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Topological defect and external fields influence on potential models has been significantly proven to shape the behaviour and interactions of
different constituent quantum systems. Due on this fact, we employ the Nikiforov-Uvarov functional analysis method to solve the Schrödinger
equation with Hulth́en-Hellmann Potential, embedded with Aharonov-Bohm flux field and point-like global monopole defect. Analytical
expression of the energies with topological defect and AB flus field was obtained. In addition, the scattering phase shift expression of the
combined potential was obtained under the influence of the global monopole and external field. Numerical and graphical variations have
been presented for various quantum states, flux field and topological defect values. It is observed that, energy eigenvalues and scattering
phase shift of the combined potential are significantly affected by the topological defect parameters, Aharonov-Bohm flux field, screening
parameter and quantum state values considered, in the curved space-time. Conventional results of this study in Minkowski space-time are
realized as the topological defect parameter approaches unity, in the absence of the AB flux field and these results agree with available results
in literature. The results in this study also point relatively to some physical phenomena in chemical and molecular physics.

Keywords: Bound state; scattering state; combined potential; topological defect.

DOI: https://doi.org/10.31349/RevMexFis.71.060502

1. Introduction

For several decades now, different studies has been carried
out with various wave equations in the presence of numerous
curvature and torsional space-times. This concept by impli-
cation in a curved space-time has resulted in what is known as
topological defects [1–7]. The topological defects generally
are known to occur in condensed matter physics and gravita-
tion physics. In gravitation physics, the concepts of topolog-
ical defects were observed in the evolution of the early uni-
verse where symmetry breaking phase transition occurs [8,9]
while topological defects were observed in material synthesis
in condensed matter physics [10,11].

Some authors have investigated the relativistic oscillators
with different topological defects [12–15]. Lambaga and Ra-
madhan [16] was investigated the global monopole with har-
monic oscillator within the nonrelativistic quantum mechan-
ics. Boumali and Aounallah [17] obtained the exact solutions
of scalar bosons with Aharonov-Bohm (AB) and Coulomb
potentials in the presence of global monopole. The effect of
topological defects with Dirac and Klein-Gordon oscillators
were investigated within the global monopole space-time en-
vironment [18]. Vitoria and Belich [19] recently employed
the cosmic strings topological defects in Einstein equation
to describe the global monopole point-like defects in solids.
Within an elastic medium, the effect of declination topolog-
ical defect on the interaction of a spinless electron with ra-
dial electric fields was investigated by Bakke and Furtado

[20]. The effect of screw dislocation on electrons confined in
both deformed Kratzer potential and pseudoharmonic quan-
tum dot, respectively, was considered under the influence of
an external magnetic field [21,22].

In addition, Santos and Barros Jr. [23] considered the
non-inertial effects of Klein-Gordon oscillator in the cos-
mic string space-time. Ahmed [24] also investigated the
Klein-Gordon oscillator with linear potential in the back-
ground of cosmic string space-time, using the Kaluza-Klein
theory. Bouzenadaet al. [25] studied the effect of cosmic
string and magnetic field on different thermal properties of a
2-dimensional Klein-Gordon oscillator, using the Poisson ap-
proximation. The influence of oscillatory frequency in a non-
inertial system of Dirac oscillator was investigated in the cos-
mic string space-time background [26]. The authors obtained
Dirac spinors for positive-energies nonrelativistic energies,
which were compared with the confinement of a spin-half
particle to quantum dot. Bakke and Furtado [27] analyzed the
influence of Aharonov-Casher effect on the Dirac oscillator
in Minkowski, cosmic string and cosmic dislocation space-
times. Their study was applied to relativistic quantum dots,
especially neutral particles. The influenced of topological de-
fects on the magnetization and persistent current of massless
Dirac fermions with quantum dot in a graphene layer were
considered [28]. Here, the Dirac fermions were seen to con-
tribute to the spatial confinement of electrons, and the de-
generacy of the Landau levels being broken by the topolog-
ical defects. Bakke and Mota [29] employed the gravity’s
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rainbow to study the Dirac oscillator within the cosmic string
space-time. They deduced that the energy levels of the Dirac
oscillator were altered, due to the modification of the cos-
mic strings line elements by the rainbow functions. Also, the
Kratzer and screened modified Kratzer potentials have been
studied in a global monopole space-time [30]. It was discov-
ered that the topological defect has some notable influence
on their effective potentials and energy spectra. Chakraborty
et al. [31] examined the screening of an external Coulomb
charge with topological defects. They showed the depen-
dence of the polarization charge on Coulomb strength and
the effect of the conical defect indicates the topological de-
fect dependence on the Coulomb charge. Other studies on
effects of topological defect on thermal, magnetic and opti-
cal properties of some potential models have been recently
considered, as recorded in Refs. [32–36].

The studies of the scattering state phase shift in recent
times with confining potential models have been greatly ap-
preciated in the areas of particle and nuclear physics, es-
pecially in cross-sectional phenomena for nuclear structures
[37, 38]. Here, different wave functions of the systems un-
der study have been decomposed into partial waves, with
their unique angular momentum [39]. These concept has also
been studied in relation to topological defects [40–42]. Re-
cently, Alveset al. [43] studied the influence of electron by
the Hulth́en potential in a space-time containing a topological
defect. Approximate solution for the scattering phase shift
and the s-matrix were obtained for the Hulthén problem, in
addition to the bound state solutions.

It has been established that the superposition of two or
more potential model leads to broader range of applications
[44,45]. Hence, the Hulth́en plus Hellmann potential (HHP),
which is of interest to us is given as [46]

VHHP (r) = − H1e
−δr

1− e−δr
+

H2e
−δr

r
− H3

r
. (1)

Here,H1,H2,H3 are depths of the combined potential and
δ the screening parameter, respectively. The HHP model
promises to be very relevant in different areas of physics in-
cluding nuclear and particle physics, atomic and molecular
physics, solid state physics and plasma physics. This is be-
cause, the Hulth́en potential, Coulomb potential and Yukawa
potential are special cases of the HHP [47].

2. Non-relativistic quantum energies in the
global monopole space-time

2.1. Bound States

The line element with a point-like global monopole (PGM)
space-time is defined as

ds2 = −c2dt2 +
dr2

α2
+ r2dθ2 + r2 sin2 θdϕ2, (2)

where0 < α2 < 1, α = 1 − 8πGη2
0 , with α andη0 being

the topological effect parameter of the PGM and the energy
scale, respectively andc is the speed of light. The metrics
given in Eq. (2) describes a space-time with scalar curvature
R = 2(1− α2)/r2. The Schr̈odinger equation (SE) in this
context is given as

− ~
2

2µ
∇2

LBψ (~r, t) + V (~r, t)ψ (~r, t) = i~
∂ψ (~r, t)

∂t
, (3)

where µ is the reduced mass of the system and∇2
LB =

(1/
√

g)∂i

(√
ggij∂i

)
is the Laplace-Beltrami operator,g =

det(gij) = r2 sin2 θ/α2 andV (r) is given in Eq. (1). Hence,
the SE in the presence of the PGM and AB flux field is given
as

−~2

2µr2

[
α2 ∂

∂r

(
r2 ∂

∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

]
ψ(r, θ, ϕ, t)+VHHP (r)ψ(r, θ, ϕ, t)=i~

∂ψ(r, θ, ϕ, t)
∂t

. (4)

By considering a particular solution of Eq. (4) given in terms of eigenvalues of the angular momentum operatorL̂2,

ψ(r, θ, ϕ, t) = exp
(−iEnlt

~

)
Rnl(r)

r
Yl,m(θ, ϕ), (5)

whereYl,m(θ, ϕ) are spherical harmonics andRnl(r) is the radial wave function. By substituting Eqs. (5) and (1) into Eq. (4),
we have

d2Rnl(r)
dr2

+
[
2MEnl

~2α2
+

2µH1e
−δr

~2α2(1− e−δr)
− 2µH2δe

−δr

~2α2r
+

2µH3δ

~2α2r
− (l − φ)(l − φ + 1)

α2r2

]
Rnl(r) = 0, (6)

wherel andφ represent angular momentum quantum number and AB flux field, respectively.
It has been established in available literatures that Eq. (6) does not have analytical solutions because of the presence of the

centrifugal barrier, except for the s-wave wherel = 0. Hence, we employ the Greene-Aldrich approximation scheme of the
form [48],

1
r2
≈ δ2

(1− e−δr)2
;
1
r
≈ δ

(1− e−δr)
, (7)
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By substituting Eq. (7) into Eq. (6) and adopting a coordinate transformationy = e−δr, we obtain

d2Rnl(y)
dy2

+
1
y

dRnl(y)
dy

+
[−L1y

2 + L2y − L3

y2(1− y)2

]
Rnl(y) = 0. (8)

Here, the following parameters have been defined:

L1 = εnl +
2µH1

~2α2δ2
− 2µH2

~2α2δ
; L2 = 2εnl +

2µH1

~2α2δ2
− 2µH2

~2α2δ
− 2µH3

~2α2δ
;

L3 = εnl − 2µH3

~2α2δ
+

(l − ψ)(l − ψ + 1)
α2

; εnl =
−2µEnl

~2α2δ2
. (9)

To get the bound state solution, one can see that asRnl(r) → 0, y → 0 whenr → ∞ andy → 1 whenr → 0. Thus, we
employ the wave function of the form,

Rnl(y) = yS(1− y)QFnl(y) (10)

Substituting Eq. (10) into Eq. (8) and using the NUFA method as summarized in the Appendix A, we obtainS andQ as,

S =

√
(l − φ)(l − φ + 1)

α2
− 2µH3

~2α2δ
− 2µEnl

~2α2δ2
, (11)

Q =
1
2

(
1 +

√
1 +

4(l − φ)(l − φ + 1)
α2

)
. (12)

The bound state energy spectrum for the HHP with with PGM and AB flux field can be obtained using Eq. (A.15) as,

Enl =
~2α2δ2

2µ

(
(l − φ)(l − φ + 1)

α2
− 2µH3

~2α2δ

)
− ~

2α2δ2

2µ

×

 (n + Q)

2
−

(
2µH1
~2α2δ2 − 2µH2

~2α2δ + 2µH3
~2α2δ − (l−φ)(l−φ+1)

α2

)

2 (n + Q)




2

. (13)

The corresponding wave function can be obtained using Eqs. (11) and (12) as,

Rnl(r) = Nnl

(
e−δr

)S (
1− e−δr

)Q
2F1(a, b, c; z), (14)

whereNnl is the normalization constant. In terms of Jacobi polynomials, we have

Rnl(r) = Nnl

(
e−δr

)S (
1− e−δr

)Q
P (2S,2Q−1)

n

(
1− 2e−δr

)
. (15)

To obtain the normalization constant, the normalization condition of the radial wave function is employed:
∫ ∞

0

|Rnl(r)|2 dr = 1. (16)

Considering the condition atr ∈ (0,∞) ande−δr ∈ (1, 0), we have

N2
nl

δ

∫ 0

1

y2S(1−y)2Q
[
P (2S,2Q−1)

n (1− 2y)
]2 dy

y
= 1,

(
y = e−δr

)
. (17)

By using the transformationη = 1 − 2y, we have the following boundary of Eq. (17) change fromy ∈ (1, 0) to η ∈ (−1, 1).
This gives

N2
nl

2δ

∫ 1

−1

(
1− η

2

)2S−1 (
1 + η

2

)2Q [
P (2S,2Q−1)

n (η)
]2

dη = 1. (18)

From the standard integral formula [52],
∫ 1

−1

(
1− q

2

)ω (
1 + q

2

)z [
P (ω,z−1)

n (η)
]2

dq =
2ω+z+1Γ(1 + n + ω)Γ(1 + n + z)

n!Γ(1 + n + ω + z)Γ(1 + 2n + ω + z)
. (19)
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By comparing Eqs. (18) and (19), the normalization constant becomes

Nnl =

√
2δ(n!)Γ(n + 2S + 2Q)Γ(2n + 2S + 2Q)

22S+2QΓ(n + 2S)Γ(1 + n + 2Q)
. (20)

The total wave function for the Hulthén plus Hellmann potential with AB flux field and point-like global monopole now
becomes

Rnl(r) =

√
2δ(n!)Γ(n + 2S + 2Q)Γ(2n + 2S + 2Q)

22S+2QΓ(n + 2S)Γ(1 + n + 2Q)
(
e−δr

)S (
1− e−δr

)Q
P (2S,2Q−1)

n

(
1− 2e−δr

)
. (21)

2.2. Scattering states

In this section, we proceed to study the scattering state Schrödinger equation of HHP within the AB flux field and global
monopole space-time framework. By substituting Eq. (7) into Eq. (6) with a new coordinate transformation of the form
σ = (1− e−δr), we have

σ(1− σ)
d2Rnl(σ)

dσ2
− σ

dRnl(σ)
dσ

+
[
G1 + G2σ + G3σ

2

σ(1− σ)

]
Rnl(σ) = 0, (22)

where,

G1 = − (l − φ)(l − φ + 1)
α2

, G2 =
2µH1

~2α2δ2
− 2µH2

~2α2δ
+

2µH3

~2α2δ
, G3 =

2µEnl

~2α2δ2
− 2µH1

~2α2δ2
+

2µH2

~2α2δ
. (23)

Equation (22) has regular singularities atσ = 0, 1 and∞. ThereforeR(σ = 0) = 0 asr → ∞ andR(σ = 0) = 1 as
r → 0. Thus, the wave function can be written in the form,

Rnl(σ) = σλ(1− σ)
−it

δ ξnl(σ), (24)

where,

λ =
1
2

(
1±

√
1− 4G1

)
; t = δ

√
G1 + G2 + G3. (25)

Substituting Eq. (24) into Eq. (22) gives the hypergeometric Gauss differential equation of the form

σ(1− σ)
d2ξ

dσ2
+

[
2λ− (1− 2it

δ
)σ

]
dξ

dσ
+

(
λ− it

δ
+

√
−G3

)(
λ− it

δ
−

√
−G3

)
ξ(σ) = 0. (26)

The solution of Eq. (26) is the hypergeometric function given as

ξnl(σ) = 2F1 (Ξ1,Ξ2, Ξ3;σ) , (27)

where,

Ξ1 =
(

λ− it

δ
+

√
−G3

)
, Ξ2 =

(
λ− it

δ
−

√
−G3

)
, Ξ3 = 2λ, (28)

By using Eqs. (25) and (27), we obtain the scattering wave function as

Rnl(σ) = σλ(1− σ)
−it

δ 2F1 (Ξ1, Ξ2,Ξ3; σ) . (29)

To obtain to the scattering phase shift, we used the following asymptotic properties [53]. AsRnl(σ) → 0, σ → 0, Eq. (29)
becomes

Rnl(σ) → 2 sin
[
tσ + J − lπ

2
+

π(l + 1)
2

]
, σ →∞, (30)

whereJ is the scattering phase shift. The phase shift can be obtained from Eq. (30) as follows

Jl =
π(l + 1)

2
+ arg Γ (Ξ3 − Ξ2 − Ξ1)− arg Γ (Ξ3 − Ξ2)− arg Γ (Ξ3 − Ξ1) . (31)

It is worthy to mention here that the details for the derivation of phase shift factor is presented in Ref. [54]. By using Eq. (28),
Eq. (31) can be written as,

Jl =
π(l + 1)

2
+ arg Γ

(
2it

δ

)
− arg Γ

(
λ− it

δ
−

√
−G3

)
− arg Γ

(
λ− it

δ
+

√
−G3

)
. (32)
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TABLE I. Bound state energy eigenvalues (eV) of the HHP at different values of quantum states, topological defect and AB flux field.

n l φ = 1.0 φ = 2.0 φ = 3.0

α = 0.25 α = 0.65 α = 0.85 α = 0.25 α = 0.65 α = 0.85 α = 0.25 α = 0.65 α = 0.85

0 0 -35.9875098 -5.3130098 -3.1017997 -0.8990078 -0.6770681 -0.5890331 -0.2922768 -0.2466045 -0.2265672

1 0 -8.9875391 -1.3191250 -0.7664983 -0.6628190 -0.3574311 -0.2753900 -0.2408371 -0.1584860 -0.1313853

1 -8.9875391 -1.3191250 -0.7664983 -8.9875391 -1.3191250 -0.7664983 -0.6628190 -0.3574311 -0.2753900

2 0 -3.9875879 -0.5798101 -0.3345368 -0.5078996 -0.2182803 -0.1566163 -0.2014847 -0.1092836 -0.0844516

1 -3.9875879 -0.5798101 -0.3345368 -3.9875879 -0.5798101 -0.3345368 -0.5078996 -0.2182803 -0.1566163

2 -0.5078996 -0.2182803 -0.1566163 -3.9875879 -0.5798101 -0.3345368 -3.9875879 -0.5798101 -0.3345368

3 0 -2.2376563 -0.3213965 -0.1839429 -0.4008613 -0.1457484 -0.0997541 -0.1707333 -0.0792978 -0.0583731

1 -2.2376563 -0.3213965 -0.1839429 -2.2376563 -0.3213965 -0.1839429 -0.4008613 -0.1457484 -0.0997541

2 -0.4008613 -0.1457484 -0.0997541 -2.2376563 -0.3213965 -0.1839429 -2.2376563 -0.3213965 -0.1839429

3 -0.1707332 -0.0792978 -0.0583731 -0.4008613 -0.1457484 -0.0997540 -2.2376563 -0.3213965 -0.1839429

4 0 -1.4277441 -0.2021681 -0.1148897 -0.3238577 -0.1034766 -0.0686693 -0.1462704 -0.0599162 -0.0428310

1 -1.4277441 -0.2021681 -0.1148897 -1.4277441 -0.2021681 -0.1148897 -0.3238577 -0.1034766 -0.0686693

2 -0.3238577 -0.1034766 -0.0686693 -1.4277441 -0.2021681 -0.1148897 -1.4277441 -0.2021681 -0.1148897

3 -0.1462704 -0.0599162 -0.0428310 -0.3238577 -0.1034766 -0.0686693 -1.4277441 -0.2021681 -0.1148897

4 -0.0734979 -0.0345933 -0.0261698 -0.1462704 -0.0599162 -0.0428310 -0.3238577 -0.1034766 -0.0686693

5 0 -0.9878516 -0.1378056 -0.0780693 -0.2666467 -0.0769464 -0.0502783 -0.1265129 -0.0468885 -0.0332356

1 -0.9878516 -0.1378056 -0.0780693 -0.9878516 -0.1378056 -0.0780693 -0.2666467 -0.0769464 -0.0502783

2 -0.2666467 -0.0769464 -0.0502783 -0.9878516 -0.1378056 -0.0780693 -0.9878516 -0.1378056 -0.0780693

3 -0.1265129 -0.0468885 -0.0332356 -0.2666467 -0.0769464 -0.0502783 -0.9878516 -0.1378056 -0.0780693

4 -0.0651682 -0.0281489 -0.0215037 -0.1265129 -0.0468885 -0.0332356 -0.2666467 -0.0769464 -0.0502783

5 -0.0322698 -0.0154562 -0.0129736 -0.0651682 -0.0281489 -0.0215037 -0.1265129 -0.0468885 -0.0332356

3. Results and discussions

In this section, the energy spectrum of Hulthén-Hellmann po-
tential obtained in Eq. (13) is analyzed with different poten-
tial parameters, under the influence of AB flux fieldφ and
topological defect parameterα. The combined potential pa-
rameters and arbitrary constants employed are as follows:
H1 = 0.025;H2 = −1.00; H3 = 1.00; ~ = 1; µ = 0.5.
The values of the energy for HHP are seen to increase with
increase in quantum state for any value of topological defect
and AB flux field considered. It can be observed that the
there exist a significant increase in the energy eigenvalues
from ground state of the exited states of the system. This is
illustrated in Table I. At each quantum state considered, the
energy eigenvalues of HHP increases with increase in both
topological defect and AB flux field values. The increase in
energy eigenvalues at each quantum state considered is not as
significant as that observed between different quantum states.
hence, we see that under the dominance of AB flux field, the
energy eigenvalues of HHP are enhanced in the presence of
the topological defects. In addition, there exist inter-AB flux
field degeneracy symmetry(Eφ

l = Eφ+1
l+1 ) at specific values

of topological defect. Hence, the bound state energy eigen-
values for HHP is invariant under a transformation of an in-

TABLE II. Comparison of Bound state energy eigenvalues eV of
the HHP for Minkowski flat space, in the absence of AB flux field,
at different values of quantum states, withδ = 0.025.

n l φ = 0; α = 1.0 [46]

0 0 -2.23765625 -2.2376562500

1 0 -0.55062500 -0.5506250000

1 -0.23001736 -0.2300173611

2 0 -0.23890625 -0.2389062500

1 -0.12535156 -0.1253515625

2 -0.07075625

3 0 -0.13062500 -0.13062500000

1 -0.07780625

2 -0.04765625

3 -0.02860013

4 0 -0.08140625

1 -0.05293403

2 -0.03472258

3 -0.02222656

4 -0.01319637
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FIGURE 1. Variation of energy eigenvalues of HHP with principal quantum numbern for various values of a) topological defectα; b) AB
flux field φ.

FIGURE 2. Variation of energy eigenvalues of HHP with angular momentum quantum numberl for various values of a) topological defect
α; b) AB flux field φ.

FIGURE 3. Variation of energy eigenvalues of HHP with screening parameterδ for various values of a) topological defectα; b) AB flux
field φ.

crease in the AB flux field by one(φ → φ + 1) and an in-
crease in the angular momentum quantum number by one
(l → l + 1), at each principal quantum number and topo-
logical defect values considered.

Table II shows the bound state energy eigenvalues of HHP
for Minkowski flat space at different quantum states. Our re-
sults are seen to be very consistent with the results obtained
in Ref. [43].

The graphical relationship between the energy eigenval-
ues of HHP with quantum numbers and screening parameter,
for some values of topological defect and AB flux field are
presented in Figs. 1-4. In Fig. 1a), the energy eigenvalues are
seen to rise monotonously with increase in principal quan-

tum numbern, for varying values of topological defectα.
As then is enhanced more, the energy curves for the various
topological defect are seen to converge. Also, the energies of
HHP increase with increase in topological defect values, at
any values ofn considered. We also observe a convergence
in the energy curves of HHP for greater values ofn, as shown
in Fig. 1b). Conversely, the energies of HHP increase with a
decrease in AB flux field values, for any value ofn.

In Fig. 2a), the energy eigenvalues are seen to rise
monotonously with increase in angular momentum quantum
numberl, for varying values of topological defectα. As thel
is enhanced more, the energy curves for the various topolog-
ical defect are seen to converge. Also, the energies of HHP

Rev. Mex. Fis.71060502
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FIGURE 4. Variation of energy eigenvalues of HHP with a) AB flux fieldφ for various values topological defectα; b) topological defectα
for various values of AB flux fieldφ.

FIGURE 5. Variation of scattering phase shift of HHP with angular momentum quantum number for various values of a) topological defect
α; b) AB flux field φ.

increase with increase in topological defect values, at any val-
ues ofl considered. We also observe a convergence in the
energy curves of HHP for greater values ofl, as shown in
Fig. 2b). Conversely, the energies of HHP increase with a
decrease in AB flux field values, for any value ofl.

In Fig. 3a), the energy eigenvalues increase slowly with
increase in the screening parameterδ, for varying values of
topological defectα. As δ is enhanced more, the energy
curves for the various topological defect are seen to remain
constant. Also, the energies of HHP increase with increase in
topological defect values, at any values ofδ considered. The
same trend is also observe in Fig. 3b) for various values of
AB flux field considered. Also, the energies of HHP increase
with a decrease in AB flux field values, for any value ofδ.
It can be deduced that the energies of the HHP are mostly
influenced at lower values of screening parameter, irrespec-
tive of the values of the topological defect and AB flux field
considered.

The variation of the energy eigenvalues of HHP with AB
flux field (φ) is shown in Fig. 4a), for various values of topo-
logical defect (α). Here, the energy curves decrease uniquely
to a point and later increase as the AB flux field is enhanced.
The fall and rise levels of the energies corresponds inversely
to the level of topological defects considered.

The graphical relationship between the scattering phase
shift of HHP with angular momentum quantum number, for
some values of topological defect and AB flux field are
presented in Figs. 5-6. In Fig. 5a), we observe a unique
sawtooth-like behaviour of the scattering phase shift for in-
creasing energy eigenvalues, corresponding to each value of
topological defect considered. For lower values ofl, the scat-
tering phase shift is seen to be more dense, as compared to
the scattering phase shift at higher values ofl. In Fig. 5b),
we also observe a more dense scattering phase shift at lower
l, for various values of AB flux fieldφ. As l is enhanced the
more, the scattering phase shift increases in a sawtooth form,
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FIGURE 6. Variation of scattering phase shift of HHP with a) topological defectα, for various values of angular momentum quantum number
b) AB flux field φ, for various values of angular momentum quantum number.

for the various values ofφ considered. In both cases, the
scattering phase shift increases linearly with increasingl.

In Fig. 6a), the scattering phase shift of HHP is varied
with topological defect, for various values of angular momen-
tum quantum number at a fixed value of AB flux field. It can
be observed that the scattering phase shift is more dense at
a region of lower values of topological defect (α). As α in-
creases, the scattering phase shift begins to space out. The
scattering phase shift occurs spreads out within a specified
range for each value ofl considered. In Fig. 6b), the variation
of the scattering phase shift with AB flux field takes different
unique natures, corresponding to each value ofl considered.
These curves occurs in different ranges asl increases. It can
also be confirmed in these figures that the scattering phase
shift increases with increase in angular momentum quantum
number.

4. Conclusion

Topological defects on the eigensolutions of Hulthén-
Hellmann potential have been studied in this work under the
framework of Nikiforov-Uvarov functional analysis method.
Greene-Aldrich approximation scheme has been employed to
deal with the centrifugal term. Numerical values of the en-
ergy are presented in Table I for various quantum states (n
andl) and AB flux fields (φ) in curved space (0 < α < 1).
The corresponding values of the energy in Minkowski flat
space (α = 1) and in the absence of the AB flux field (φ = 0)
are computed and compared with available results in liter-
ature, for some quantum states. This comparison are pre-
sented in Table II. It is observed that these results agree per-
fectly with each other, for a certain chosen arbitrary values of
the potential parameters. It is also observed that the AB flux
field in the curved space and fractional parameters considered

have significant impact in the energy eigenvalues of the sys-
tem under study. We have also seen that there exist inter-AB
flux field degeneracy symmetry in the energy eigenvalues of
HHP, at specific values of topological defect.

Graphical variations of the energy eigenvalues with quan-
tum numbers and screening parameters, for varying values of
AB flux field and topological defect are presented in Figs. 1-
4. The significant influence of the topological defect and AB
flux field which results in a shift in the energy eigenvalues of
HHP, as demonstrated in the graphs are discussed clearly. In
addition, the variation of scattering phase shift of HHP with
angular momentum quantum number for varying topological
defects and AB flux field, as presented in Figs. 5 and 6 are
clearly discussed. The particles of the HHP are seen to be
scattered more densely with lower values of angular momen-
tum quantum number. Also, unique nature of sawtooth-like
behaviour of the scattering phase shift are observed for each
value of topological defect and AB flux field considered.

The vast application of our study has been shown in
literatures. These includes condensed matter and atomic
physics [49], high-energy physics with proton-proton scat-
tering [50]. Here, the scattering amplitude of the particles are
decomposed into various angular momentum corresponding
to unique phase shifts. This concept can also be employed
in quantum chromodynamics. In the area of acoustics, inter-
ference pattern of scattered waves can be affected by phase
shift. This phenomenon is used in noise reduction [51].

It is our future intention to extend this work to spin-spin
interaction, spin-orbit interactions, as they relate to heavy
mesons. This is poised out of the fact that the combined po-
tential with topological defects studied promises to be very
efficient in atomic and nuclear physics and their related ar-
eas.
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Appendix

A. Review of Nikiforov-Uvarov-Functional analysis method [52]

Using the concepts of NU method [53], parametric NU method [54] and the functional analysis method [55], we proposed
a simple and elegant method for solving a second order differential equation of the hypergeometric type called Nikiforov-
Uvarov-Functional Analysis (NUFA) method. As it is well-known, the NU is used to solve a second-order differential equation
of the form [53]

d2ψ(s)
ds2

+
τ̃(s)
σ(s)

dψ(s)
ds

+
σ̃(s)
σ2(s)

ψ(s) = 0, (A.1)

whereσ(s) andσ̃(s) are polynomials, at most of second degree, andτ̃(s) is a first-degree polynomial. Tezcan and Sever [43]
latter introduced the parametric form of NU method in the form

d2ψ(s)
ds2

+
α1 − α2s

s(1− α3s)
dψ(s)

ds

1
s2(1− α3s)2

[−ξ1s
2 + ξ2s− ξ3

]
ψ(s) = 0, (A.2)

whereαi andξi(i = 1, 2, 3) are all parameters. It can be observed in Eq. (A.2) that the differential equation has two singularities
ats → 0 ands → 1/α3, thus we take the wave function in the form,

ψ(s) = sλ(1− α3s)vf(s). (A.3)

Substituting Eq. (A.3) into Eq. (A.2) leads to the following equation,

s(1− α3s)
d2f(s)

ds2
+ [α1 + 2λ− (2λα3 + 2vα3 + α2)s]

df(s)
ds

− α3

(
λ + v +

1
2

(
α2

α1
− 1

)
+

√
1
2

(
α2

α1

2
+

ξ1

α2
3

))

×
(

λ + v +
1
2

(
α2

α1
− 1

)
−

√
1
2

(
α2

α1

2
+

ξ1

α2
3

))
f(s)

+

[
λ(λ− 1) + α1λ− ξ3

s
+

v(v − 1)α3 + α2v − α1α3v − ξ1
α3+ξ2−ξ3α3

1− α3s

]
f(s) = 0. (A.4)

Equation (A.4) can be reduced to a Gauss hypergeometric equation if and only if the following functions vanished,

λ(λ− 1) + α1λ− ξ3 = 0, (A.5)

v(v − 1)α3 + α2v − α1α3v − ξ1

α3
+ ξ2 − ξ3α3 = 0. (A.6)

Thus, Eq. (A.4) now becomes

s(1− α3s)
d2f(s)

ds2
+ [α1 + 2λ− (2λα3 + 2vα3 + α2)s]

df(s)
ds

− α3

(
λ + v +

1
2

(
α2

α1
− 1

)
+

√
1
2

(
α2

α1

2
+

ξ1

α2
3

))

×
(

λ + v +
1
2

(
α2

α1
− 1

)
−

√
1
2

(
α2

α1

2
+

ξ1

α2
3

))
f(s) = 0. (A.7)

Solving Eqs. (A.5) andA.6 completely give,

λ =
1
2

(
(1− α1)±

√
(1− α1)2 + 4ξ3

)
, (A.8)

v =
1

2α3

(
(α3 + α1α3 − α2)±

√
(α3 + α1α3 − α2)2 + 4

(
ξ1

α3
+ α3ξ3 − ξ2

))
. (A.9)

Equation (A.7) is the hypergeometric equation type of the form,

x(1− x)
d2f(x)

dx2
+ [c + (a + b + 1)x]

df(x)
dx

− (ab)f(x) = 0, (A.10)
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wherea, b, c are given as follows,

a =
√

α3


λ + v +

1
2

(
α2

α3
− 1

)
+

√
1
4

(
α2

α3
− 1

)2

+
ξ2

α2
3


 , (A.11)

b =
√

α3


λ + v +

1
2

(
α2

α3
− 1

)
−

√
1
4

(
α2

α3
− 1

)2

+
ξ2

α2
3


 , (A.12)

c = α1 + 2λ. (A.13)

Setting eithera or b equal to a negative integer−n, the hypergeometric functionf(s) turns to a polynomial of degreen.
Hence, the hypergeometric functionf(s) approaches finite in the following quantum conditioni.e. a = −n, wheren =
0, 1, 2, 3, ..., nmax. Using the above quantum condition,

√
α3


λ + v +

1
2

(
α2

α3
− 1

)
+

√
1
4

(
α2

α3
− 1

)2

+
ξ2

α2
3


 = −n, (A.14)

λ + v +
1
2

(
α2

α3
− 1

)
+

n√
α3

= −
√

1
4

(
α2

α3
− 1

)2

+
ξ2

α2
3

. (A.15)

Squaring both sides of Eq. (A.15) and rearranging, we obtain the energy equation for the NUFA method as

λ2 + 2λ

(
v +

1
2

(
α2

α3
− 1

)
+

n√
α3

)
+

(
v +

1
2

(
α2

α3
− 1

)
+

n√
α3

)2

− 1
4

(
α2

α3
− 1

)2

+
ξ2

α2
3

= 0. (A.16)

By substituting Eqs. (A.8) and (A.9) into Eq. (A.3), we obtain the corresponding wave equation for the NUFA method as

ψ(s) = Ns
(1−α1)±

√
(1−α1)2+4ξ3
2 (1− α3s)

(α3+α1α3−α2)±
√

(α3+α1α3−α2)2+4

(
ξ1
α2
3
+α3ξ3−ξ2

)

2F1(a, b, c; s), (A.17)

whereN is the normalization constant.
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