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A non-Newtonian approach to electromagnetic curves in optical fiber
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The investigation within this article delves into the non-Newtonian geometric attributes exhibited by a linearly polarized light wave along
an optical fiber within the framework of the 3D multiplicative Riemann manifold, employing multiplicative derivative and integral. While
conducting this research, the unique arguments of multiplicative analysis (angle, norm, distance, etc.) are used. Within this context, the optical
fiber is presumed as a one-dimensional entity embedded in the 3D Riemannian space, establishing a connection between the linearly polarized
light wave’s evolution and the geometric phase. Consequently, a novel form of the multiplicative geometric phase model is formulated,
integrating the principles of multiplicative calculus. Additionally, the concept of multiplicative magnetic curves generated by the electric
fieldQ is introduced. Notably, this study stands out due to its unique utilization of multiplicative derivatives and integrals in the computational
processes. The article culminates by presenting illustrative examples consistent with the outlined theoretical framework, accompanied by
visual representations. The distinctiveness of this research lies in its departure from conventional methodologies, incorporating multiplicative
calculus into the calculations. Remarkably, multiplicative computing demonstrates its applicability across diverse domains, including physics,
engineering, mathematical biology, fluid mechanics, and signal processing. The pervasive use of multiplicative derivatives and integrals
signifies their profound significance as a novel mathematical approach, contributing substantially to problem-solving methodologies across
various scientific disciplines.
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1. Introduction

The conventional understanding of arithmetic revolves
around the conceptualization of measurement and computa-
tion, employing fundamental arithmetic operations such as
addition, subtraction, multiplication, and division. These op-
erations are used to establish connections between numbers
and model mathematical problems. The foundational opera-
tions of addition and multiplication, along with the inherent
ordering relations, shape the structure of this ordered field,
which can be articulated in a manner distinct from conven-
tional definitions. Traditional analysis, rooted in Newtonian
principles, is anchored in infinitesimal modifications of the
addition process. In contrast, branching from classical anal-
ysis, alternative methodologies have emerged, relying on di-
verse arithmetic operations. For example, in 1887, Volterra
V. proposed a Volterra-type analysis, or multiplicative analy-
sis, which based measurements on multiplication operations,
as opposed to traditional calculus [1]. This paradigm shift
forms the basis of distinct analytical methodologies. In the
perspective of multiplicative analysis, the tasks performed
by addition and subtraction in Newtonian analysis were re-
placed by multiplication and division. After the introduc-
tion of multiplicative analysis, the work by Grossman M.
and Katz R. between 1972 and 1983 had a great impact on
this field [2, 3]. This extensive research endeavor led to the
conceptualization and formalization of non-Newtonian anal-
ysis, an innovative paradigm encompassing fundamental def-
initions and concepts in mathematics. On the other hand, bi-

geometric analysis extends this proportional perspective to
both the alterations in functional values and the changes in ar-
guments. Here, ratios govern the measurement of both func-
tions and their arguments, providing a comprehensive pro-
portional viewpoint. Anageometric calculation, in contrast,
employs a linear approach for measuring the changes in func-
tional values, akin to traditional calculus using linear differ-
ences. Meanwhile, arguments within anageometric calculus
are quantified by ratios, aligning more with a proportional
measurement scale. These various non-Newtonian calculi
offer diverse mathematical methodologies by blending pro-
portional and linear measurement concepts, thereby expand-
ing the spectrum of mathematical operations and problem-
solving techniques. Although multiplicative analysis did
not attract much attention at first, its advantages, especially
in measuring metric concepts, made it popular. The main
reason for this is that in multiplicative analysis, measure-
ment operations are measured proportionally. This alterna-
tive framework particularly excels in addressing problems
characterized by exponential or proportional changes. Its
inherent capacity to handle “scale changes” during compu-
tations often yields more precise results for specific prob-
lem sets. The introduction of multiplicative calculus presents
an innovative departure from conventional mathematical ap-
proaches, offering enhanced solutions tailored to particular
problems. Central to this paradigm shift are the concepts of
multiplicative derivative and integral, which form the corner-
stone of this alternative approach. Their applications span
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across diverse domains, including probability theory, statis-
tics, financial mathematics, physics, engineering, and eco-
nomics [4–8]. This versatile methodology extends supe-
rior problem-solving capabilities within these domains, em-
bracing a proportional perspective that complements and en-
hances conventional mathematical analyses. Recently, mul-
tiplicative analysis has entered almost every field of mathe-
matics and has become a favorite of researchers. For exam-
ple, the most significant results of multiplicative analysis are
given in [9,10], some developments in multiplicative numer-
ical analysis in [11–13], properties of multiplicative differ-
ential equations in [14–16]. Bashirov A. et al. presented us
with the preliminary information that will form the basis for
multiplicative analysis in [17]. Yılmaz E. et al. established
the multiplicative Dirac system structure and introduced it to
the literature in [18–20]. Georgiev S. has presented the most
important and concrete studies in this field with the books
he published on multiplicative analysis in 2022 [21–23]. In
these works, Georgiev S.G. not only took the operators as
multiplicative, but also equipped all mathematical systems
with multiplicative arguments and presented us with a full-
fledged multiplicative space.

The adaptation of multiplicative analysis to the field of
geometry began with the work of Georgiev S.G. in this field
[22, 23]. In addition, Nurkan S. K. et al. examined vector
analysis with multiplicative arguments and presented them
to researchers [24]. Afterwards, Aydın M. E. et al. studied
multiplicative rectifier curves in depth [25, 26]. Has A. and
Yılmaz B. introduced magnetic curves to the literature by us-
ing multiplicative arguments on multiplicative Riemann man-
ifolds [27]. In more recent research endeavors, Has A. and
Yılmaz B. introduced non-Newtonian (multiplicative) conics
to the academic discourse, further extending the application
scope of multiplicative analysis [28]. These pioneering con-
tributions collectively amplify the application landscape of
multiplicative analysis within geometry, paving the way for
innovative approaches and enriched perspectives within this
field.

The profound interconnections between geometry, a fun-
damental sub-discipline of mathematics, and physics are in-
tegral to our understanding of various natural phenomena.
Within the realm of differential geometry, the investigation
of space curves stands out as an intriguing field, showcasing
numerous significant applications across diverse branches of
physics. Notably, the correlation between these two domains
was extensively explored in numerous studies. For instance,
Rytov’s law, elucidating the rotation of the polarization plane
along an optical fiber, is expounded upon with introductions
and geometric interpretations found in [29]. Furthermore, in-
vestigations into the rotation of polarization concerning geo-
metric effects in low birefringence single-mode optical fibers
are conducted by Kugler M., Ross J. N., and others [30, 31].
Additionally, several authors have contributed varied charac-
terizations of the geometric phase, offering comprehensive
insights into this phenomenon [32–38].

This paper delves into deriving the equations of geomet-

ric phase for a linearly polarized light wave within an opti-
cal fiber, considering three distinct states of the multiplicative
polarization vector. The utilization of multiplicative calculus
facilitates the formulation of these equations. Furthermore,
our study encompasses the derivation of multiplicative Rytov
curves in this context. We introduce the concept of multi-
plicative electromagnetic curves generated along the polar-
ization plane of an optical fiber by the electric field, employ-
ing the principles of multiplicative derivative within the 3D
multiplicative Riemann manifold. Additionally, we comple-
ment our theoretical findings with visual representations us-
ing the Geogebra program. A key distinguishing aspect of
our study lies in the meticulous consideration of conditions
within the multiplicative space during our calculations.

2. Preliminaries

In this section, basic information about multiplicative analy-
sis will be presented and then multiplicative differential ge-
ometry will be introduced.

2.1. Background on multiplicative calculus

The definitions and theorems that will be presented in this
section are taken from the works of Georgiev S.G. [21–23].

Since the multiplicative space has an exponential struc-
ture, the sets of multiplicative real numbers are we have

R∗ = {ex : x ∈ R} = R+, R+
∗ = {ex : x ∈ R+}

= (1,∞)and R−∗ = {ex : x ∈ R−} = (0, 1). (1)

The basic multiplicative operations for allm,n ∈ R∗, is

m +∗ n = elog m+log n = mn,

m−∗ n = elog m−log n = m/n, (2)

m ·∗ n = elog m log n = mlog n,

m/∗n = elog m/ log n = m
1

log n , n 6= 1. (3)

According to the multiplicative addition operation, the mul-
tiplicative neutral and unit elements are0∗ = 1 and1∗ = e,
respectively.

The inverse elements of multiplicative addition and mul-
tiplicative multiplication operations for allm ∈ R∗ are as
follows, respectively:

−∗m = 1/m, m−1∗ = e
1

log m . (4)

Absolute value function in multiplicative space, we have

|m|∗ =
{

m, m ≥ 0∗
−∗m, m < 0∗

. (5)

With the help of multiplicative arguments, the multiplicative
power function can be given as for allm ∈ R∗ andk ∈ N

mk∗ = e(log m)k

, m
1
2 ∗ = ∗√m = e

√
log m. (6)
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A vector whose components are elements of the spaceR∗
is called a multiplicative vector and satisfies the following
properties−→r = (r1, r2, ..., rn),−→s = (s1, s2, ..., sn) ∈ Rn

∗
multiplicative vectors andλ ∈ R∗, as follows

−→r +∗−→s =(r1 +∗ s1, ..., rn +∗ sn)=(r1s1, .., rnsn), (7)

λ ·∗ −→r = (λ ·∗ r1, ..., λ ·∗ rn) = (rlog λ
1 , ..., rlog λ

n )

= elog−→r log λ, (8)

where log−→r = (log r1, log r2, ..., log rn). Let −→r =
(r1, r2, ..., rn) and−→s = (s1, s2, ..., sn) ∈ Rn

∗ be two multi-
plicative vectors in the multiplicative vector spaceRn

∗ . Thus,
the multiplicative inner product of two multiplicative vectors
is follows

〈−→r ,−→s 〉∗=r1 ·∗ s1+∗...+∗rn ·∗ sn=e〈log
−→r ,log−→s 〉. (9)

If the multiplicative vectors−→r and−→s are multiplicative or-
thogonal to each other, they are denoted by−→r ⊥∗ −→s and this
relation is as follows

〈−→r ,−→s 〉∗ = 0∗. (10)

We gave a visual of multiplicative orthogonal vectors in
Fig. 1.

The multiplicative norm of the multiplicative vector−→r ∈
Rn
∗ is given by the multiplicative inner product The multi-

plicative norm of a vectoru ∈ Rn
∗ is defined as follows

‖−→r ‖∗ = e〈log
−→r ,log−→r 〉 1

2 . (11)

Let−→r = (r1, r2, r3) and−→s = (s1, s2, s3) be 3D multiplica-
tive vectors, and the multiplicative cross products of−→r and−→s , we have

FIGURE 1. Multiplicative orthogonal vectors.

FIGURE 2. Multiplicative orthogonal system.

−→r ×∗ −→s = (elog r2 log s3−log r3 log s2 ,

elog r3 log s1−log r1 log s3 , elog r1 log s2−log r2 log s1). (12)

Multiplicative cross product preserves the properties of tradi-
tional cross product with its arguments. For example, cross-
products of multiplicative vectors−→r and−→s are multiplica-
tive orthogonal to both−→r and−→s . We give this visually in
Fig. 2.

The multiplicative angle between the multiplicative unit
direction vectors−→r ,−→s ∈ Rn

∗ is given by

φ = arccos∗(e〈log
−→r ,log−→s 〉). (13)

Multiplicative trigonometric functions with the help of mul-
tiplicative angles

sin∗ φ = esin log φ, cos∗ φ = ecos log φ, (14)

tan∗ φ = etan log φ, cot∗ φ = ecot log φ. (15)

Multiplicative trigonometric functions provide the same al-
gebraic properties as traditional trigonometric functions, but
with their arguments. For example, there is the equality
sin2∗

∗ θ +∗ cos2∗∗ θ = 1∗. For other relations, see [21].
The multiplicative derivative of the multiplicative func-

tion f(t) ⊂ R∗ for t ∈ I ⊂ R∗ is as follows

f∗(t) = lim
h→0?

((f (t +? h)−? f (t)) /?h)

= lim
h→1

exp
[
log f (th)− log f (t)

log (h)

]

= lim
h→1

exp
[
thf ′ (th)
f (th)

]
= et

f′(t)
f(t) . (16)

Multiplicative differentiation realizes many properties pro-
vided in classical differentiation, such as linearity, Leibniz
rule, chain rules, etc., based on multiplicative arguments. For
examples(f(x) ·∗ g(x))∗ = f∗(x) ·∗ g(x)+∗ g∗(x) ·∗ f(x). It
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can also be stated asf∗(x) = d∗f/∗d∗x. For other relations,
see [21].

The multiplicative integral of the multiplicative function
f(t) ⊂ R∗ is as follows fort ∈ I ⊂ R∗

∫

∗
f(x) ·∗ d∗x = e

∫ 1
x log f(x)dx, x ∈ R∗. (17)

2.2. Multiplicative differential geometry

Curves in three-dimensional multiplicative space are geomet-
ric objects that can be mathematically expressed by a para-
metric equation and move within a three-dimensional envi-
ronment. These multiplicative curves are typically defined as
vector functions representing thex1, x2 andx3 coordinates
of a multiplicative curve’s points with respect to a parameter
(usually denoted ass). For instance, consider a multiplicative
curve represented asx(s) = (x1(s), x2(s), x3(s)). This mul-
tiplicative curve describes the position of each point along the
multiplicative curve within a certain interval of the parameter
s, wherex1(s), x2(s), andx3(s) functions define thex1, x2

andx3 coordinates of the multiplicative curve. Leta < b de-
note real numbers. A multiplicative functionx : [a, b] → R3

∗
is called a multiplicative vector-valued function. A multi-
plicative vector valued function can be described in coordi-
nates as

x(s) = x1(s) ·∗ i +∗ x2(s) ·∗ j +∗ x3(s) ·∗ k (18)

wherei = (e, 1, 1), j = (1, e, 1) and j = (1, 1, e). Also
in short,x(s) = (x1(s), x2(s), x3(s)). x(s) : [a, b] → R3

∗,
x(s) = [x1(s), x2(s), x3(s)] is called smoothC∞ if the co-
ordinate functionsx1(s), x2(s) andx3(s) are infinitely many
times multiplicative differentiable on the open interval(a, b)
and multiplicative continuous on(a, b). For s ∈ (a, b), its

multiplicative derivativex(s) : [a, b] → R3
∗ is given by

x∗(s) = (x∗1(s), x
∗
2(s), x

∗
3(s)), i.e., by the multiplicative

derivatives of the coordinate functions. We callx(s) mul-
tiplicative naturally parametrized curve ifxi(s) (i = 1, 2, 3)
is of classCk

∗ and‖x∗(s)‖∗ = e, for eachs ∈ I [22]. Given
s0 ∈ I, the multiplicative arc length of a multiplicative regu-
lar parametrized curvex(s) from the points0, is by definition

h(s) =
∫ s

∗s0

‖x∗(t)‖∗ ·∗ d∗t. (19)

Also multiplicative smooth curve is said to be multiplicative
regular ifx∗(s) 6= 0∗ for all s ∈ [a, b], [22].

The multiplicative Frenet vectors of the multiplicative
curvex(s) are as follows [22]

T(s) = x∗(s),

N(s) = x∗∗(s)/∗‖x∗∗(s)‖∗, (20)

B(s) = T(s)×∗ N(s),

where vectorsT(s), N(s) andB(s) are the multiplicative
tangent, normal and binormal vectors of the curvex, respec-
tively and these vectors are multiplicative orthogonal to each
other as pairs, thus forming a multiplicative orthogonal sys-
tem.

The multiplicative derivative equivalents of the multi-
plicative Frenet vectors are as follows [22]

T∗ = elog κ log N,

N∗ = e− log κ log T+log τ log B, (21)

B∗ = e− log τ log N,

FIGURE 3. A multiplicative circle and sphere with centered at multiplicative originO(0∗, 0∗, 0∗) and radius1∗.
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FIGURE 4. A multiplicative helix and slant helix.

or with multiplicative arguments

T∗ = κ ·∗ N,

N∗ = −∗κ ·∗ T +∗ τ ·∗ B, (22)

B∗ = −∗τ ·∗ N,

whereκ = κ(s) andτ = τ(s) are the curvature and the tor-
sion functions ofx and they are given by [22]

κ(s) = ‖x∗∗(s)‖∗ = e(〈log x∗∗,log x∗∗〉) 1
2 , (23)

τ(s) = 〈N∗(s),B(s)〉∗ = e〈log N∗(s),log B(s)〉. (24)

Has A. and Yılmaz B. studied some geometric structures with
multiplicative arguments [26]. We gave the multiplicative
unit circle whose centerO(0∗, 0∗, 0∗) is the multiplicative
origin in Fig.3.

They also obtained some characterizations of multiplica-
tive helices and multiplicative slant helices as follows, re-
spectively; [26]

τ/∗κ = c, c ∈ R∗ (25)

and
(
κ2∗/∗(κ2∗ +∗ τ2∗)

) ·∗ (τ/∗κ)∗ = c, c ∈ R∗. (26)

Additionally, Fig. 4 shows the helix with parameteriza-
tion

x(s)=
(
(e3/∗e5) ·∗ cos∗ s, (e3/∗e5) ·∗ sin∗ s, (e4/∗e5) ·∗ s

)
,

and the slant helix with parameterization

x(s) = (x1(s),x2(s),x3(s)) ,

where

x1(s) = (e9/∗e400) ·∗ sin∗ 25s +∗ (e25/∗e144) ·∗ sin∗ 9s,

x2(s) = −∗(e9/∗e400) ·∗ cos∗ 25s +∗ (e25/∗e144) ·∗ cos∗ 9s,

x3(s) = (e15/∗e136) ·∗ sin∗ 17s.

3. Multiplicative geometric phase with multi-
plicative derivative

This section introduces the representation of an optical fiber
within a multiplicative space curve employing the principles
of multiplicative calculus. We begin by consideringx(s)
within the multiplicative Euclidean space. Given that the
optical fiber is a one-dimensional entity embedded within
a 3D multiplicative Riemann manifold, we establish a cor-
relation between the evolution of a linearly polarized light
wave and a multiplicative geometric phase. Simultaneously,
the orientation of the linearly polarized light wave is deter-
mined by the direction of the electric fieldQ(s). Conse-
quently, the directionQ(s) along an optical fiber is formu-
lated within the context of the multiplicative Frenet frame
{T = (t1, t2, t3),N = (n1, n2, n3),B = (b1, b2, b3)} as
follows:

Q∗(s) = e(log λ1 log t1+log λ2 log n1+log λ3 log b1,log λ1 log t2+log λ2 log n2+log λ3 log b2,log λ1 log t3+log λ2 log n3+log λ3 log b3)

Rev. Mex. Fis.71051306
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or equally

Q∗(s) = λ1 ·∗ T +∗ λ2 ·∗ N +∗ λ3 ·∗ B, (27)

whereλ1, λ2 and λ3 are multiplicative differentiable func-
tions.

The polarization state of light is examined in the follow-
ing for three distinct cases.
Case 1. In this initial scenario, it is assumed that theQ re-
sides within multiplicative plane that is multiplicative orthog-
onal toT. Consequently, we can express this as

〈Q,T〉∗ = e〈log Q,log T〉 = 0∗. (28)

Take the above equation be multiplicative differentiated with
respect tos, as follows

〈Q∗,T〉∗ +∗ 〈Q,T∗〉∗ = 0∗,

and

〈Q∗,T〉∗ = −∗κ ·∗ 〈Q∗,N〉∗.
From Eq. (27) and multiplicative Frenet formulae, we have

λ1 ·∗ e〈log T,log T〉 +∗ λ2 ·∗ e〈log T,log N〉

+∗ λ3 ·∗ e〈log T,log B〉 +∗ κ ·∗ e〈log Q,log N〉 = 0∗.

Take upon making the required adjustment, we acquire the
initial coefficientλ1 in Eq. (27) as

λ1 = −∗κ ·∗ 〈Q,N〉∗. (29)

We assume there is no loss mechanism in the optical fiber due
to absorption; we have〈Q,Q〉∗ = c, wherec ∈ R∗. Then,

by taking multiplicative derivatives of the equation
〈Q,Q〉∗ = c, we obtain the following

e2 ·∗ 〈Q∗,Q〉∗ = 0∗

and

〈Q∗,Q〉∗ = 0∗.

Upon this using Eq. (27), we can write

λ1 ·∗ e〈log Q,log T〉 +∗ λ2 ·∗ e〈log Q,log N〉

+∗ λ3 ·∗ e〈log Q,log B〉 = 0∗.

Thereupon, consider Eq. (28) in the above equation, we get

λ2 ·∗ e〈log Q,log N〉 +∗ λ3 ·∗ e〈log Q,log B〉 = 0,

and so

λ2 ·∗ e〈log Q,log N〉 = −∗λ3 ·∗ e〈log Q,log B〉

or λ2 ·∗ 〈Q,N〉∗ = −∗λ3 ·∗ 〈Q,B〉∗.

From Eq. (28), since〈Q,N〉∗ 6= 0∗ and〈Q,B〉∗ 6= 0∗, λ2

andλ3 are multiplicative proportional to each other and we
can give

λ2 = elog λ〈log Q,log B〉 and λ3 = e− log λ〈log Q,log N〉

or

λ2 = λ ·∗ 〈Q,B〉∗ and λ3 = −∗λ ·∗ 〈Q,N〉∗. (30)

So let’s use Eq. (29) and (30) in Eq. (27), then we give

d ·∗ Q/∗d ·∗ s = e− log κ〈log Q,log N〉 log T+log λ〈log Q,log B〉 log N−log λ〈log Q,log N〉 log B, (31)

or with multiplicative arguments

d ·∗ Q/∗d ·∗ s = −∗κ ·∗ 〈Q,N〉∗ ·∗ T +∗ λ ·∗ 〈Q,B〉∗ ·∗ N−∗ λ ·∗ 〈Q,N〉∗ ·∗ B. (32)

We know that, is

d ·∗ Q/∗d ·∗ s = e− log κ〈log Q,log N〉 log T+log λ(〈log Q,log B〉 log N−〈log Q,log N〉 log B). (33)

By leveraging the properties of the multiplicative vector-product and applying the multiplicative Frenet formulae, we attain the
following result

d ·∗ Q/∗d ·∗ s = −∗κ ·∗ 〈Q,N〉∗ ·∗ T +∗ λ ·∗ (Q×∗ T). (34)

The rotation aroundT is represented by the second term on the right side of the aforementioned equation. AssumingT is
multiplicative parallel transported (i.e., λ = 0∗), as follow

d ·∗ Q/∗d ·∗ s = −∗κ ·∗ 〈Q,N〉∗ ·∗ T.

Also, the multiplicative polarization vector is written as follows

Q = 〈Q,N〉∗ ·∗ N +∗ 〈Q,B〉∗ ·∗ B. (35)

Rev. Mex. Fis.71051306
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Whenupon multiplicative differentiating Eq. (35) with respect tos and comparing the result with Eq. (32), it is evident that

Q∗ = −∗κ ·∗ 〈Q,N〉∗ ·∗ T +∗ ((d∗/∗d∗s) ·∗ 〈Q,N〉∗ −∗ τ ·∗ 〈Q,B〉∗) ·∗ N

+∗ ((d∗/∗d∗s) ·∗ 〈Q,B〉∗ +∗ τ ·∗ 〈Q,N〉∗) ·∗ B,

and so, we establish the following system

(d∗/∗d∗s) ·∗ 〈Q,N〉∗ = τ ·∗ 〈Q,B〉∗,
(d∗/∗d∗s) ·∗ 〈Q,B〉∗ = −∗τ ·∗ 〈Q,N〉∗.

Furthermore, considering that〈Q,Q〉∗ = c wherec ∈ R∗, employing multiplicative spherical coordinates, we can express the
following relationship

Q = elog esin log θ log N+log ecos log θ log B, (36)

or with multiplicative arguments

Q = sin∗ θ ·∗ N +∗ cos∗ θ ·∗ B, (37)

whereθ multiplicative angle. Thereupon computing the multiplicative differentiating of Eq. (37) and using multiplicative
Frenet formulae, the resultant expression is given as follows

Q∗=−∗ sin∗ θ ·∗ κ ·∗ T+∗((d∗θ/∗d∗s) ·∗ cos∗ θ −∗ cos∗ θ ·∗ τ) ·∗ N +∗ (sin∗ θ ·∗ τ −∗ (d∗θ/∗d∗s) ·∗ sin∗ θ) ·∗ B, (38)

and then

Q∗=−∗ κ ·∗ 〈Q,N〉∗ ·∗ T+∗((d∗θ/∗d∗s) ·∗ 〈Q,B〉∗ −∗ τ ·∗ 〈Q,B〉∗) ·∗ N +∗ (τ ·∗ 〈Q,N〉∗ −∗ (d∗θ/∗d∗s) ·∗ 〈Q,N〉∗) ·∗ B .

As another impression, we give

Q∗ = e− log κ〈log Q,log N〉 log T+log((d∗θ/∗d∗s−τ)(〈Q,B〉 log N−〈Q,N〉) log B.

By employing the characteristics of the multiplicative vector-product in the equation above, we derive the following result

Q∗ = −∗κ ·∗ 〈Q,N〉∗ ·∗ T +∗ ((d∗θ/∗d∗s)−∗ τ) ·∗ (Q×∗ T). (39)

Optical fiber does not exhibit a preference for rotation of the field. Typically observed in the presence of optical activity, the
coefficient of the second term on the right side of the aforementioned equation should be taken equal to0∗, we obtain

(d∗θ/∗d∗s)−∗ τ = 0∗.

Taking both sides of the above equation are integrated using the multiplicative integral, the result yields
∫

∗
(d∗θ/∗d∗s)d∗s = e

∫ 1
s log es

d log θ
ds ds = e

∫ d log θ
ds ds = θ, (40)

and

θ =
∫

∗
τ ·∗ d∗s.

Hence, we derive the multiplicativeQt-Rytov curve, which represents the traced curve of the polarization vector in the optical
context, subject to the condition〈Q,T〉∗ = 0∗, whereT denotes the direction

Qt = x(s) +∗ Q(s),

and

Q(s) = sin∗

(∫

∗
τ ·∗ d∗s

)
·∗ N(s) +∗ cos∗

(∫

∗
τ ·∗ d∗s

)
·∗ B(s) .
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Case 2.For the second case, the following assumption can be made for the fundamental fiber optical.

〈Q,N〉∗ = e〈log Q,log N〉 = 0∗.

Consider Eq. (27) and taking multiplicative differentiating aforementioned equation with respect tos and using multiplicative
Frenet formulae, we obtain

〈λ1 ·∗ T +∗ λ2 ·∗ N +∗ λ3 ·∗ B,N〉∗ +∗ 〈Q, (−∗κ ·∗ T +∗ τ ·∗ B)〉∗ = 0∗ ,

or equivalently

λ1 ·∗ e〈log T,log N〉 +∗ λ2 ·∗ e〈log N,log N〉 +∗ λ3 ·∗ e〈log B,log N〉 −∗ κ ·∗ e〈log Q,log T〉 +∗ τ ·∗ e〈log Q,log B〉 = 0∗ .

Whereupon making the necessary adjustments, the second coefficientλ2 in Eq. (27) can be obtained as

λ2 = κ ·∗ 〈Q,T〉∗ −∗ τ ·∗ 〈Q,B〉∗. (41)

Taking the multiplicative differentiating〈Q,Q〉∗ = c, c ∈ R∗, we get

e2 ·∗ 〈Q∗,Q〉∗ = 0∗ ,

and

〈Q∗,Q〉∗ = 0∗.

Consider with Eq. (27) and above equation, as follow

λ1 ·∗ e〈log T,log Q〉 +∗ λ2 ·∗ e〈log N,log Q〉 +∗ λ3 ·∗ e〈log B,log Q〉 = 0∗ ,

and finally

λ1 ·∗ e〈log T,log Q〉 = −∗λ3 ·∗ e〈log B,log Q〉

or simplify

λ1 ·∗ 〈Q,T〉∗ = −∗λ3 ·∗ 〈Q,B〉∗ = 0∗ .

When both〈Q,T〉∗ 6= 0∗ and〈Q,B〉∗ 6= 0∗, it follows thatλ1 andλ2 are proportional to each other, resulting in, we get

λ1 = λ ·∗ 〈Q,B〉∗ and λ3 = −∗λ ·∗ 〈Q,T〉∗. (42)

Let’s incorporate Eq. (41) and (42) in Eq. (27), as follow

Q∗ = λ ·∗ 〈Q,B〉∗ ·∗ T +∗ (κ ·∗ 〈Q,T〉∗ −∗ τ ·∗ 〈Q,B〉∗) ·∗ N−∗ λ ·∗ 〈Q,T〉∗ ·∗ B. (43)

Once necessary adjustments are applied, the following expression as

Q∗ = (κ ·∗ 〈Q,T〉∗ −∗ τ ·∗ 〈Q,B〉∗) ·∗ N−∗ λ ·∗ (Q×∗ N).

Just as in theCase 1, the latter part of the equation above corresponds to rotation aroundN. Assuming the parallel transport of
N, we obtain

Q∗ = (κ ·∗ 〈Q,T〉∗ −∗ τ ·∗ 〈Q,B〉∗) ·∗ N. (44)

Furthermore, considering these aspects, we can express the polarization vector as follows

Q=〈Q,T〉∗ ·∗ T +∗ 〈Q,B〉∗ ·∗ B. (45)

Thereupon computing the multiplicative differentiating of Eq. (45), the following as

Q∗ = (d∗/∗d∗s) ·∗ 〈Q,T〉∗ ·∗ T +∗ (κ ·∗ 〈Q,T〉∗ −∗ τ ·∗ 〈Q,B〉∗) ·∗ N +∗ (d∗/∗d∗s) ·∗ 〈Q,B〉∗ ·∗ B.
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Thus, upon comparing the aforementioned equation with Eq.(44), we establish the following system

(d∗/∗d∗s) ·∗ 〈Q,T〉∗ = 0∗,

(d∗/∗d∗s) ·∗ 〈Q,B〉∗ = 0∗.

Meanwhile, the representation of the polarization vector in accordance with multiplicative spherical coordinates is expressed
as

Q = elog ecos log θ log T+esin log θ log B, (46)

or with multiplicative arguments

Q = cos∗ θ ·∗ T +∗ sin∗ θ ·∗ B. (47)

If we take the multiplicative derivative of this equation, the resulting expression becomes

Q∗ = (κ ·∗ 〈Q,T〉∗ −∗ τ ·∗ 〈Q,B〉∗) ·∗ N +∗ (d∗θ/∗d∗s) ·∗ (Q×∗ N). (48)

Since Eq. (48) , we obtain

d∗θ/∗d∗s = 0∗,

and so

θ = c, c ∈ R∗. (49)

Hence, we can infer thatQ induces the parallel transport
alongN. Consequently, is characterizedQn-Rytov multi-
plicative curve in the second case. The orientation of the po-
larized light state evolves in accordance withN. As a result,
we derive theQn-Rytov multiplicative curve and the polar-
ization vector within the optical context, subject to the con-
ditions〈Q,B〉∗ = 0∗ respectively, as

Qn(s) = x(s) +∗ Q(s), (50)

and

Q = cos∗ θ ·∗ T +∗ sin∗ θ ·∗ B, (51)

whereθ multiplicative constant angle.
Case 3. In the last scenario, assuming thatQ lies within
a multiplicative plane and is multiplicative orthogonal toB,
the expression can be formulated as follows

〈Q,B〉∗ = e〈log Q,log B〉 = 0∗.

Multiplicative differentiating the above equation with respect
to thes and employing the multiplicative Frenet elements, we
obtain

〈λ1 ·∗ T +∗ λ2 ·∗ N +∗ λ3 ·∗ B,B〉∗
−∗ τ ·∗ 〈Q,N〉∗ = 0∗.

By making the necessary adjustments,λ3 in Eq. (27) is ob-
tained as follows

λ3 = τ ·∗ 〈Q,N〉∗. (52)

Let 〈Q,Q〉∗ = c, c ∈ R∗ take its multiplicative derivative
and do the necessary adjustment, we can see that

λ1 ·∗ e〈log T,log Q〉 +∗ λ2 ·∗ e〈log N,log Q〉

+∗ λ3 ·∗ e〈log B,log Q〉 = 0∗,

and finally

λ1 ·∗ e〈log T,log Q〉 = −∗λ2 ·∗ e〈log N,log Q〉,

or equivalently

λ1 ·∗ 〈Q,T〉∗ = −∗λ2 ·∗ 〈Q,N〉∗ .

For 〈Q,T〉∗ 6= 0∗ and〈Q,N〉∗ 6= 0∗, λ1 andλ2 are multi-
plicative proportional to each other giving as

λ1 = λ ·∗ 〈Q,N〉∗ and λ2 = −∗λ ·∗ 〈Q,T〉∗. (53)

By using Eqs. (52) and (53) within Eq. (27), in this case we
get

Q∗ = τ ·∗ 〈Q,N〉∗ ·∗ B +∗ λ ·∗ (Q×∗ B). (54)

The second term on the right side of the previous equation
represents a rotation aroundB. Assuming thatB undergoes
parallel transport, we can express this as

Q∗ = τ ·∗ 〈Q,N〉∗ ·∗ B. (55)

In the scenario where〈Q,B〉∗ = 0∗, the polarization vec-
tor can also be expressed as

Q = 〈Q,T〉∗ ·∗ T +∗ 〈Q,N〉∗ ·∗ N.

Whereupon taking the multiplicative derivative of the afore-
mentioned equation, we can express it as follows

Q∗ = ((d∗/∗d∗s) ·∗ 〈Q,T〉∗ −∗ κ ·∗ 〈Q,N〉∗) ·∗ T

+∗ (κ ·∗ 〈Q,T〉∗ −∗ (d∗/∗d∗s) ·∗ 〈Q,N〉∗) ·∗ N

+∗ τ ·∗ 〈Q,N〉∗ ·∗ B.
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Upon comparison with Eq. (55), the ensuing system of equa-
tions emerges

(d∗/∗d∗s) ·∗ 〈Q,T〉∗ = κ ·∗ 〈Q,N〉∗,
(d∗/∗d∗s) ·∗ 〈Q,N〉∗ = −∗κ ·∗ 〈Q,T〉∗.

Utilizing multiplicative spherical coordinates, the representa-
tion of the polarization vector can be articulated as

Q = elog ecos log θ log T+esin log θ log N, (56)

or with multiplicative arguments

Q = cos∗ θ ·∗ T +∗ sin∗ θ ·∗ N, (57)

whereθ constant multiplicative angle. Compute the multi-
plicative derivative of Eq. (57), the resulting expression is

Q∗=τ ·∗ 〈Q,N〉∗ ·∗ B−∗(κ +∗ (d∗θ/∗d∗s)) ·∗ (Q×∗ B).

Since optical fiber, is haveκ +∗ (d∗θ/∗d∗s) = 0∗. If we per-
form integration on both sides using multiplicative integral,
it becomes apparent that

∫

∗
(d∗θ/∗d∗s)d∗s = e

∫ 1
s log es

d log θ
ds

ds

= e
∫ d log θ

ds ds = θ, (58)

and

θ = −∗
∫

∗
κ ·∗ d∗s.

Similarly to the aforementioned theory, in the last scenario
where〈Q,B〉∗ = 0∗, we derive theQb−Rytov multiplica-
tive curve and the polarization vector within the optical con-
text, respectively, as follows

Qb = x(s) +∗ Q(s), (59)

and

Q = cos∗

(
−∗

∫

∗
κ ·∗ d∗s

)
·∗ T

−∗ sin∗

(
−∗

∫

∗
κ ·∗ d∗s

)
·∗ N. (60)

4. An approximation with multiplicative prop-
erties to the electromagnetic curves gener-
ated by the electric fieldQ along the polar-
ization plane on the optical fiber

If F represents an optical fiber describing the multiplicative
curvex(s) in a3D multiplicative Riemann manifold, then the
multiplicative electromagnetic curve within the optical fiber,
taking into account the multiplicative derivative, is defined as

φ(Q) = V ×∗ Q = Q∗ (61)

whereV is a multiplicative Killing vector field. Also influ-
enced by the multiplicative electromagnetic field, resulting in
the generation of a force known as the multiplicative Lorentz
force. The multiplicative Lorentz force, also referred to as the
electromagnetic force, emerges from the combined effects of
the electric and magnetic forces acting on a point charge due
to multiplicative electromagnetic fields. This force signifi-
cantly impacts the motion of particles, leading to diverse mul-
tiplicative trajectories along the optical fiber, recognized as
multiplicative electromagnetic curves [27]. The subsequent
section will delineate three distinct categories of multiplica-
tive electromagnetic curves based on the three cases ofQ
established in the preceding section.

4.1. Multiplicative electromagnetic curves forQ ⊥∗ T

We have previously shown in Eq. (62) that is

d ·∗ Q/∗d ·∗ s=−∗κ ·∗ 〈Q,N〉∗ ·∗ T+∗λ ·∗ 〈Q,B〉∗ ·∗ N

−∗ λ ·∗ 〈Q,N〉∗ ·∗ B. (62)

By employing the equation for the multiplicative Lorentz
force, it can be expressed as

e〈log φ(Q),log T〉 = e−〈log φ(T),log Q〉,

e〈log φ(Q),log N〉 = e−〈log φ(N),log Q〉,

e〈log φ(Q),log B〉 = e−〈log φ(B),log Q〉.

Then, applying the multiplicative Lorentz forceφ on the mul-
tiplicative Frenet frame, it is determined that

φ(T) = κ ·∗ N,

φ(N) = −∗κ ·∗ T−∗ λ ·∗ B,

φ(B) = −λ ·∗ N.

Also, the multiplicative Killing magnetic vector field is
spanned by the multiplicative Frenet trihedron.

V = elog c1 log T+log c2 log N+log c3 log B,

or with multiplicative arguments

V = c1 ·∗ T +∗ c2 ·∗ N +∗ c3 ·∗ B.

From the definition of the multiplicative Lorentz force, we
obtain

φ(T) = V ×∗ T,

φ(N) = V ×∗ N,

φ(B) = V ×∗ B.

Therefore, given the suppositions and utilizing the frame
along with the aforementioned equations, the multiplicative
magnetic vector field of theQtM−trajectories is obtained as

V = −∗λ ·∗ T +∗ κ ·∗ B.
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Under the supposition thatT is orthogonal toQ, the mul-
tiplicative Lorentz force equations, according to the multi-
plicative Frenet frame, are as follows

φ(T) = κ ·∗ N,

φ(N) = −∗κ ·∗ T,

φ(B) = 0∗.

Subsequently, the multiplicative magnetic field is obtained as
follows

V = κ ·∗ B.

4.2. Multiplicative electromagnetic curves forQ ⊥∗ N

This second section, is obtained the equationQ for the case
〈Q,N〉∗ = 0∗, from Eq. (43) as

Q∗ = λ ·∗ 〈Q,B〉∗ ·∗ T +∗ (κ ·∗ 〈Q,T〉∗
−∗ τ ·∗ 〈Q,B〉∗) ·∗ N−∗ λ ·∗ 〈Q,T〉∗ ·∗ B.

We use the multiplicative Lorentz forceφ on multiplicative
Frenet trihedron, as follows

φ(T) = κ ·∗ N−∗ λ ·∗ B,

φ(N) = −∗κ ·∗ T +∗ τ ·∗ B,

φ(B) = λ ·∗ T−∗ τ ·∗ N.

The representation of the multiplicative magnetic vector field
according to the multiplicative Frenet vectors can be ex-
pressed as

V = c1 ·∗ T +∗ c2 ·∗ N +∗ c3 ·∗ B.

Upon performing the requisite calculations, we determine the
magnetic vector field of theQnM -trajectories

V = τ ·∗ T +∗ λ ·∗ N +∗ κ ·∗ B.

If the assumption is made thatN is multiplicative orthogonal
to Q, the multiplicative Lorentz force equations according to
the multiplicative Frenet frame can be derived as follows

φ(T) = κ ·∗ N,

φ(N) = −∗κ ·∗ T +∗ τ ·∗ B,

φ(B) = −∗τ ·∗ N,

and multiplicative magnetic field as

V = τ ·∗ T +∗ κ ·∗ B.

4.3. Multiplicative electromagnetic curves forQ ⊥∗ B

This last section, is obtained the equationQ for the case
〈Q,N〉∗ = 0∗, from Eq. (54) as

Q∗ = λ ·∗ 〈Q,N〉∗ ·∗ T−∗ λ ·∗ 〈Q,T〉∗ ·∗ N

+∗ τ ·∗ 〈Q,N〉∗ ·∗ B.

Utilizing the multiplicative Lorentz force on the multiplica-
tive Frenet trihedron, as follows

φ(T) = −∗λ ·∗ N,

φ(N) = λ ·∗ T +∗ τ ·∗ B,

φ(B) = −∗τ ·∗ N.

Thereupon performing the requisite calculations, we deter-
mine the magnetic vector field of theQbM -trajectories

V = τ ·∗ T−∗ λ ·∗ B.

If we assume thatB is orthogonal toQ, then we derive the
multiplicative Lorentz force equations and the multiplicative
magnetic field, we obtain

φ(T) = 0∗,

φ(N) = τ ·∗ B,

φ(B) = −∗τ ·∗ N,

and

V = τ ·∗ T.

Example 1.Let’s establish the connection between a linear
polarized light wave along an optical fiber and the multi-
plicative curvex(s) using the multiplicative Frenet trihedron
{T,N,B}. The multiplicative curvex(s) with an arbitrary
multiplicative parameters is expressed by the equation

x(s) = ((e3/∗e5) ·∗ cos∗ s, (e3/∗e5)

·∗ sin∗ s, (e4/∗e5) ·∗ s).

FIGURE 5. Multiplicative curvex.
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FIGURE 6. Multiplicative Qt Rytov curve and multiplicative spherical indicatrix ofQ, respectively.

FIGURE 7. Multiplicative Qn Rytov curve and multiplicative spherical indicatrix ofQ, respectively.

FIGURE 8. Multiplicative Qb Rytov curve and multiplicative spherical indicatrix ofQ, respectively.

The multiplicative Frenet elements{T,N,B, κ, τ} of x(s)
are obtained as follows

T = (−∗(e3/∗e5) ·∗ sin∗ s, (e3/∗e5) ·∗ cos∗ s, (e4/∗e5)),

N = (−∗ cos∗ s,−∗ sin∗ s, 0∗),

B = (−∗(e4/∗e5) ·∗ sin∗ s,−∗(e4/∗e5) ·∗ cos∗ s, (e3/∗e5)),

and

κ = e3/∗e5,

τ = e4/∗e5.

We present the multiplicativex curve in Fig. 5. The il-
lustration in Fig. 6-8 depicts three cases of multiplicative Ry-
tov curves connected with the multiplicative geometric phase
model of the linearly polarized light wave within an optical
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fiber. Additionally, we present the multiplicative global indi-
catorE of the polarization vector, as governed by the mul-
tiplicative derivative within the 3D multiplicative Riemann
space.

5. Conclusion

In our present investigation, we delve into the geometric
phase equations and the associated electromagnetic curves,
employing multiplicative calculus within the framework of
optical fibers. We extend our analysis to derive multiplica-
tive Rytov curves, offering unique characteristics for traced
curves during the rotational motion of the polarization vector
along the optical fiber within the 3D multiplicative Rieman-
nian manifold. Additionally, we provide examples and vi-
sualize their representations for various multiplicative values
utilizing the Mathematica program. The novelty of this study
lies in its incorporation of multiplicative calculi in analytical
computations, setting it apart from other existing studies in
the field.

The reason why multiplicative calculus is used in this
study is that it has some advantages over Newton’s calcu-
lus. Since the multiplicative space is produced with the help
of the exponential function, it functions in the first quadrant
of the traditional coordinate system. This transformation en-
tails shifting the range(−∞, 0) to (0, 1) and (0, +∞) to
(1, +∞), effectively confining the multiplicative Euclidean
space within the first quadrant region. Consequently, subjects
analyzed using multiplicative arguments find themselves op-
erating within a more constrained domain, facilitating a more
streamlined examination process. Moreover, the proportional
nature of measurements in multiplicative space enables a
more efficient modeling of exponentially changing phenom-
ena. Problems characterized by rapid exponential changes
can be more effectively addressed with multiplicative argu-
ments, allowing for a more numerical approach towards at-
taining real solutions compared to traditional methods. In
scenarios where the velocity of a particle undergoes expo-
nential fluctuations, as dictated by the Lorentz force, examin-
ing such phenomena within the framework of multiplicative
Euclidean space yields more numerical solutions. However,
it’s worth noting that compressing multiplicative space into
the first quadrant may pose disadvantages for certain prob-
lem structures. Depending on the nature of the problems un-
der scrutiny, this aspect warrants careful consideration to en-
sure comprehensive analysis and accurate outcomes. There
are also some algebraic advantages, which we can explain
as follows. Taking into account multiplicative trigonomet-
ric functions, it is obvious thatesin log x = sin∗ x. Similarly,

multiplicative trigonometric functions all share the same sit-
uation. Thus, while multiplicative trigonometric functions
are not integrable in Newtonian analysis, their multiplicative
integrals are available. Evren M. E. et al. explained the im-
portance of this situation in terms of differential geometry
as follows [25]. It is not possible to interpret the geometric
interpretation of some exponential expressions with the help
of traditional analysis. More clearly, consider the following
subset ofR2.

C = {(x, y) ∈ R2 : (log x)2 + (log y)2 = 1, x, y > 0}.

We also can parameterize this set asx(t) = ecos(log t) and
y(t) = esin(log t), t > 0. If we use the usual arithmetic op-
erations, derivative and integral, then it would not be easy to
understand what the setC expresses geometrically. With or
without the help of computer programs, we cannot even cal-
culate its basic invariants, e.g., the arc length functions(t) is
given by a complicated integral

s(t) =
∫ t 1

u

([
sin(log u)ecos(log u)

]2

+
[
cos(log u)esin(log u)

]2)1/2

du.

However, applying the multiplicative tools, we see thatC
is indeed a multiplicative circle parameterized by the multi-
plicative arc length whose center is(1, 1) and radiuse, which
is one of the simplest multiplicative curves. This is the rea-
son why, in some cases, the multiplicative tools need to be
applied instead of the usual ones.
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35. T. KÖrpınar, R. C. Demirkol, Z. K̈Orpınar, On the new con-
formable optical ferromagnetic and antiferromagnetic magneti-
cally driven waves,Optical and Quantum Electronics55(2023)
496.

36. A. Has, B. Yılmaz, Effect of fractional analysis on magnetic
curves,Rev. Mex. F́ıs.68 (2022) 041401.

37. B. Yılmaz, A new type electromagnetic curves in optical fiber
and rotation of the polarization plane using fractional calculus,
Optik - International Journal for Light and Electron Optics247
(2021) 168026.

38. B. Yılmaz, A. Has, A new type electromagnetic curves in opti-
cal fiber and rotation of the polarization plane using fractional
calculus,Optik - International Journal for Light and Electron
Optics260(2022) 169067.

Rev. Mex. Fis.71051306


