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Topological defect and external fields influence on potential models has been significantly proven to shape the behaviour and interactions o
different constituent quantum systems. Due on this fact, we employ the Nikiforov-Uvarov functional analysis method to solvédhiregechr
equation with Hulten-Hellmann Potential, embedded with Aharonov-Bohm flux field and point-like global monopole defect. Analytical
expression of the energies with topological defect and AB flus field was obtained. In addition, the scattering phase shift expression of the
combined potential was obtained under the influence of the global monopole and external field. Numerical and graphical variations have
been presented for various quantum states, flux field and topological defect values. It is observed that, energy eigenvalues and scatterin
phase shift of the combined potential are significantly affected by the topological defect parameters, Aharonov-Bohm flux field, screening
parameter and quantum state values considered, in the curved space-time. Conventional results of this study in Minkowski space-time art
realized as the topological defect parameter approaches unity, in the absence of the AB flux field and these results agree with available result
in literature. The results in this study also point relatively to some physical phenomena in chemical and molecular physics.
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1. Introduction [20]. The effect of screw dislocation on electrons confined in
both deformed Kratzer potential and pseudoharmonic quan-

For several decades now, different studies has been carriddm dot, respectively, was considered under the influence of
out with various wave equations in the presence of numerou@n external magnetic field [21, 22].

curvature and torsional space-times. This concept by impli- |, addition, Santos and Barros Jr. [23] considered the
cation in a curved space-time has resulted in what is known ggoinertial effects of Klein-Gordon oscillator in the cos-
topological defects _[1—7]. The topological def_ects general_lymiC string space-time. Ahmed [24] also investigated the
are known to occur in condensed matter physics and gravit|ein-Gordon oscillator with linear potential in the back-
tion physics. In gravitation physics, the concepts of topologyround of cosmic string space-time, using the Kaluza-Klein
ical defects were observed in the evolution of the early “”iTheory. Bouzenadat al. [25] studied the effect of cosmic
verse where symmetry breaking phase transition occurs [8, Ying and magnetic field on different thermal properties of a
while topological defects were observed in material synthesis_gimensional Klein-Gordon oscillator, using the Poisson ap-
in condensed matter physics [10, 11]. proximation. The influence of oscillatory frequency in a non-
Some authors have investigated the relativistic oscillatorgnertial system of Dirac oscillator was investigated in the cos-
with different topological defects [12—15]. Lambaga and Ra-mic string space-time background [26]. The authors obtained
madhan [16] was investigated the global monopole with harDirac spinors for positive-energies nonrelativistic energies,
monic oscillator within the nonrelativistic quantum mechan-which were compared with the confinement of a spin-half
ics. Boumali and Aounallah [17] obtained the exact solutiongarticle to quantum dot. Bakke and Furtado [27] analyzed the
of scalar bosons with Aharonov-Bohm (AB) and Coulombinfluence of Aharonov-Casher effect on the Dirac oscillator
potentials in the presence of global monopole. The effect oin Minkowski, cosmic string and cosmic dislocation space-
topological defects with Dirac and Klein-Gordon oscillatorstimes. Their study was applied to relativistic quantum dots,
were investigated within the global monopole space-time enespecially neutral particles. The influenced of topological de-
vironment [18]. Vitoria and Belich [19] recently employed fects on the magnetization and persistent current of massless
the cosmic strings topological defects in Einstein equatiorDirac fermions with quantum dot in a graphene layer were
to describe the global monopole point-like defects in solidsconsidered [28]. Here, the Dirac fermions were seen to con-
Within an elastic medium, the effect of declination topolog-tribute to the spatial confinement of electrons, and the de-
ical defect on the interaction of a spinless electron with rageneracy of the Landau levels being broken by the topolog-
dial electric fields was investigated by Bakke and Furtaddcal defects. Bakke and Mota [29] employed the gravity’s
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rainbow to study the Dirac oscillator within the cosmic string Here, H,, Hy, H3 are depths of the combined potential and
space-time. They deduced that the energy levels of the Dirat the screening parameter, respectively. The HHP model
oscillator were altered, due to the modification of the cospromises to be very relevant in different areas of physics in-
mic strings line elements by the rainbow functions. Also, thecluding nuclear and particle physics, atomic and molecular
Kratzer and screened modified Kratzer potentials have begphysics, solid state physics and plasma physics. This is be-
studied in a global monopole space-time [30]. It was discov<ause, the Hul#n potential, Coulomb potential and Yukawa
ered that the topological defect has some notable influenggotential are special cases of the HHP [47].
on their effective potentials and energy spectra. Chakraborty
et al. [31] examined the screening of an external Coulomb
charge with topological defects. They showed the depen- R . .
dence of the polarization charge on Coulomb strength ang' Non-relativistic quantum energies in the
the effect of the conical defect indicates the topological de- ~ 9l0bal monopole space-time
fect dependence on the Coulomb charge. Other studies on
effects of topological defect on thermal, magnetic and opti2-1. Bound States
cal properties of some potential models have been recently
considered, as recorded in Refs. [32—-36]. The line element with a point-like global monopole (PGM)
The studies of the scattering state phase shift in recergpace-time is defined as
times with confining potential models have been greatly ap-
preciated in the areas of particle and nuclear physics, es-
pecially in cross-sectional phenomena for nuclear structures
[37,38]. Here, different wave functions of the systems un-
der study have been decomposed into partial waves, witivhere0 < o? < 1, = 1 — 87GnE, with o andn being
their unique angular momentum [39]. These concept has alsge topological effect parameter of the PGM and the energy
been studied in relation to topological defects [40-42]. Rescale, respectively andis the speed of light. The metrics
cently, Alveset al. [43] studied the influence of electron by given in Eq. @) describes a space-time with scalar curvature
the Hultren potential in a space-time containing a topologicalR = 2(1 — a?)/r?. The Schidinger equation (SE) in this
defect. Approximate solution for the scattering phase shifcontext is given as
and the s-matrix were obtained for the Héthproblem, in
addition to the bound state solutions. R, . . . G
It has been established that the superposition of two or 5 Vip¥ (73t) + V(7. 0)) (71) = ih—0=—,  (3)
more potential model leads to broader range of applications
[44,45]. Hence, the Hul#én plus Hellmann potential (HHP),
which is of interest to us is given as [46]

d 2
ds?® = =2dt* + % +r2df* + r? sin® 9d8027 (2)
o

where i is the reduced mass of the system &g, =
(1/\/9)0: (/99" 9;) is the Laplace-Beltrami operatay, =

Vienp(r) = — Hie™®  Hye™®" Hy (1) det(g;;) = r?sin? §/a? andV (r) is given in Eq./L). Hence,
Hap 1—e0r r r the SE in the presence of the PGM and AB flux field is given
| as

2,0 (5,0 1 9 (. 0 1 92 _OU(r,0,,1)
2#7’2 |:CY E <7’ ({97’) + @% <51H089> +Sln298§02} 7/}(T707wat)+VHHP(T)w(T797@at)_lhT' (4)

By considering a particular solution of Ed)(given in terms of eigenvalues of the angular momentum opefator

¥(r,0,¢,1) = exp (—iEnlt> Rnl(T)Ylvmw» ), ®)

h

whereY; ,,, (0, ¢) are spherical harmonics ait},;(r) is the radial wave function. By substituting EcS) &nd (@) into Eq. ),
we have
d*R,(r) 2ME,,; 2 H e " 2uHy5e7%"  2uHs36  (I—¢)(l—¢+1) R B

dr? h2a? R2a2(1—e0")  R2a?r R2a?r a2r? ni(r) =0, ©

wherel and¢ represent angular momentum quantum number and AB flux field, respectively.
It has been established in available literatures that/@qddes not have analytical solutions because of the presence of the

centrifugal barrier, except for the s-wave whére 0. Hence, we employ the Greene-Aldrich approximation scheme of the
form [48],

2 16
(1—em)2 p "~ (1—e0r)

~

1
r2

()
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By substituting Eq.[1) into Eq. 6) and adopting a coordinate transformatips: ¢—°", we obtain

d®R, 1dR, —L1y? + Loy — Lt
z(y)+7 z(y)Jr 1y 2y — L

R, =0. 8
dy? y dy y*(1—y)? ) ®)
Here, the following parameters have been defined:
QILLHl 2[LH2 2[LH1 2,uH2 QIU,Hg
Li=€u+ 3505 — 5 g Lo =2 - - :
1= €t h2a262 h2a2d 2 e + h2a262 h2a25  h2a2d
2uly (= ¢)(I-v+1) —2pLn
Ly = €m = h2a2d + a? ; = h2a262 " ®)

To get the bound state solution, one can see thdt,a6) — 0,y — 0 whenr — co andy — 1 whenr — 0. Thus, we
employ the wave function of the form,

Ru(y) =y (1 — y)“Fu(y) (10)

Substituting Eq./20) into Eq. 8) and using the NUFA method as summarized in the Appendix A, we obtaimdQ as,

((—¢)(l—9+1) 2uHs 2pEy
_ _ _ 11
s \/ a? h2025  h2a26%’ (11)
1 4(1 — [ — 1
2 «
The bound state energy spectrum for the HHP with with PGM and AB flux field can be obtained usidglb) a,
B R?a?6% ((I—¢)(Il— o +1) _ 2uH3\ h%a?6?
e 24 a? h2a26 241
2
2uH 2uH 2uH: I—¢)(I—p+1
Q) (P — 2+ s - ) .
2 2(n+Q) '
The corresponding wave function can be obtained using BEdsagd (L2) as,
Ruu(r) = Nut (7)) (1 e 5Fi(a.b, 5 2), (14)
whereN,,; is the normalization constant. In terms of Jacobi polynomials, we have
Rnl(r) — an (6767’)5 (1 . 6—57“)@ P7(12$,2Q71) (1 _ 26757“) ) (15)
To obtain the normalization constant, the normalization condition of the radial wave function is employed:
/ | R (r)|* dr = 1. (16)
0
Considering the condition ate (0, c0) ande =" € (1,0), we have
N2, [0 _ 24 ér
T’”/ y*5(1-y)*? [Pgs,w V(- 2y)} Y1, (y=e), (17)
1 Yy
By using the transformation = 1 — 2y, we have the following boundary of E{L4) change fromy € (1,0) ton € (—1,1).
This gives
NQZ 1 1—7 25—-1 147 2Q 9
Nay Pp(252Q-1) -1 1
5 (2 ) (2 ) I& ()] dn (18)

From the standard integral formula [52],

/1 1-q\“(1+gq Z{Pw,rn( )rd _ 204 ntw)l(1+n+2) 19)
1\ 2 2 " g qin!I’(1+n+w+z)F(1+2n+w+z)'
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By comparing Eqs!18) and (L9), the normalization constant becomes

N \/25(n!)F(n 25 +2Q)0(2n + 25 + 2Q)
nl = .

22542Q7(n 4+ 29)1(1 + n + 2Q) 0

The total wave function for the Hulém plus Hellmann potential with AB flux field and point-like global monopole now
becomes

Rou(r) = \/ 26(n)T(n + 28 + 2Q)T(2n + 25 + 2Q) (657 (1= e-57)@ pRS2Q-D (1 95y (21)

225+2Q7(n 4+ 25)I'(1 + n + 2Q)
2.2. Scattering states

In this section, we proceed to study the scattering statet8uoiger equation of HHP within the AB flux field and global
monopole space-time framework. By substituting EX). i6to Eg. 6) with a new coordinate transformation of the form
o= (1-e7%), we have

d*R, (o) dRy (o) G + Goo + G302

o(l—o0) PR e + o0 —0) R, (o) =0, (22)

where,

(I=¢)(l—0+1) 2uHy  2pH, | 2pHs
Gy =— Gso = - G3 = — . 23
! o ’ 27 h20282 h2a25 + h2a26’ 37 h20282 T h2a24? + h2026 (23)
Equation 22) has regular singularities at = 0,1 andoo. ThereforeR(c = 0) = 0 asr — oo andR(c = 0) = 1 as
r — 0. Thus, the wave function can be written in the form,

2uE, 2uHq 2uHo

Ru(0) =M1 —0)7 &ulo), (24)
where,
1
)\:§<1ﬁ: 1=1G1) 5t = 6v/Gi + Gz + G, (25)
Substituting Eq.24) into Eq. 22) gives the hypergeometric Gauss differential equation of the form
d?¢ 2it. ] d¢ it it
The solution of Eq.26) is the hypergeometric function given as
€7Ll(0> = 2F1 (Elv E’Qa 53; U) ) (27)
where,
_ it — it -
=1 = <)\ -3 + —G3> , Zg = ()\ -5 iV, —G3> , Hy =2\, (28)
By using Eqgs./25) and 27), we obtain the scattering wave function as
Ru(o) =0 (1—0)" oF (51,5, 55;0). (29)

To obtain to the scattering phase shift, we used the following asymptotic properties [5&,,,45) — 0, ¢ — 0, Eq. 29)
becomes

R, (o) — 2sin {tJJrJl;TJrW(l;l)}, o — 00, (30)
whereJ is the scattering phase shift. The phase shift can be obtained frof8@@s(follows
a(l+1 _ _ _ _ _ _ _
J, = ( 5 ) +argl (B3 — 23 —Ey) —argl' (B3 — E3) —argT' (23 — Z4). (31)

It is worthy to mention here that the details for the derivation of phase shift factor is presented in Ref. [54]. By usif),Eq. (
Eq. (31) can be written as,

J = F(l;D +argl (25%) —argDl ()\— % — \/—G3> —argDl ()\— % + \/—G3> . (32)

Rev. Mex. Fis71 060502
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TABLE |. Bound state energy eigenvalues (eV) of the HHP at different values of quantum states, topological defect and AB flux field.

n ] 6 =10 \ 6 =20 ¢ =3.0
a=025 a=065 a=08 a=02 a=065 a=08 a=02 «a=065 a=0.85
0 0 -35.9875098 -5.3130098 -3.1017997 -0.8990078 -0.6770681 -0.5890331 -0.2922768 -0.2466045 -0.2265672
1 0 -8.9875391 -1.3191250 -0.7664983 -0.6628190 -0.3574311 -0.2753900 -0.2408371 -0.1584860 -0.1313853
1 -89875391 -1.3191250 -0.7664983 -8.9875391 -1.3191250 -0.7664983 -0.6628190 -0.3574311 -0.2753900
2 0 -3.9875879 -0.5798101 -0.3345368 -0.5078996 -0.2182803 -0.1566163 -0.2014847 -0.1092836 -0.0844516
1 -3.9875879 -0.5798101 -0.3345368 -3.9875879 -0.5798101 -0.3345368 -0.5078996 -0.2182803 -0.1566163
2 -0.5078996 -0.2182803 -0.1566163 -3.9875879 -0.5798101 -0.3345368 -3.9875879 -0.5798101 -0.3345368
3 0 -2.2376563 -0.3213965 -0.1839429 -0.4008613 -0.1457484 -0.0997541 -0.1707333 -0.0792978 -0.0583731
1 -2.2376563 -0.3213965 -0.1839429 -2.2376563 -0.3213965 -0.1839429 -0.4008613 -0.1457484 -0.0997541
2 -0.4008613 -0.1457484 -0.0997541 -2.2376563 -0.3213965 -0.1839429 -2.2376563 -0.3213965 -0.1839429
3 -0.1707332 -0.0792978 -0.0583731 -0.4008613 -0.1457484 -0.0997540 -2.2376563 -0.3213965 -0.1839429
4 0 -1.4277441 -0.2021681 -0.1148897 -0.3238577 -0.1034766 -0.0686693 -0.1462704 -0.0599162 -0.0428310
1 -1.4277441 -0.2021681 -0.1148897 -1.4277441 -0.2021681 -0.1148897 -0.3238577 -0.1034766 -0.0686693
2 -0.3238577 -0.1034766 -0.0686693 -1.4277441 -0.2021681 -0.1148897 -1.4277441 -0.2021681 -0.1148897
3 -0.1462704 -0.0599162 -0.0428310 -0.3238577 -0.1034766 -0.0686693 -1.4277441 -0.2021681 -0.1148897
4 -0.0734979 -0.0345933 -0.0261698 -0.1462704 -0.0599162 -0.0428310 -0.3238577 -0.1034766 -0.0686693
5 0 -0.9878516 -0.1378056 -0.0780693 -0.2666467 -0.0769464 -0.0502783 -0.1265129 -0.0468885 -0.0332356
1 -0.9878516 -0.1378056 -0.0780693 -0.9878516 -0.1378056 -0.0780693 -0.2666467 -0.0769464 -0.0502783
2 -0.2666467 -0.0769464 -0.0502783 -0.9878516 -0.1378056 -0.0780693 -0.9878516 -0.1378056 -0.0780693
3 -0.1265129 -0.0468885 -0.0332356 -0.2666467 -0.0769464 -0.0502783 -0.9878516 -0.1378056 -0.0780693
4 -0.0651682 -0.0281489 -0.0215037 -0.1265129 -0.0468885 -0.0332356 -0.2666467 -0.0769464 -0.0502783
5 -0.0322698 -0.0154562 -0.0129736 -0.0651682 -0.0281489 -0.0215037 -0.1265129 -0.0468885 -0.0332356

3. Results and discussions

TaBLE Il. Comparison of Bound state energy eigenvalues eV of

In this section, the energy spectrum of H@ithHellmann po-
tential obtained in Eql1Q3) is analyzed with different poten-

the HHP for Minkowski flat space, in the absence of AB flux field,
at different values of quantum states, with= 0.025.

tial parameters, under the influence of AB flux fieldand n I b=0:a=10 [46]
topological defect parameter. The combined potential pa-
rameters and arbitrary constants employed are as follows: 0 ~2.23765625 ~2.2376562500
H, = 0.025;H, = —1.00;H3 = 1.00;h = 1;p = 0.5. 0 -0.55062500 -0.5506250000
The values of the energy for HHP are seen to increase with 1 -0.23001736 -0.2300173611
increase in quantum state for any value of topological defect 0 -0.23890625 -0.2389062500
and AB flux field considered. It can be observed that the
there exist a significant increase in the energy eigenvalues 1 -0.12535156 -0.1253515625
from ground state of the exited states of the system. This is 2 -0.07075625
illustrated in Table I. At each quantum state considered, the 3 0 -0.13062500 -0.13062500000
energy eigenvalues of HHP increases with increase in both 1 -0.07780625
topological defect and AB flux field values. The increase in

- . . 2 -0.04765625
energy eigenvalues at each quantum state considered is not as
significant as that observed between different quantum states. 3 -0.02860013
hence, we see that under the dominance of AB flux field, the 4 0 -0.08140625
energy eigenvalues of HHP are enhanced in the presence of 1 -0.05293403
the topological defects. In addition, there exist inter-AB flux
field degeneracy symmetE; = E;') at specific values 2 -0.03472258
of topological defect. Hence, the bound state energy eigen- 3 -0.02222656
values for HHP is invariant under a transformation of an in- 4 -0.01319637
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Ey;

a)

FIGURE 1. Variation of energy eigenvalues of HHP with principal quantum numbfar various values of a) topological defeef b) AB
flux field ¢.

0.0 -

—-0.2 -

FIGURE 2. Variation of energy eigenvalues of HHP with angular momentum quantum nunfidevarious values of a) topological defect
«; b) AB flux field ¢.

0.0
—0.5F
—0.5F
-1.0f
- _ Lo}
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-1.50
-20/
-2.0F
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a) § b) §

FIGURE 3. Variation of energy eigenvalues of HHP with screening paramefer various values of a) topological defeet b) AB flux
field ¢.

crease in the AB flux field by ongp — ¢ + 1) and an in-  tum numbern, for varying values of topological defeet.
crease in the angular momentum quantum number by onAs then is enhanced more, the energy curves for the various
(I — 1+ 1), at each principal quantum number and topo-topological defect are seen to converge. Also, the energies of
logical defect values considered. HHP increase with increase in topological defect values, at

Table Il shows the bound state energy eigenvalues of HHRny values of» considered. We also observe a convergence
for Minkowski flat space at different quantum states. Our re-in the energy curves of HHP for greater values pds shown
sults are seen to be very consistent with the results obtaindgd Fig. 1b). Conversely, the energies of HHP increase with a
in Ref. [43]. decrease in AB flux field values, for any valuerof

The graphical relationship between the energy eigenval- In Fig. 2a), the energy eigenvalues are seen to rise
ues of HHP with quantum numbers and screening parametemonotonously with increase in angular momentum quantum
for some values of topological defect and AB flux field are number, for varying values of topological defeat As thel
presented in Figs. 1-4. In Fig. 1a), the energy eigenvalues aiie enhanced more, the energy curves for the various topolog-
seen to rise monotonously with increase in principal quanical defect are seen to converge. Also, the energies of HHP

Rev. Mex. Fis71 060502
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FIGURE 4. Variation of energy eigenvalues of HHP with a) AB flux fiebdor various values topological defeet b) topological defecty
for various values of AB flux fieldb.

0 2 4 6 8 10 0 2 4 6 8 10
! 1

a) [**r =025 = == 0.65 == = 1.00 | b) [rrr9-00=—r9-05——0-10 |

FIGURE 5. Variation of scattering phase shift of HHP with angular momentum quantum number for various values of a) topological defect
«; b) AB flux field ¢.

increase with increase in topological defect values, atany val- The variation of the energy eigenvalues of HHP with AB
ues ofl considered. We also observe a convergence in thélux field (¢) is shown in Fig. 4a), for various values of topo-
energy curves of HHP for greater valuesipfas shown in logical defect (). Here, the energy curves decrease uniquely
Fig. 2b). Conversely, the energies of HHP increase with do a point and later increase as the AB flux field is enhanced.

decrease in AB flux field values, for any valuel of The fall and rise levels of the energies corresponds inversely
In Fig. 3a), the energy eigenvalues increase slowly withto the level of topological defects considered.
increase in the screening parametgefor varying values of The graphical relationship between the scattering phase

topological defecta. As ¢ is enhanced more, the energy shift of HHP with angular momentum quantum number, for
curves for the various topological defect are seen to remaisome values of topological defect and AB flux field are
constant. Also, the energies of HHP increase with increase ipresented in Figs. 5-6. In Fig. 5a), we observe a unique
topological defect values, at any valuesiafonsidered. The sawtooth-like behaviour of the scattering phase shift for in-
same trend is also observe in Fig. 3b) for various values ofreasing energy eigenvalues, corresponding to each value of
AB flux field considered. Also, the energies of HHP increasetopological defect considered. For lower values, dfie scat-

with a decrease in AB flux field values, for any valuedof tering phase shift is seen to be more dense, as compared to
It can be deduced that the energies of the HHP are mostlihe scattering phase shift at higher values.ofn Fig. 5b),
influenced at lower values of screening parameter, irrespeave also observe a more dense scattering phase shift at lower
tive of the values of the topological defect and AB flux field [, for various values of AB flux field. As ! is enhanced the
considered. more, the scattering phase shift increases in a sawtooth form,

Rev. Mex. Fis71 060502
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FIGURE 6. Variation of scattering phase shift of HHP with a) topological defedbr various values of angular momentum quantum number
b) AB flux field ¢, for various values of angular momentum quantum number.

for the various values of considered. In both cases, the have significant impact in the energy eigenvalues of the sys-
scattering phase shift increases linearly with increasing tem under study. We have also seen that there exist inter-AB

In Fig. 6a), the scattering phase shift of HHP is variedflux field degeneracy symmetry in the energy eigenvalues of
with topological defect, for various values of angular momen-HHP, at specific values of topological defect.

tum gquantum number at a f|x§d value of AI_3 f!ux field. It can Graphical variations of the energy eigenvalues with quan-
be opserved that the scattering phgse shift is more Qense ®im numbers and screening parameters, for varying values of
a region of lower values of topological defeal)( As arin- A f field and topological defect are presented in Figs. 1-
creases, the scattering phase shift begins to space out. Therpg gjgnificant influence of the topological defect and AB
scattering phase shift occurs spreads out within a specifiefl,, fied which results in a shift in the energy eigenvalues of
range for each value éiconsidered. In Fig. 6b), the variation p a5 demonstrated in the graphs are discussed clearly. In
of Fhe scattering phase shift _W'th AB flux field takes', different addition, the variation of scattering phase shift of HHP with
unique natures, corresponding to each valueatinsidered.  5,q,\1ar momentum quantum number for varying topological
These curves occurs in different ranges amreases. 1tcan  yetacts and AB flux field, as presented in Figs. 5 and 6 are
also be confirmed in these figures that the scattering phasgeayiy discussed. The particles of the HHP are seen to be
shift increases with increase in angular momentum quantucaiered more densely with lower values of angular momen-

number. tum quantum number. Also, unique nature of sawtooth-like
behaviour of the scattering phase shift are observed for each
4, Conclusion value of topological defect and AB flux field considered.

The vast application of our study has been shown in
éiteratures. These includes condensed matter and atomic
physics [49], high-energy physics with proton-proton scat-
ring [50]. Here, the scattering amplitude of the particles are
ecomposed into various angular momentum corresponding
to unigue phase shifts. This concept can also be employed
in qguantum chromodynamics. In the area of acoustics, inter-
ference pattern of scattered waves can be affected by phase
shift. This phenomenon is used in noise reduction [51].

Topological defects on the eigensolutions of Hahh
Hellmann potential have been studied in this work under th
framework of Nikiforov-Uvarov functional analysis method.
Greene-Aldrich approximation scheme has been employed t
deal with the centrifugal term. Numerical values of the en-
ergy are presented in Table | for various quantum states (
and/) and AB flux fields ¢) in curved spacel)( < o < 1).
The corresponding values of the energy in Minkowski flat
space & = 1) and in the absence of the AB flux field & 0)

are computed and compared with available results in liter- It is our future intention to extend this work to spin-spin
ature, for some quantum states. This comparison are préateraction, spin-orbit interactions, as they relate to heavy
sented in Table Il. It is observed that these results agree pemesons. This is poised out of the fact that the combined po-
fectly with each other, for a certain chosen arbitrary values ofential with topological defects studied promises to be very
the potential parameters. It is also observed that the AB fluefficient in atomic and nuclear physics and their related ar-
field in the curved space and fractional parameters considereafs.
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Appendix
A. Review of Nikiforov-Uvarov-Functional analysis method [52]

Using the concepts of NU method [53], parametric NU method [54] and the functional analysis method [55], we proposed
a simple and elegant method for solving a second order differential equation of the hypergeometric type called Nikiforov-
Uvarov-Functional Analysis (NUFA) method. As it is well-known, the NU is used to solve a second-order differential equation
of the form [53]

P(s) | 7(s) dv(s) | 5(s)
ds? +O’(S) ds +02(s)

P(s) =0, (A.1)

whereo(s) ands(s) are polynomials, at most of second degree, &fid is a first-degree polynomial. Tezcan and Sever [43]
latter introduced the parametric form of NU method in the form

d*p(s)  a; —ags di(s) 1
ds? s(1—ass) ds s%(1—ass

)2 [_5132 +&os — 53] P(s) =0, (A.2)

whereq; and¢; (i = 1, 2, 3) are all parameters. It can be observed in Bo2) that the differential equation has two singularities
ats — 0 ands — 1/ag, thus we take the wave function in the form,

U(s) = ™1 — azs)V f(s). (A.3)
Substituting Eq.A.3) into Eq. (A.2) leads to the following equation,

s(1— ass) 1(5) + [a1 4 2\ — (2ha3 + 2vas + ag)s] df(s) as <)\ +v+ % (Oé2 - 1> + % <O‘22 + %))

ds? ds o o a3

1 (o9 1 /2 &

n AA=1) + a1 XA =& n v(v —1)ag + av — aazv — m
S 1—ass

] f(s)=0. (A.4)
Equation/A.4) can be reduced to a Gauss hypergeometric equation if and only if the following functions vanished,
AA = 1) + oA — &3 =0, (A.5)
v(v —1)as + agv — a1azv — c%l + & —&a3=0. (A.6)
3

Thus, Eq./A.4) now becomes

s(1— ass) 1) + [aq 4 2\ — (2has + 2vas + a9)s] d‘il(;) —as <>\ +v+ % (ZQ — 1> + % <a22 + §1)>

ds? 1 o a3
1/ 1 (a2 & _
X </\+11+2 <a1 1) 5 (Oq +a§>)f(s)0. (A7)
Solving Eqgs./A.5) andA.6 completely give,
1
A= (=) £V —a)+1&). (A8)
_ 1 2 &
v=— (s +a1as3 —a2) £ [(as+aras —a2)? +4 | =4+ a3z —& | |- (A.9)
2a3 (0%}
EquationA.7) is the hypergeometric equation type of the form,
d? d
2(1— ) dJ;(f) Fle+ (a+b+1)a] J;(g;”) — (ab)f(z) =0, (A.10)
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wherea, b, ¢ are given as follows,

2
1 (%) 1 (65) §2
=/ A - —=-=1 - —=-1 == A1l
a a3 +U-‘r2(a3 >+\/4<a3 ) +a§ , ( )
2
1 /sy 1 (s &
b= A —|—=—-1)—/-(—-1 == A.12
Vas +v+2(a3 ) \/4<a3 ) +a§ , (A.12)
c= a1+ 2\ (A.13)
Setting eithera or b equal to a negative integern, the hypergeometric functiofi(s) turns to a polynomial of degree.
Hence, the hypergeometric functigifs) approaches finite in the following quantum conditio « = —n, wheren =
0,1,2,3, ..., nmax. Using the above quantum condition,
1 (6% 1 (6%} 2 52
- —=-1 -l —=-1 = =- A.14
(et (@) (@) g ) - w12
1 (6% n 1 (6%) 2 452
A - —=-=1 —— =/ —==-1 == A.15
+UJFZ (ag >+,/a3 \/4 (ag > +a§ ( )

Squaring both sides of EGA(15) and rearranging, we obtain the energy equation for the NUFA method as

2 2
1 /a9 n 1 [y n 1 [« &

A2 420 - —-=1 e - — -1 —_— —=—= -1 == =0. A.16

- (%L?(sz )+v0¢3>+(v+2<@3 >+\/0<3> 4<a3 >+0<§ (A.10)

By substituting Egs/A.8) and (A.9) into Eq. [A.3), we obtain the corresponding wave equation for the NUFA method as

(—ap)£y/(1—a1)2+4é; (043+<¥1043—<X2)i\/(0434'@1043—&2)24-4( %-&-%E:&-{z)
s 2 3

¥(s) =N

whereN is the normalization constant.

(1 —ass) 2 F1(a,b,¢; ), (A.17)
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