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Fisher information and quantum entropies of a 2D system
under a pair of non-central scalar and vector potentials
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In this study, we examine a 2 dimensional system influenced by a non-central potential consisting of a Kratzer potential with a dipole moment,
along with a vector potential of the (AB) effect. We explore various information-theoretic measures, including Fisher information, Shannon
entropy, Tsallis entropy, and Rényi entropy. Our numerical results show that the Fisher information increases with an increase in dissociation
energy and decreases with rising dipole moment, Aharonov-Bohm potential strength, and both the radial and angular quantum numbers. In
contrast, the Shannon entropy, the Tsallis entropy, and the Rényi entropy decrease with rising dissociation energy, while they increase with
an increase in dipole moment, Aharonov-Bohm potential strength, as well as the principal and angular quantum numbers. These observations
collectively indicate that the precision and localization of particles in space are enhanced by the increasing of the dissociation energy and
reduced when the dipole moment, Aharonov-Bohm potential strength, and both the radial and angular quantum numbers increase.
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1. Introduction

Quantum information is the information of the state of a
quantum system, and it combines principles from quantum
mechanics and information theory to understand and manip-
ulate information using quantum systems. Quantum infor-
mation has some basic measures such as Rényi and Shannon
entropies [1–3], Fisher information [4–7], Tsallis entropy
[8–10], Fisher-Shannon complexity [11–13], and Cramér-
Rao complexity [14].

Quantum information is a rapidly evolving field with the
potential to cause revolutionary advances across various sci-
entific and technological domains. Several researches have
been conducted on studying the entropies and complexities
of quantum systems. The position-and momentum-space en-
tropies have been derived for various systems including the
isotropic harmonic oscillator and the hydrogen atom in D
dimensions [15–17], power-type potentials [18], central,
Morse and P̈oschl-Teller potentials [19,20], as well as Dirac-
delta-like quantum potentials [21]. Furthermore, uncertainty
relations have been verified for modified isotropic harmonic
oscillators and Coulomb potentials in [22] and quantum in-
formation entropies and squeezing associated with the eigen-
states of the isotonic oscillator have been discussed in [23].

Recent research has extended these investigations to en-
compass quantum information-entropic measures for half-
line Coulomb potential [24], ring-shaped modified Kratzer
potential [25], Pseudoharmonic Potential [26], Eckart Man-
ning Rosen Potential [27], Shifted Tietz-Wei Potential [28],
Hulthen-Kratzer potential [29], Generalized Morse potential
[30], exponential-type potential [31], screened Kratzer po-
tential [32], and for Eckart-Hellmann potential [33].

In this study, our focus lies in examining some quantum

information measures to a two-dimensional system under the
influence of a non-central Kratzer potential consisting of a
Kratzer potential and a Dipole moment [34], alongside with
a vector potential of the Aharonov-Bohm (AB) effect. The
Kratzer potential is significant in depicting the internuclear
vibrations observed in diatomic molecules [35]. Its relevance
extends to the fields of molecular spectroscopy and quantum
chemistry [36, 37] as well as to the investigation of optical
properties in semiconductor quantum dots [38].

The interest in two-dimensional (2D) materials has grown
significantly recently due to their unique properties and di-
verse applications in various fields. Graphene has been exten-
sively developed for many electronic applications due to its
electronic, thermal, optical and mechanical superiority [39].
It has exhibited potential in enhancing the performance of
lithium-ion batteries by increasing their capacity [40] and
has been employed in the fabrication of wind and solar cells
[41]. Besides, graphene appears promising as a hydrogen
storage material [42]. Black phosphorus (BP), another out-
standing 2D material, has attracted attention due to its role
as a layered semiconductor with a tunable bandgap and high
carrier mobility. It is considered as one of the most promis-
ing candidates for numerous applications ranging from tran-
sistors, to photonics, optoelectronics, sensors, batteries, and
catalysis [43, 44]. Moreover, transition metal dichalco-
genides which are 2D materials have semiconducting proper-
ties and they have many applications in high-end electronics,
spintronics, optoelectronics, energy harvesting, flexible elec-
tronics, DNA sequencing, and personalized medicine [45].

This paper is organized as follows: In Sec. 2 we solve the
Schr̈odinger equation of a 2D system under the influence of a
non-central potential composed of a Kratzer potential along
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with a dipole moment, as well as a vector potential from the Aharonov-Bohm (AB) effect, and find the energy eigenvalues
and the corresponding normalized wave functions. Sections 3 and 4 are devoted to analytically deriving the Fisher information
measure, Shannon, Tsallis, and Rényi entropies of the given system. In Sec. 5, we explore the impact of the dissociation energy,
the dipole moment, the AB field, and the radial and angular quantum numbers on the derived quantum information measures,
and subsequently discuss the obtained results. Finally, the last section provides a concise conclusion summarizing our findings.

2. The Exact solution of 2D Schr̈odinger equation with non-central scalar and vector potentials

The 2D Schr̈odinger equation for a system subjected to both a scalar potential and a vector potential of the Aharonov-Bohm
(AB) effect, ~φAB is written as [46]

[
1
2µ

(
i~~∇+ e~φAB

)2

+ qV (r, θ)
]

ψ(r, θ) = Eψ(r, θ) : ~φAB =
φAB

2πr
~eθ. (1)

Since the AB field satisfies the Coulomb gauge~∇ · ~φAB = 0 , then
(
i~~∇+ e ~AAB

)2

ψ(r, θ) =
(
−~2∆ + e2A2

AB + 2ie~ ~AAB · ~∇
)

ψ(r, θ), (2)

and the Schr̈odinger Eq. (2) becomes
[
− ~

2

2µ
∆ +

e2φ2
AB

8π2µr2
+ i

e~φAB

2µπr2

∂

∂θ
+ V (r, θ)

]
ψ(r, θ) = Eψ(r, θ). (3)

The non-central potential studied in the article consists of two components: a modified Kratzer potential and an angular dipole
moment [34]

V (r, θ) = De

(
r − re

r

)2

+
D cos θ

r2
=

A

r
+

B

r2
+ C +

D cos θ

r2
, (4)

whereA = −2reDe, B = r2
eDe, C = De, De is the dissociation energy, which represents the energy required to completely

separate the two atoms,re is the equilibrium bond length, which is the distance at which the potential energy is minimized,
andD is the dipole moment.

Substituting (4) into (3) yields
[
− ~

2

2µ
∆ +

e2φ2
AB

8π2µr2
+ i

e~φAB

2µπr2

∂

∂θ
+

(
A

r
+

B

r2
+

D cos θ

r2

)]
ψ(r, θ) = (E − C)ψ(r, θ). (5)

If we let Er = 2µ~−2(E − C), γ = B + (~2/2µ)(φ2
AB/φ2

0): φ0 = h/e, then we get
[

∂2

∂r2
+

1
r

∂

∂r
− 2µ

~2

A

r
− 2µ

~2

γ

r2
+

1
r2

(
∂2

∂θ2
− 2i

φAB

φ0

∂

∂θ
− 2µ

~2
D cos θ

)]
ψ = −Erψ. (6)

Now making use ofψ(r, θ) = r−1/2R(r)Θ(θ) the Eq. (6) can be decoupled into radial and angular parts
(

d2

dθ2
− 2i

φAB

φ0

d

dθ
− 2µ

~2
D cos θ

)
Θ(θ) = EθΘ(θ), (7)

(
d2

dr2
+

(
Eθ +

1
4
− 2µ

~2
γ

)
1
r2
− 2µ

~2

A

r
+ Er

)
R(r) = 0. (8)

Firstly, one needs to solve the angular Eq.(7) to determine the angular eigenvalueEθ. Subsequently, this value should be
substituted into the radial Eq. (8) to deduce the energy eigenvalue [34, 46]. By expressing the angular solution asΘ(θ) =
eiδθΦ(θ), whereδ = (φAB/φ0), and definingθ = 2z, a = 4

(
δ2 − Eθ

)
, andb = (4µ/~2)D the angular Eq. (7) transforms

into the Mathieu equation.
∂2Φ(z)

∂z2
+ (a− 2b cos 2z)Φ(z) = 0. (9)

The differential Eq. (9) has periodic solutions of periodsπ or 2π, represented by the cosine-ellipticce2m(z) and the sine-
elliptic se2m(z) functions wherem is a natural number [47]. If we keep the parameterb fixed, the Mathieu solutions are
periodic only for specific values of the other parametera. The latter parameter is called the characteristic number and is given
for fractionalm by [46,48–50]

a2m ≈ 4m2 +
1
2l

b2 +
20m2 + 7
32l3(l − 3)

b4 +
36m4 + 232m2 + 29
64l5(l − 3)(l − 8)

b6 + . . . , with l = 4m2 − 1. (10)

Rev. Mex. Fis.71061301



FISHER INFORMATION AND QUANTUM ENTROPIES OF A 2D SYSTEM UNDER A PAIR OF NON-CENTRAL SCALAR. . . 3

The phase factorexp(ıδθ) in Θ(θ) arising from the Aharonov-Bohm (AB) field induces a shift in the angular quantum number
m to m + δ [46,51]. Consequently, the corresponding angular eigenvalue becomes

Em,δ
θ = δ2 − 1

4
ce2(m+δ)

(
4µD/~2

)
. (11)

Now, considering the asymptote limits for the radial Eq. (8), the radial eigenfunction can be expressed asR(r) = rλe−βrf(r).
Substituting this expression into Eq. (8), it becomes:

(
r

d2

dr2
+ 2 (λ− βr)

d

dr
− 2

(
µA

~2
+ λβ

))
f(r) = 0. (12)

In deriving Eq. (12), we eliminated the coefficients of the terms involvingr and 1
r , knowing thatβ andλ are free parameters.

This was achieved by setting

β =
√
−Er =

√
−2µ

~2
(E − C), (13)

λ =
1
2

+

√
−E

(m,δ)
θ +

2µ

~2
γ =

1
2

+

√
−E

(m,δ)
θ +

2µ

~2
B +

φ2
AB

φ2
0

. (14)

By definingx = 2βr, the differential Eq. (12) is transformed to confluent hypergeometric equation
(

x
d2

dx2
+ (2λ− x)

d

dx
−

(
µA

~2β
+ λ

))
f(x) = 0, (15)

with solutions
f(x) = N 1F1 (−nr, 2λ, x) , (16)

where−nr = (µA/~2β) + λ is the condition of quantization obtained from the asymptotic behavior of the confluent series
(r →∞⇒ 1F1 = 0).

The wavefunction of the system is then given by

ψ(r, θ) = N eiδθrλ− 1
2 e−βrΦ(θ)1F1 (−nr, 2λ, 2βr) , (17)

with energy eigenvalues

Enr,m = −1
2

[√
~2

µ

1
A

(
nr +

1
2

+

√
−E

(m,δ)
θ +

2µ

~2
B +

φ2
AB

φ2
0

)]−2

. (18)

The wavefunction (17) can be rewritten in term of Laguerre polynomials as

ψ(x, θ) = Nxλ− 1
2 e−

x
2 eiδθΦ(θ)L2λ−1

nr
(x) , with x = 2βr, (19)

with the normalization constant

N =

√
2β2n!

(n + 2λ− 1)!(n + λ)π
, (20)

where we have used the fact that [52]
Lλ−1

n (x) ∼ 1F1 (−n, λ, x) . (21)

3. Fisher information and Shannon entropy

3.1. Fisher information

Fisher information is a method for quantifying the extent of information that an observable random variableX provides
regarding an unknown parameterθ, and it has many applications in statistics and information theory [53, 54]. It primarily
focuses on capturing local variations within the density function. The Fisher information measure is formally defined as
follows [55]

I(ρ) =
∫ (

~∇ρ(~r)
)2

ρ(~r)
d~r. (22)
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In 2D dimension, taking the gradient operator in polar coordinates~∇ = ([∂/∂r], [1/r][∂/∂θ]), the expression for the Fisher
information is as follows

I (ρ) =
∫

1
ρ (~r)

[
∂ρ (~r)

∂r

]2

d~r +
∫

1
ρ (~r)

[
∂ρ (~r)
r∂θ

]2

d~r ≡ I1 + I2, (23)

whereρ (~r) ≡ ρ (r, θ) = |ψ(r, θ)|2 is the probability density. Using the wave function (19) along with the normalization
constant (20), the probability density is expressed as

ρ(r, θ) = N2x2λ−1e−xΦ2(θ)[L2λ−1
n (x)]2, with x = 2βr. (24)

The derivative in the Eq. (23) yields

∂ρ(r, θ)
∂r

= 2βNrΦ2(θ)
∂

∂x

(
x2λ−1e−x[L2λ−1

n (x)]2
)

= 2βN2Φ2(θ)x2λ−1e−x

[(
2λ− 1

x
− 1

)
[L2λ−1

n (x)]2 − 2L2λ−1
n (x)L2λ

n−1(x)
]

, (25)

so that

I1 =

∞∫

0

2π∫

0

1
ρ(r, θ)

[
∂ρ(r, θ)

∂r

]2

r dr dθ = πN2

∞∫

0

x2λe−x

[(
2λ− 1

x
− 1

)
L2λ−1

n (x)− 2L2λ
n−1(x)

]2

dx

=
2β2

n + λ
[4n− (2λ− 1)] + 4β2, (26)

where we have used the fact that
∫ 2π

0
Φ2(θ) dθ = π and the relation [56]

∞∫

0

xα+βe−x [Lα
n(x)]2 dx =

Γ(α + n + 1)
Γ(n + 1)

n∑

k=0

(−1)k Γ(n− k − β)
Γ(−k − β)

× Γ(α + k + β + 1)
Γ(α + k + 1)

1
Γ(k + 1)Γ(n− k + 1)

with Re(α + β + 1) > 1. (27)

The second integral in Eq. (23) involves the following integral

2π∫

0

1
Φ2(θ)

[
∂Φ2(θ)

∂θ

]2

dθ = 4

2π∫

0

[
∂Φ(θ)

∂θ

]2

dθ = 4m2π. (28)

Computing the integral (28) is straightforward if the characteristic numberb = 0. For b 6= 0, it is also easy to check that this
integral tends to4m2π for any values ofm.

Using the result (28), the second integral in Eq. (23) becomes

I2 = 4πm2N2

∞∫

0

x2λ−2e−x[L2λ−1
n (x)]2 dx =

8m2β2

(n + λ)(2λ− 1)
. (29)

Therefore, the Fisher information is given by

I(ρ) = I1 + I2 =
2β2

(n + λ)

[
4n +

4m2

2λ− 1
− (2λ− 1)

]
+ 4β2. (30)

It is worth noting that, in the evaluation of quantum information measures such as Fisher information, and Shannon, Tsallis,
and Ŕenyi entropies, it is standard practice to integrate over the entire physical domain of the wavefunction,i.e., from 0 to∞ in
radial coordinates. Although the wavefunction (19) decays exponentially with factore−βr, its probability density is nonzero all
over the way to infinity. Therefore, integrating over the full spatial range is essential in order to obtain results that are accurate
and physically consistent.
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FIGURE 1. Fisher information versus the dissociation energy for
D = 0, re = 1 (all quantities are in atomic units), withn = 2 and
m = 0.

FIGURE 2. Fisher information versus the dipole moment forDe =
3, re = 1 (all quantities are in atomic units), withn = 2 and
m = 2.

3.2. Shannon entropy

The Shannon entropy quantifies the uncertainty associated with the localization of a particle in space. Lower entropy values
correspond to greater precision in predicting the particle’s location. The Shannon information entropy is defined as [55]

S(ρ) = −
∫

ρ(~r) log ρ(~r) d~r = −N2

4β2

∞∫

0

2π∫

0

Φ(θ)2x2λe−x
[
L2λ−1

n (x)
]2

log
[
NrΦ(θ)2x2λ−1e−x

[
L2λ−1

n (x)
]2]

dx dθ

= −πN2

4β2

∞∫

0

x2λe−x
[
L2λ−1

n (x)
]2

log
[
N2x2λ−1e−x

[
L2λ−1

n (x)
]2]

dx− IθN
2

4β2

∞∫

0

x2λe−x
[
L2λ−1

n (x)
]2

dx, (31)

with x = 2βr and

Iθ =

2π∫

0

Φ(θ)2 log(Φ(θ)2) dθ = π (1− 2 log(2)) , (32)

where the logarithm is taken in basee since we are interested in natural units. The integral (32) is easily obtained for the case
of b = 0. Forb 6= 0 one can also show that the integral tends to the same value (32). The integral (31) can be decomposed into
four separate integrals

S1 = −IθN
2

4β2

∫ ∞

0

x2λe−x
[
L2λ−1

n (x)
]2

dx = −Iθ

π
. (33)

For the other three integral parts, it is connivent to introduce the orthonormal Laguerre polynomials

L̃λ
n(x) =

[
Γ(n + 1)

Γ(λ + n + 1)

] 1
2

Lλ
n(x), (34)

because they satisfy the simplified orthonormal relation

∞∫

0

L̃λ
n(x)L̃λ

m(x)e−xxλ dx = δnm. (35)
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TABLE I. Fisher information and Shannon entropy for some diatomic molecules withδ = 0.2, D = 0.4 in atomic units.

Fisher Information Shannon Entropy

n m I(Cs2) I(Li2) I(SiSn) S(Cs2) S(Li2) S(SiSn)

1

0 1.20 3.01 6.32 6.2815 5.3274 4.6874

1 1.15 2.86 6.46 6.3875 5.4561 4.7559

2 1.13 2.75 6.52 6.5810 5.6816 4.8837

2

0 1.39 3.34 8.20 6.9706 6.0591 5.2857

1 1.32 3.14 7.80 7.0611 6.1641 5.3459

2 1.25 2.91 7.73 7.2296 6.3581 5.4591

4

0 1.25 2.84 8.11 8.0276 7.1660 6.2181

1 1.18 2.74 7.84 8.0971 7.2455 6.2676

2 1.10 2.52 7.61 8.2311 7.3980 6.3601

6

0 0.998 2.27 7.08 8.8416 8.0125 6.9510

1 0.958 2.17 6.74 8.8981 8.0750 6.9925

2 0.910 2.01 6.66 9.0096 8.2010 7.0710

8

0 0.798 1.77 5.95 9.5087 8.7020 7.5595

1 0.770 1.70 5.76 9.5562 8.7525 7.5960

2 0.733 1.58 5.63 9.6512 8.8600 7.6640

The remaining integrals are then given by

S2 = −πN2

4β2

∞∫

0

x2λe−x
[
L2λ−1

n (x)
]2

log
(

N2 Γ(n + 2λ)
Γ(n + 1)

)
dx = − log

(
2β2

(n + λ)π

)
, (36)

S3 = −πN2

4β2

∞∫

0

x2λe−x
[
L2λ−1

n (x)
]2

log
(
x2λ−1e−x

)
dx =

(n + 2λ) [−(2λ− 1)Ψ(n + 2λ + 1) + 2n + 2λ + 1]
2(n + λ)

, (37)

whereΨ(z) = Γ
′
(z)/Γ(z) is the Digamma function [57].

S4 = −πN2

4β2

Γ(n + 2λ)
Γ(n + 1)

∫ ∞

0

x2λe−x
[
L̃2λ−1

n (x)
]2

log
([

L̃2λ−1
n (x)

]2
)

dx

= − 1
2(n + λ)

(−6n2 + 4λn log n + 2n [log(2π)− 4λ− 2] + O(n)
)
. (38)

The last integral is derived using thep-norm method [58] at the asymptotic limits. By applying Eqs. (32), (33), and (36)–(38),
and simplifying the resulting expression, the Shannon entropyS is given by

S =
4∑

i=1

Si = 4n + 2λ− π − ln
(

β2

2π(n + λ)

)
+

1
2n + 2λ

×
(
2nλ + 5n + 1 + (1− 2λ)(n + 2λ)Ψ(n + 2λ)− 2n

[
2λ ln n + ln(2π)

]
+ O(n)

)
. (39)

4. Tsallis and Renyi entropies

The Tsallis entropy is a generalization of the Shannon entropy within the framework of non-extensive statistical mechanics. It
is defined as follows [55]

Tq =
1

q − 1
(1−Wq[ρ]) , q > 0, q 6= 1. (40)

The Ŕenyi entropy serves as another extension of the Shannon entropy and is defined as [55]

Rq =
1

1− q
log (Wq[ρ]) , q > 0, q 6= 1, (41)
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FIGURE 3. Shannon entropy versus the dissociation energy for
D = 0, re = 1 (all quantities are in atomic units), withn = 2
andm = 0.

FIGURE 4. Shannon entropy versus the dipole moment forDe =
3, re = 1 (all quantities are in atomic units), withn = 2 and
m = 2.

where

Wq[ρ] =
∫

[ρ(~r)]q d~r =
N2q

2β2

(2q − 1)!!2π
2qq!

∞∫

0

xq(2λ−1)+1e−qx
[
L2λ−1

n (x)
]2q

dx. (42)

In (42) we have used the substitutionx = 2βr and the fact that

2π∫

0

[Φ(θ)]2q
dθ =

(2q − 1)!!
2qq!

2π. (43)

To evaluate the integral on the right-hand side of Eq. (42) it is useful to employ the linearization formula of Srivastava-
Niukkanen for the products of various Laguerre polynomials [59]

xµL(α1)
m1

(t1x)L(α2)
m2

(t2x) · · ·L(αr)
mr

(trx) =
∞∑

k=0

γk (µ, λ, r, {mi}, {αi}, {ti})L
(η)
k (x), (44)

which is given in terms of the Lauricella’s hypergeometric functions of(r + 1) variables as

γk (µ, λ, r, {mi}, {αi}, {ti}) = (λ + 1)µ

(
α1 + m1

m1

)(
α2 + m2

m2

)
· · ·

· · ·
(

αr + mr

mr

)
× F

(r+1)
A [η + µ + 1,−m1, . . . ,−mr,−k; α1 + 1, . . . , αr + 1, η + 1; t1, . . . , tr, 1] , (45)

where the Pochhammer symbol(a)n = Γ(a + n)/Γ(a) and
(

αi + mi

mi

)
are the binomial coefficients. For the special case

(η = 0, α1 = · · · = αr = 2λ− 1, m1 = · · · = mr = n, x = qt, t1 = · · · = tr = 1/q, µ = q(2λ− 1) + 1, r = 2q) we
obtain the linarization

(qt)q(2λ−1)+1
[
L(α)

n (t)
]2q

=
∞∑

k=0

γk

(
q(2λ− 1) + 1, 0, 2q, {n}, {2λ− 1},

{
1
q

})
L(0)

n (qt). (46)

The orthogonality property of the polynomialL
(α)
n (x) implies that the term withk = 0 is the only non-vanishing contribution

to the integral (42) [59]. Thus,
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FIGURE 5. Tsallis entropy versus the dissociation energy for
D = 0, re = 1 (all quantities are in atomic units), withn = 2
andm = 0.

FIGURE 6. Renyi entropy versus the dissociation energy forD =
0, re = 1 (all quantities are in atomic units), withn = 2 and
m = 0.

FIGURE 7. Tsallis entropy versus the dipole moment forDe = 3,
re = 1 (all quantities are in atomic units), withn = 2 andm = 2.

FIGURE 8. Renyi entropy versus the dipole moment forDe = 3,
re = 1 (all quantities are in atomic units), withn = 2 andm = 2.

∫ ∞

0

xq(2λ−1)+1e−qx [Lα
n(x)]2q

dx =
1

qq(2λ−1)+2
γ0

(
q(2λ− 1) + 1, 0, 2q, {n}, {2λ− 1},

{
1
q

})
, (47)

where

γ0

(
q(2λ− 1) + 1, 0, 2q, {n}, {2λ− 1},

{
1
q

})

= Γ(q(2λ− 1) + 2)
(

2λ + n− 1
n

)2q

× F
(2q+1)
A

[
q(2λ− 1) + 2,−n, . . . ,−n, 0; 2λ, . . . , 2λ, 1;

1
q
, . . . ,

1
q
, 1

]
. (48)
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TABLE II. Tsallis and the Renyi entropies for some diatomic molecules withδ = 0.2, D = 0.4 in atomic units.

Tsallis Entropy Renyi Entropy

n m T (Cs2) T (Li2) T (SiSn) R(Cs2) R(Li2) R(SiSn)

1

0 0.99751 0.99350 0.98784 5.9954 5.0362 4.4098

1 0.99777 0.99430 0.98866 6.1056 5.1670 4.4792

2 0.99816 0.99547 0.99003 6.2992 5.3962 4.6084

2

0 0.99876 0.996882 0.99336 6.6897 5.7715 5.0144

1 0.99887 0.99722 0.99375 6.7849 5.8848 5.0756

2 0.99904 0.99771 0.99443 6.9526 6.0812 5.1898

4

0 0.99957 0.99898 0.99740 7.7518 6.8894 5.9541

1 0.99960 0.99907 0.99753 7.8273 6.9778 6.0038

2 0.99965 0.99920 0.99775 7.9600 7.1311 6.0969

6

0 0.99981 0.99957 0.99876 8.5686 7.7410 6.6907

1 0.99982 0.99960 0.99881 8.6316 7.8141 6.7326

2 0.99984 0.99964 0.99890 8.7413 7.9400 6.8115

8

0 0.99990 0.99978 0.99933 9.2367 8.4331 7.3023

1 0.99991 0.99980 0.99935 9.2909 8.4956 7.3386

2 0.99992 0.99982 0.99939 9.3847 8.6028 7.4069

Hence

Wq[ρ] =
N2q

2β2

(2q − 1)!!2π

2qq!
1

qq(2λ−1)+2
γ0

(
q(2λ− 1) + 1, 0, 2q, {n}, {2λ− 1},

{
1
q

})
, (49)

so that the Tsallis and the Renyi entropies become

Tq =
1

q − 1

[
1− N2q

4β2

(2q − 1)!!2π

2qq!
1

qq(2λ−1)+2
γ0

(
q(2λ− 1) + 1, 0, 2q, {n}, {2λ− 1},

{
1
q

})]
, (50)

Rq =
1

1− q
log

(
N2q

4β2

(2q − 1)!!2π
2qq!

1
qq(2λ−1)+2

γ0

(
q(2λ− 1) + 1, 0, 2q, {n}, {2λ− 1},

{
1
q

}))
, (51)

where the normalization constantN is defined by expression (20).

5. Results and discussion

This section is devoted to the discussion of our numerical
and graphical results. For convenience, we use the Hartree
atomic units defined by~ = e = me = 4πε0 = 1 (all fig-
ures in this article are sketched using atomic units). In Fig. 1
we have examined the effect of dissociation energyDe on the
Fisher information for different values of the AB field param-
eterδ. First, we mention that the Fisher information is related
to the quantum kinetic energy, wherein the kinetic energy is
decomposed into classical kinetic energy and purely quantum
kinetic energy, with the latter term is the Weizsäcker term,
which is essentially identical to the Fisher information [60].
Figure 1 shows that the Fisher information increases with the
increasing of the dissociation energyDe, implying raise in
degree of localization. This is obvious since the dissocia-
tion energy is amount of energy required to break the bond
and separate the combining atoms in the molecule. In the
framework of electronic structure dissociation energy con-
nects with the degree of electron localization within the

molecule. A higher dissociation energy implies that the bond
between the atoms within the molecule is more stronger,
which results to electrons being more tightly held between
the atoms leading to a higher degree of localization. More-
over, Fig. 1 shows that the Fisher information decreases with
the increase of AB field parameterδ, indicating a decrease in
localization.

In Fig. 2 we have plotted the Fisher information against
the dipole moment termsD for different values of AB field
parameterδ. In this figure, and elsewhere when we discuss
the impact of dipole moment on different information mea-
sures we have to consider the accuracy of the characteristic
number of the Mathieu function in Eq. (10). Therefore, we
have carefully selected values for the involved parameters to
ensure that the characteristic number remains consistent with
different leading terms. Form = 0, 1, the accuracy of the
characteristic number (10) is held forb < 1. Form = 2, the
accuracy can be extended to values ofb up to 20. The higher
the angular numberm, the wider range ofb required for the

Rev. Mex. Fis.71061301



10 A. BECIR AND M. MOUMNI

accuracy of the characteristic number. In our case, we choose
m = 2. Fig. 2 illustrates that increasing the dipole moment
and AB field parameterδ leads to a decrease in Fisher in-
formation, which results to a loss of information regarding
localization.

In Figs. 3 and 4, we have depicted the influence of disso-
ciation energy and dipole moment on the Shannon entropy,
respectively. The Shannon entropy gives insights into the
precision and spatial localization of particles and it reflects
the probability distribution and stability of the system. A
lower Shannon entropy indicates greater accuracy in predict-
ing particle localization and, consequently, higher stability.
Figure 3 illustrates that dissociation energy reduces Shannon
entropy, thereby enhancing precision and spatial localization.
This observation aligns with our previous findings, as disso-
ciation energy governs the bond strength between atoms in
a molecule. Higher dissociation energy implies tighter elec-
tron binding between atoms, leading to increased localiza-
tion. Figure 4 shows that the dipole moment increases the
Shannon entropy and hence decreases the precision and lo-
calization as expected. Moreover, akin to the Fisher informa-
tion scenario, the AB field parameterδ adversely affects the
accuracy of particle localization prediction. Shannon entropy
increases withδ, resulting in a loss of precision and increased
uncertainty regarding particle localization in space as shown
in Figs. 3 and 4.

We should note that we have used a numerical method for
evaluating and plotting the Shannon entropy in Figs. 3 and
4. The reason for this is that the last integral of the Shannon
entropyS4, Eq. (38), suits high radial numbers since it is
calculated in the asymptotic limits [58].

In Figs. 5 and 6, as well as 7 and 8, we investigated
the influence of dissociation energy and dipole moment on
Tsallis and Renyi entropies, respectively. These entropies are
just generalizations of Shannon entropy. Figures 5 and 7
show that the decreasing dissociation energy results in lower
Tsallis and Renyi entropies, which results in enhancing pre-
cision and spatial localization. Conversely, increasing the
dipole moment leads to higher Tsallis and Renyi entropies,
thus reducing precision and spatial localization, as depicted
in Figs. 6 and 8. Additionally, an increase in the AB field
parameterδ leads to a loss in precision and an increase in
uncertainty regarding particle localization in space.

Tables I and II demonstrate the numerical analysis of
Fisher information and Shannon entropy, the Tsallis and The
Renyi entropies, for different eigenstates and some diatomic
molecules, namely, SiSn(X3Σ+

g : De = 2.642965641 eV,
re = 2.514A0), Li2(X1Σ+

g : De = 1.055918901 eV,
re = 2.6729A0) and Cs2(X1Σ+

g : De = 0.4524686595 eV,
re = 4.648A0) [61, 62] with q = 2. It is shown that the
Shannon, Tsallis, and Renyi entropies increase with the in-
crease of radial numbernr and angular numberm, which

means higher accuracy in predicting localization and stabil-
ity. The Fisher information decreases with the increasing of
quantum angular numberm, and increases then decreases
with the increasing of quantum radial numbernr. The ra-
dial number that gives the maximum value to the Fisher in-
formation can be rounded analytically or numerically from
Eq. (30).

6. Conclusion

In this paper, we first derived the exact analytical solution of
the Schr̈odinger equation for a 2D system subjected to a non-
central scalar potential and a vector potential of Aharonov-
Bohm (AB) effect and obtained the corresponding wave func-
tions and energy eigenvalues, where the non-central poten-
tial is composed of a Kratzer potential plus a dipole mo-
ment term. Subsequently, we conducted both analytical and
numerical investigations into the information-theoretic mea-
sures namely, Fisher information, Shannon entropy, Rényi
entropy, and Tsallis entropy.

The analysis of these information-theoretic measures was
carried out for various parameters, including the dissociation
energyDe, the dipole momentD, the AB field parameterδ,
as well as the radial and angular quantum numbers for select
diatomic molecules. Our findings showed that the Fisher in-
formation increases with an increase in dissociation energy
De, while it decreases with increasing of dipole momentD,
AB field parameterδ, and the radial and angular quantum
numbers.

In contrast, the Shannon, Rényi, and Tsallis entropies ex-
hibit a decrease with the rising dissociation energyDe, and
an increase with decreasing of dipole momentD, AB field
parameterδ, and the radial and angular quantum numbers.
These observations collectively suggest that higher dissoci-
ation energy enhances precision and particle localization in
space. Furthermore, our observations indicate that increas-
ing the dipole moment, AB field parameter, and radial and
angular quantum numbers reduce the degree of particle lo-
calization.
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