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THE PINCH EFFECT

(El efecto de constriccion magnetica)

S. Kumar Trehan

Physics Department, University of California, Berkeley."

RESUMEN

Este articulo presenta una reseia de algunos trabajos recientes sobre el
efecto de constriccion magnética en plasmas gaseosos. Despues de una dis-
cusion general de los fenomenos, se obtienen los criterios para la estabilidad

de la columna contraida de plasma, utilizando el formulismo de Marshall y Rosen-

bluth.

l.- In simplest terms, the pinch effect is based on the well known
fact that paralle! wires carrying currents in the same direction attract each other.

The pinch effect, first produced experimentally only about a decade ago ,

*
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requires a very large electrical current. When such a current is passed through

a conducting gas in a tube, it sets up a magnetic field which tends to pinch the
gas and pull it away from the tube walls. The magnetic lines of force circling
the gas compress it by their tension. Since a plasma is an excellent conductor of
electricity, the pinch effect looked like an attractive and ready made means of for-
ming a magnetic bottle,

Theoretical caculations showed that it would take a very large current
indeed - millions of amperes - to confine a plasma of high temperature and low
density. Not discouraged by this fact, investigators in many countries carried
on experiments with simple pinch tubes. They applied a high voltage to a low-
pressure gas in an insulated tube and produced an electrical discharge. This
jonized the gas, and heavy current then began to flow. The pinch made its dra-
matic appearence, but it lasted only a millionth of a second or so; no sooner
had the column of plasma been compressed than it writhed violently and drove
itself to the tube wall. Furthermore, the lighter the pinch the faster it destroyed
itself.

This was not hard to understand and in fact was predictable theoretically,
Two different types of instability can develop. In the first place, any small
kink in the pinched column will grow rapidly, because the magnetic pressure is
stronger on the concave side of the kink than on the convex side. The second
cause of instability is a kind of ‘‘sausage’’ effect. The plasma tends to squeeze

itself of at one or more points along the column and this cuts itself into pieces.

“kink’’ “‘sausage’’
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How could the pinch be stabilized? Theoretical investigations published in
the U.S., U.K., and U.S.S.R have suggested a possible answer although they
have not yet shown how the physical conditions necessary to make it work could
be achieved. The idea is to create not @ pinching magnetic field around the
the plasma but also a strong longitudinal magnetic field within the plasma column.
The internal magnetic field would act as a kind of Stiffener, If a kink started
to develop, it would tend to stretch the interior lines of force and their elastic
resistance would pull out the kink. Similarly, if the sausage type of constric -
tion tried to pinch into the column, the internal lines of force would resist being
squeezed together and this would prevent the collapse of the column.

There is a third type of instability which could destroy a plasma column-
This is the long-wave instability, i. e. a long gentle bend of the column that would
grow in strength oand push the column to the chamber wall. However, this could
be counteracted by using a conducting material for the walls of the tube. Since
o conductor acts as a sort of barrier to o magnetic field, the mognetic field lines
around the plasma column would be crowded against the wall where the bent
column approached it, ond the resulting pressure would push the column

back toward the centre of the tube.
It should be made clear that the straight pinch columns illustrated here

are simplified systems which merely exemplify the principles. In practise it
would probably not be desirable to try to produce a stable pinch in a straight tube,
for several reasons: among other things, the electrodes at the ends of the tube
would have a cooling effect on the plasma. Pinch experiments have already been
performed on other shapes. One of these is a doughnut-shaped tubes in which
currents are induced and can circulate without bumping into a solid surface. A
high voltage applied to the winding around a large iron transformer core in the
tube produces an electrical discharge in the gas, which then functions as a one-
turn secondary winding. Yery heavy currents can be induced in the plasma by this

means.
2.- The Stationary State

Consider now a column of plasma confined to a cylinder of radius r .
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This cylindrical column of plasma is assumed to be surrounded by a metallic

—~—p

cylinder of radius R_ with perfectly conducting walls. Let B: denote the

magnetic field inside the plasma and B: that in the vacuum surrounding it.

We thus have
(1)

B -8B, 2 T,+a, B, 1 (2)

v z

—

where Tz and 1, are unit vectors in the corresponding directions, using cylin-
drical coordinates with z along the plasma axis, and B, is the tangential magne-

tic field ot the plasma boundary. a and a  are scalars characterizing the lon-

gitudinal field,
The condition of pressure balance at the surface of the plasma requires

that

] Do 2 ] 50 2
o]

where p, is the gas pressure at the boundary of the plasma.

On substituting for _B': and E‘: in accordance with equations (2) and (3),

we obtain
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2 0 (S)

the equality sign corresponding to the vanishing plasma pressure and therefore to a

vanishing plasma.

3.- Investigation of Stability.

We now wish to study the behaviour of the stationary state described in
the preceding section for small departures from the state of equilibrium. We
can then write down the lineorized equations of hydromagnetics which govem the
small departures from equilibrium. The perturbation can then be analyzed into
normal modes as

f(r) ei (kz + m8+ot)

r

where k is the wave number of the perturbation, m the azimuthal number and
o the frequency of oscillation. The general perturbation will, of course, consist
of a summation over all m and an integral over k. However, since the equa-
tions governing the perturbed state are linear, one can treat each of the modes
separately. This leads to a characteristic value equation for o. A particular
mode is stable or unstable depending on whether o is real or imaginary; if o
should happen to be complex, the imaginary part must be negative for the mode

of oscillation to be unstable.

However, if one is only interested in the stability of the system, one

cando so in a more direct manner by one of the following methods.
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1) One can ask if there exist any deformations which result in the
second order change in the potential energy to be negative. [f there exist such
deformations, the system will seek this state of lower energy and will be unsto-
ble. The energy principle for hydromagnetic stability problems has been
devoloped by Bemstein, Frieman, Kruskal and Kulsrud ot Project Matterhom of
Princeton University.

ii) The second approach is due to Marshall and Rosenbliuth. It is based
on the criterion that stability or instability of a system is a direct consequence
of the pressure distribution at the boundary (perturbed) of the plasma. It states,
if the normal component of the gradient of the perturbation in the total pressure
acts in the direction of the normal component of the displacement, one has insta-

bility, whereas if it acts in the opposite direction to the normal component of the

displacement, the system is stable,
It can be shown that this method is equivalent to the method of solving

the characteristic value equation for o and requiring that o be real for stable

configurations.

We shall follow Rosenbluth’s treatment and use the hydromagnetic equations
to discuss the stability of the pinch. We shall use a scalar pressure for the
plasma, though stricly speaking one should take the pressure to be a tensor.

However a scalar pressure simplifies the calculations a great deal.

4.- Stability

Consider a quasi-static displacement of the plasma. (Quasi-staotic means
that during the displacement the equilibrium is preserved). Then for the plasma,

we must have

4 mgrad 3p = (Vx 3B ) xBS . (6)

where 0p and SEP are the perturbations in the pressure p_ and the plasma field

B: , respectively,
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From this equation, it follows that

BS -V 8p= 0 7)
or

s O

Bp =, op=0
or

5p=0 (9’

(VxéB ) x B2 =0 . (10)

SEP is determined from the induction equation
0 58 *Gx(:xhﬁ“) (11)
3t p p g

i

u is the electron velocity in the plasma; the positive ion motion can be neglected
in the first approximation, due to their very much larger mass.

Which by introducing the Lagrangian variable w

dw/ dt (12)

—
U

it

can be integrated to give

) (13}

V) w =ika Baw (14)

I
ool
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Substituting (14) into (10), we obtain

(vx;')x“é;:o. (15)

—

Since B: is in the z-direction, it follows from this equation that the r and
¢ components of (V x w) vanish., With the assumed form of & and z dependen-
ceof u, (v I I ]z) one can convince oneself that the z- component of { V x \.:)

also vanishes. Thus the displacements are irrotational, i.e.

Voxw=0 (16)
w =9y (17)
The equation of continuity gives

2osp- -V (g (18)

This may be integrated to give
8;3:-,0&6'5 (19)

oand from the adiabatic relation
Sp = 7:’ 5 o (20)

Here o s the unperturbed plasma density, & its perturbation, and ‘v theratio

of specific heats.

Since Sp vanishes for the plasma, it follows therefore that

V';= 0 (2])
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Thus the displacements of interest are both solenoidal and irrotational, i.e.

Vew=0 and Vx w =0 (22)

— — 2
w=Vy and V y=0 . (23)

2
The solution of V = 0 which is bounded on the axis of the cylinder

is given by
y= CI_ (kr) eikz+m6) (24)

where C is an arbitrary constant and I _ (x) is the Bessel function of order m of

ix; primes indicate differentiation with respect to x. Then

w=C [kI_(kn), 2™ 1_(kn), ik I (kr)]eikz*tm&) (25

r

The boundary of the plasma is deformed from r=r_ to one given by

r=ro[1+3ei(k"+"‘9)] , (26)

o << 1

the constant C in eq. (25) is determined from the condition that the displacement
of the boundary given by (25) be compatible with that given by (26). Thus

C = ° Y = '(I"o (27)
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i a, Beru o

I (y) '

X ei(kz +m 0)

The change in the pressure inside the plasma is given by

-V Be.sE
BPi-_GEP 5B,

] —
= a BQ(SBP)::

47

Substituting for SBP form (28) into (29), we obtain

2 I (k .
SPi (l’= l'a) = - ] G.: BB yZS._..__.._____'“( 'ra) el(kz+m3)
4 yI_(y)

[ kD (kn), + 1M1 (kr), ikI_(kr) ]

(28)

(29)

(30)

where P. is the total pressure (gas pressure + magnetic pressure) in the plasma,

5.- The Perturbation in the Yacuum Field.

dince no currents can flow in a vacuum,

<!

ngv = 0 ’ .e 8§v= 6'[’
and

-— — 2
V'SB=0 , .'.Vl['=0

v

¢= [Al_ (kr) + BK_(kr)] eilkz*m?6)
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K (x) is the Neumann function of order m of ix.

s SEV =(k'~P', .._i_rﬂ lll,lk‘[’) . (34)

Since the cylinder is supposed to be made of perfectly conducting material

the normal component of the magnetic field must vanish at r= R_,

+ AL (kR) +BK’ (kR ) =0

of I' (kR
B __ _m%% (35)
A K:, kR,

The constant A will be determined by the boundary condition that the

normal component of the magnetic field be continuous across the perturbed boundary
of the plasma. Then

, (36)

where n denotes the unit normal to the surface and A [E] is the jump experien-
ced by B at the surface., The linearized from of (36) is

n® - AISB] +5n-A[B] =0 (37)
(n°=1).

or

‘B_ =1 -8B +8n-B° (38)



The change in the unit normal is found from the equation of the unit normal.

dn L Fx[nxV(n-0)]
dt

e V() + [R-VFEDI R (39)
O sm = - V(R®-T) +[R°-V(a°-7) 1 0o (40)
ot
Sn = -GC,', +Tr(Tr Ggr), where (= n® *w

or

Sn = - (0, im, ikr_ ) Se' (kz +m &) (41)

Form (38) and (41), we obtain

ikapBgruﬁ— ikap Bgr05=0= ky'-iByla, vy + m) &

Thus we obtain

lp'=._i?_9_ S(Clvy + m) Cﬂl’:l"o (42)
k
and
y = [ AT_(kr) +BKm(kr)]ei("=+m9)
and
B Im' (kRo)
A Km (kR,)
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I (kR , B
.‘A[Iml(y)_ m( Q) Km(y)] =| 7 3(avy+m)
K_(kR) k
A - _iBQ(av Y + m) ?/Ik

I y

L' (y) - (Cy K" (y) )
K. (ly)

where { = R,

6.- The Pressure change outside the Plasma

The total pressure in the vacuum is given by the magnetic pressure term:

— 2
P = |B]-
877
] o 2 “"leq 2
Po(r°+5)=__8__7_THBv\ +(w-V) | B, ]'n
] ~—b — — _'.—'l —-'ltrz_
- [{8°| +2B°:3B +(w-V)|B | :
87T v v Y
SP (r ) [ ge 5B+ “5)1_8"’!2]
oro =T; v v E(W v I’o
=_B_E(3B + a 53)-55&("“"‘“ (43)
47 0 4

Substituting for oB_ in (43), we obtain
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2
39 Bai(kz'l-me)

SPO (I'::I l'ﬁ) = 477

X (44)

I, (y) K, (Cy) = K_ (y) I_(Ly)

[-]-.l(a.vy'l'm)z ]
Y L) (y) K, (Zy) = I_(Ly) K (y)
and we have earlier obtained ( cf. eq. (30) )
oP. (r=r,) = - 1 a.: B; y £ 3_1'“_“("?_2_ eilkz+mb) (4o
4 yI (y)
7.- The Criterion for Stability
For stability, we must have
PP 0P S (46)
r=-r,
Using the foregoing results we obtain for stability
G P - Q
a.: y* P . (y) +(a_y+t m) _m.:_ﬁ_(.’.'_)_._._..'_"_f..’.’_)_______::__(.’_’l > 1, (47)
.\ l - Gm' 4 (Y)
The negative sign in the bracket is obtained
if m< 0. Here
1_(y) K (¥)
Pa) =—" _ , Q= _—"T @48
y I, (y) y K (¥)



Gm. L (y) = - (48)

Equation (47) expresses the criterion for the stability of the pinch
with a trapped axial magnetic field for a given k and m. It must be remen-
bered that a, ., a, ocurring in eq. (47) are not independent, for they must

satisfy the condition

2 2
g L 1+ a - (49)
8.- Discussion
i) Absence of an axial magnetic field and conducting walls: The

case of Kruskal & Schwarzschild.

If in eq. (47), we let

=
it
Q
H

0 and Ro""m

then its can be readily seen that

Gm,C (y) =0

and we find from (47) that for instability, we must have

szm(y) + 1 >0

or explicitly

K k
kr + m * m (ko) > 0 (50)

K:',n (k ro)
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It is immediately clear from this result that the mode m = 0 is
unstable to disturbances of all wave lengths. The same conclusion applies
to the m= I made as can be readily verified. For higher values of m, there

is a range of wave numbers for which we obtain stability. For large values

of (kr ),

m e o o] (51)

and the largest value of kr_ for which stability occurs is approximately

2
m o

ii) Axial magnetic field but no conducting walls.

This is the case considered by Kruskal & Tuck. In the absence of
conducting walls, G, — 0 and (47) gives for stability

!

a?y? P oy - (a,y+tm?® Q () > 1 (52)

In this case we find that it is possible to stabilize both m = 0 modes and

those with m > 1 for suitable values of o and a. but that without the
presence of conducting walls, it is not possible to stabilize the m = |1 mo-

des.

iii) The general case,

We need consider only negative values of m as the additional term

G, () P () =Q ()

1 - Gm,{, (y)

dm a vy

can be shown to be a positive definite quantity. So if the inequality (47) is
satisfied for negative values of m, itis also satisfied for positive values

of m. The stability diagram is shown below.
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o 2 0.8
P ]
7
0.4 ¥ /
/
| 2 3 4 5 ¢

The region of stability in the (CI.: , L) plane for a = 0,0.1, 0,25
and 0.5 (distinguished by the numbers 1, 2,3 4 respectively),For a given «
h 4

a stable pinch occurs in a region bounded on the left by the a: axis, on the

right by the marginal curve for m = - 1, above by the equilibrium condition a:<

< (1 + a:) and below by the marginal curve for m = 0,

9.- Concluding Remarks

We have discussed the stability of the pinch on the basis of the
equation of hydromagnetics using a scalar pressures This is the treatment
of Tayler, Shrafranov, Kruskal & Tuck and Rosenbluth.

However, the more realistic case is the one where one uses a
tensor pressure, |hen, of course, we have to abonden the adiabatic relation
(or the equation of state) connecting the density and the pressure. Rosenbluth
has also investigated the case of tensor pressure., Then to calculate the
change in the total pressure, use is made of the two adiabatic invarionts in

the motion of charged particles;
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i) The constancy of the magnetic moment, i. e.

_;.. m vi + V¢ = ftransverse velocity

=
B oL T

ii) The existence of the action integral

d v dl = 4 v _T_E.. , vy = paralell velocity
B

The most rigorous account based on the solution of the Boltzmann Equation

1as been given by Chandrasekhar, K aufman & Watson.
|
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