performance
suggests that the algorithm is fast enough to be used in real-
time applications on multimedia platforms.

The results in Tables XXVII and XXVIII highlight key
differences in model performance across the mosaic and de-
scriptor validation sets. Overall, SVM-based models demon-
strated consistently high accuracy, precision, and sensitivity,
particularly the cubic and quadratic variants, which achieved
the best performance across both datasets.

On the mosaic validation set (Table XXVII), models such
as SVM cubic and SVM quadratic achieved precision and
sensitivity values above 0.98, indicating strong classifica-
tion performance. The ensemble-based methods, particularly
boosted trees, exhibited lower sensitivity, suggesting a trade-
off between specificity and recall.

In contrast, on the descriptor validation set (Ta-
ble XXVIII), performance remained high across most mod-
els, with ensemble methods, such as boosted trees and sub-
space KNN, showing competitive results. The improved F1-
score of these models suggests that ensemble techniques may
generalize better for this dataset.

The differences in model performance across datasets
emphasize the importance of selecting the appropriate clas-
sification model based on the data characteristics. While
SVM models excel in maintaining high sensitivity and pre-
cision, ensemble methods may provide a more balanced per-
formance depending on the dataset. These findings highlight
the need to consider model selection for different validation
scenarios carefully.

It is important to note that the images used to evaluate the
presented methodological approach were not part of the set
of images previously used for training the different artificial
intelligence models. This allows for assessing the capacity to
generalize these to new data. In both training and test groups,
30 executions of the algorithms were carried out, which al-
lowed for calculating and presenting the average value and
standard deviation for the validation set.

This study aligns with previous research on image clas-
sification using artificial intelligence algorithms. In the work
presented by [8], where analyzed histopathological images,
it was found that support vector machines and boosted trees
proved to be the most effective of the classification algo-
rithms evaluated. In particular, the combination of SFTA and
boosted trees achieved an accuracy of 94.3%, the most suc-
cessful combination [10]. Developed a bag of LBP features.
They trained several machine learning models and obtained
the best performance of the SVM, with an average accuracy
of 81.7% in the different data sets used.

The results obtained in this study have significant practi-
cal implications for classifying images from multimedia plat-
forms. Classification is essential to improving the browsing
experience and content recommendation for users. By having

accurate classification systems, platforms can offer more per-
sonalized and relevant suggestions, facilitating navigation,
the discovery of new titles, and the expansion of advertis-
ing with ads or sponsored content. However, it is important
to consider that this study focused on a specific set of images
and platforms.

If we want a more comprehensive and generalized un-
derstanding, further research and exploration of different
datasets, platforms, and types of multimedia-related images
are necessary. Implementing an online ranking system could
be explored, where images are ranked as they are added to
platforms. This would allow for a constant update of the rec-
ommendation and navigation systems. Furthermore, evalu-
ating additional feature extraction techniques and integrating
deep learning models such as convolutional neural networks
would be possible. In this way, we could thoroughly compare
all possible solutions with the results obtained in this study.

Beyond the models evaluated in this study, alternative
approaches such as Least Squares Support Vector Machines
(LS-SVM), Linear Programming Support Vector Machines
(LP-SVM), Robust Vector Machines (RVM), Bayesian Sup-
port Vector Machines (B-SVM), and Committee Machines
could serve as additional points of comparison. These mod-
els offer various advantages: LS-SVM improves computa-
tional efficiency, LP-SVM and RVM enhance robustness to
noise, B-SVM provides probabilistic insights, and Commit-
tee Machines leverage ensemble strategies for improved clas-
sification performance. Future work could explore these ap-
proaches to broaden the comparative analysis and assess their
effectiveness in different validation scenarios.

These findings emphasize the importance of model selec-
tion based on dataset characteristics, as different models may
excel in different aspects of classification performance.

5. Conclusions

The results of this research confirm the effectiveness of the
proposed methodology for image classification in multime-
dia platforms. The use of the local binary pattern technique
for feature extraction proved to be adequate since the gener-
ated vectors were effective for feeding the machine learning
algorithms.

It was observed that support vector machine algorithms
with cubic and quadratic kernels excelled in classifying mo-
saics and descriptors, while the thick Gaussian kernel had the
lowest performance. This confirms the importance of choos-
ing the appropriate algorithm for each type of data and the
value of parameter optimization, such as the kernel in SVMs.

In the assembled classifiers, the bagging algorithm
achieved outstanding performance in both data sets, contrary
to the behavior of the boosted trees that showed the lowest
performance. This reinforces that model assembly can im-
prove the robustness of the classification system. The evalu-
ation of the models on a separate dataset, not previously used
in training, demonstrated the generalization capacity of the
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models to new data. This is crucial to ensure that classifica-
tion systems are effective in real-world deployments.

This work can complement and improve content recom-
mendation systems on multimedia platforms. Its accuracy in
content classification, ability to adapt in real-time, optimiza-
tion of marketing and content strategies, user experience im-
provement, scalability, and efficiency highlight its practical
and commercial relevance.

Future research is suggested to explore different combi-
nations of algorithms, datasets, and feature extraction tech-
niques for image classification from such platforms.
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