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In this study, we examine a 2 dimensional system influenced by a non-central potential consisting of a Kratzer potential with a dipole moment,
along with a vector potential of the (AB) effect. We explore various information-theoretic measures, including Fisher information, Shannon
entropy, Tsallis entropy, andéRyi entropy. Our numerical results show that the Fisher information increases with an increase in dissociation
energy and decreases with rising dipole moment, Aharonov-Bohm potential strength, and both the radial and angular quantum numbers. Ir
contrast, the Shannon entropy, the Tsallis entropy, and @myiRentropy decrease with rising dissociation energy, while they increase with

an increase in dipole moment, Aharonov-Bohm potential strength, as well as the principal and angular quantum numbers. These observation
collectively indicate that the precision and localization of particles in space are enhanced by the increasing of the dissociation energy and
reduced when the dipole moment, Aharonov-Bohm potential strength, and both the radial and angular quantum numbers increase.
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1. Introduction information measures to a two-dimensional system under the

influence of a non-central Kratzer potential consisting of a
Quantum information is the information of the state of akratzer potential and a Dipole moment [34], alongside with
quantum system, and it combines principles from quantumy vector potential of the Aharonov-Bohm (AB) effect. The
mechanics and information theory to understand and manigkratzer potential is significant in depicting the internuclear
ulate information using quantum systems. Quantum infory;prations observed in diatomic molecules [35]. Its relevance
mation has some basic measures such@s/Rand Shannon  extends to the fields of molecular spectroscopy and gquantum
entropies [1-3], Fisher information [4-7], Tsallis entropy chemistry [36, 37] as well as to the investigation of optical
[8-10], Fisher-Shannon complexity [11-13], and Céam properties in semiconductor quantum dots [38].

Rao complexity [14]. The interest in two-dimensional (2D) materials has grown

Quantum information is a rapidly evolving field with the significantly recently due to their unique properties and di-
potential to cause revolutionary advances across various SC'_egr sea Ii}c/:ations ir)1/various fields Gﬁa hgnephas been exten-
entific and technological domains. Several researches have pp - >raphene’ .

sively developed for many electronic applications due to its

been conducted on studying the entropies and ComplexitiesIectronic thermal, optical and mechanical superiority [39]
of quantum systems. The position-and momentum-space erj- L » optical . P y '
It has exhibited potential in enhancing the performance of

tropies have been derived for various systems including thﬁthium—ion batteries by increasing their capacity [40] and

isotropic harmonic oscillator and the hydrogen atom in Dhas been emploved in the fabrication of wind and solar cells
dimensions [15-17], power-type potentials [18], central, employed | catl Wi
[41]. Besides, graphene appears promising as a hydrogen

Morse and Bschl-Teller potentials [19,20], as well as Dirac- ]

delta-like quantum potentials [21]. Furthermore, uncertaintyStor"’lge material [42]' Black phosphorus (.BP)’ anoth_er out-
. o e : ~“standing 2D material, has attracted attention due to its role

relations have been verified for modified isotropic harmonic

oscillators and Coulomb potentials in [22] and quantum in-2sa layered semiconductor with a tunable bandgap and high

formation entropies and squeezing associated with the eigeﬁﬁarr(':zrnz]igg't“et;/' fcl)tr 'iucrggfé?gzd a}?cgtrifnzfrt:r? moitrgrfg]ésr;-
states of the isotonic oscillator have been discussed in [23]. '9 . PPl ging fron
istors, to photonics, optoelectronics, sensors, batteries, and

Recent research has extended these investigations to €

compass quantum information-entropic measures for ha”z_:atglyms [.43’ 44]. Moreo_ver, transmon metal _dlchalco-
line Coulomb potential [24], ring-shaped modified Kratzergenldes which are 2D materials have semiconducting proper-

potential [25], Pseudoharmonic Potential [26], Eckart Man-t'e.S and.they have many _apphcatlons n hlgh_—end elgctronlcs,
spintronics, optoelectronics, energy harvesting, flexible elec-

ning Rosen Potential [27], Shifted Tietz-Wei Potential [28], . . . Iy

Hulthen-Kratzer potential [29], Generalized Morse potentialtromc‘c_” DNA sgquenmhg, and personalized medicine [45]
[30], exponential-type potential [31], screened Kratzer po-  This paper is organized as follows: In Sec. 2 we solve the
tential [32], and for Eckart-Hellmann potential [33]. Schibdinger equation of a 2D system under the influence of a

In this study, our focus lies in examining some quantumnon-central potential composed of a Kratzer potential along



2 A. BECIR AND M. MOUMNI

with a dipole moment, as well as a vector potential from the Aharonov-Bohm (AB) effect, and find the energy eigenvalues
and the corresponding normalized wave functions. Sections 3 and 4 are devoted to analytically deriving the Fisher information
measure, Shannon, Tsallis, an@ryi entropies of the given system. In Sec. 5, we explore the impact of the dissociation energy,
the dipole moment, the AB field, and the radial and angular quantum numbers on the derived quantum information measures,
and subsequently discuss the obtained results. Finally, the last section provides a concise conclusion summarizing our findings.

2. The Exact solution of 2D Schidinger equation with non-central scalar and vector potentials

The 2D Schadinger equation for a system subjected to both a scalar potential and a vector potential of the Aharonov-Bohm
(AB) effect, ¢ 45 is written as [46]

1 /.= — \2 _ .7 YaB
[2/1 (th + e¢AB> + qV (r, 9)} W(r,0) = EY(r,0):  ¢ap = oy G- Q)
Since the AB field satisfies the Coulomb gatge¢ 45 = 0, then
L L2 L
(mv + eAAB) W(r,0) = (—hQA A%, + 2iehA g - v) W(r,0), @)
and the Schirdinger Eq.2) becomes
K2 294y .ehpap O
{—QHA S i Sumr? 00 + V(r, 9)} Y(r,0) = Ep(r,0). 3

The non-central potential studied in the article consists of two components: a modified Kratzer potential and an angular dipole

moment [34] )
—Te Dcos§ A B D cosf
V(r,e)—De(r T) e i AR (4)
T T T r r

whereA = -2r.D., B = r2D,, C = D,, D, is the dissociation energy, which represents the energy required to completely
separate the two atoms, is the equilibrium bond length, which is the distance at which the potential energy is minimized,
andD is the dipole moment.
Substituting!4) into (3) yields
K2 e2¢? ehpap O A B Dcos#
A AB | 4 — -4+ = =(F — .
50+ e 5 S (24 5 2 win) = (B - Ol 5)

Ifwelet B, = 2uh~2(E — C), v= B+ (h*/21)(¢%5/92): ¢o = h/e, then we get

02 10 2uA 2u~vy 1 (6 oA 0 2u B

o2 ror R2r  R2r2 | p2

Now making use ofi(r,§) = r~/2R(r)©(6) the Eq. 6) can be decoupled into radial and angular parts

d? pap d 2p _
(d92 ~ A a8 h2DCOSG) o) = B0, "
d? 1 2 1 2uA
<d7‘2 + <E0 + 1 hz’Y) 2Ry + Er) R(r) =0. ©)

Firstly, one needs to solve the angular Ejjfo determine the angular eigenvaléig. Subsequently, this value should be
substituted into the radial Eq8)to deduce the energy eigenvalue [34,46]. By expressing the angular solui(® as-
€0 (0), wheres = (dap/¢o), and defining = 2z, a = 4 (6% — Ey), andb = (4p/h*) D the angular Eq.[7) transforms
into the Mathieu equation.

0%0(2)

072

The differential Eq. 9) has periodic solutions of periodsor 27, represented by the cosine-elliptie,,,,(z) and the sine-
elliptic ses,,,(2) functions wheren is a natural number [47]. If we keep the paraméidixed, the Mathieu solutions are
periodic only for specific values of the other parametefhe latter parameter is called the characteristic number and is given
for fractionalm by [46,48-50]

+ (a — 2bcos 22)P(z) = 0. 9

20m* +7 ,  36m* +232m? + 29

64 ... ithl = 4m? — 1. 1
525(-3)" T eabu-3)_8) 0 T Wihi=dm (10)

1
Aam ~ 4m? + ﬂb2 +
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The phase factarxp(166) in ©(6) arising from the Aharonov-Bohm (AB) field induces a shift in the angular quantum number
mtom + ¢ [46,51]. Consequently, the corresponding angular eigenvalue becomes

m 1
By = 6% = Jceams) (4uD/h?) . (11)

Now, considering the asymptote limits for the radial EB), the radial eigenfunction can be expresse®as = r*e =57 f(r).
Substituting this expression into E®) (it becomes:

<rﬁ+2(xﬁr)$z(‘;f+w>)f( ) =0, (12)

In deriving Eq. I.2), we eliminated the coefficients of the terms involvizﬂgnd%, knowing thats and \ are free parameters.
This was achieved by setting

2
B=V=E = |-15(E-0), (13)
N B _()u 7y
)\—2+ E, +h2 2+\/ E, B+ po (14)
By definingxz = 23r, the differential Eq.12) is transformed to confluent hypergeometric equation
d? d A
with solutions
f(l') = NlFl (7717’7 2>\7 LE) ) (16)

where—n, = (uA/h?3) + X is the condition of quantization obtained from the asymptotic behavior of the confluent series
(r — 00 = 1F; =0).
The wavefunction of the system is then given by

U(r,0) = NePr =5e 00 (0), Fy (—n,, 2\, 26r) (17)

2
,/%% <nr+;+\/ B0 4 MB—|—¢£B>] . (18)
0

The wavefunction17) can be rewritten in term of Laguerre polynomials as

with energy eigenvalues

1

En,.m 5
T 2

¥(z,0) = Nw’\_%e_%ei‘mq)(é’)Lii_l (x), with =z =20r, (19)
with the normalization constant
N — 232n! (20)
V(22 = D(n+ N7’
where we have used the fact that [52]
Ly @) ~ 1 Fy (—n, M\ 7). (21)

3. Fisher information and Shannon entropy
3.1. Fisher information

Fisher information is a method for quantifying the extent of information that an observable random vafigibterides
regarding an unknown parametgrand it has many applications in statistics and information theory [53,54]. It primarily
focuses on capturing local variations within the density function. The Fisher information measure is formally defined as

follows [55] )
Vp(7)
I(p) = / (pp(r_,))dﬁ (22)
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4 A. BECIR AND M. MOUMNI

In 2D dimension, taking the gradient operator in polar coordinates: ([0/dr], [1/7][0/d6]), the expression for the Fisher
information is as follows ) )
L [0p(r)]" / 1L [0p(M)]" .
I = =L+ 1 2
0= [ 5650 o [ e ar=ne e )

wherep (7) = p(r,0) = |4(r,0)|* is the probability density. Using the wave functiatg) along with the normalization
constant/20), the probability density is expressed as

p(r,0) = N2~ 1e7202(0)[L2* 1 (2)]?, with =23 (24)
The derivative in the Eq2Q) yields

) 25N, 0%(0) - (4 e L )]

or
= 2N a0 e | (B0 ) I @ - a2 012 ) @5)
so that
_ I apré)] _ 2 i 2\ ,—x K?)‘l ) 2X—1 2 ]2
I = { rdrdd =xN* | x*%e —1) L2 (x) — 2L (z)| dx
! " [l
= [4n — (A= 1) +4p%, (26)

where we have used the fact thfﬁ’r ®2(0) do = 7 and the relation [56]

oo

2=t L2 ()] d = Tla+n+1) @ (_1)kf(n—k—ﬁ)
0/ twry 2V T
T(a+k+p3+1) 1

Tatht1) THIDTm_ks1 "ihRela+f+>1. @7

The second integral in Ec28) involves the following integral

ZT@;@ P@;g(a)r do = 4?[8?)?]2 do = 4m>n. (28)

Computing the integral2g) is straightforward if the characteristic numldes= 0. Forb # 0, it is also easy to check that this
integral tends tam?~ for any values ofn.
Using the resultZ8), the second integral in ECR8) becomes

o0

I, = 4rm?N? /x2’\_2e_”‘[L2/\_1(x)]2 dr = Sm—2ﬂ2 (29)
2 n n+ N2 1)
0
Therefore, the Fisher information is given by
232 4m? 9
Ip)=5LHL+ 1= 4 —(2X2 -1 43%.
() =n+ 1= 2 [+ g0 - A=) 440 (30

Itis worth noting that, in the evaluation of quantum information measures such as Fisher information, and Shannon, Tsallis,
and Renyi entropies, it is standard practice to integrate over the entire physical domain of the wavefiuectfoom 0 toco in
radial coordinates. Although the wavefunctid®)decays exponentially with facter ", its probability density is nonzero all
over the way to infinity. Therefore, integrating over the full spatial range is essential in order to obtain results that are accurate
and physically consistent.

Rev. Mex. Fis71061301



FISHER INFORMATION AND QUANTUM ENTROPIES OF A 2D SYSTEM UNDER A PAIR OF NON-CENTRAL SCALAR... 5

e =15 5=3] [=o— B8 s 5=04 — 5=06
14 S = e
e 6.0 TN
'/ ~,
124 s “‘.\
s 5.8 By
/I .

] S0 iy ~

10 : :

i
i

Lh
<L

Fisher Information
Fisher Information
n
B2

=
-]

De D
FIGURE 1. Fisher information versus the dissociation energy for FIGURE 2. Fisher information versus the dipole moment fo¢ =

D =0, r. =1 (all quantities are in atomic units), with = 2 and 3, ro = 1 (all quantities are in atomic units), with = 2 and
m = 0. m = 2.

3.2.  Shannon entropy

The Shannon entropy quantifies the uncertainty associated with the localization of a particle in space. Lower entropy values
correspond to greater precision in predicting the particle’s location. The Shannon information entropy is defined as [55]

2T

f/p(f") log p(7) di" = f%//<1>(9)2x2)‘e*$ [Li)‘*l(:n)flog {NTCIJ(H)Q:EQA*le*Z [LEL’\*I(:I:)]Q} dx df
00

S(p)

2 o0
_ 7N /Ierfx [Lfﬁfl(:c)]zlog {N%mqeﬂ [Lf{\*l(z)]z a?re ™ [L2 1(35)] dz, (31)

432
0

with x = 24r and
2

Iy = /@(9)2 log(®(0)?) df = 7 (1 — 21og(2)), (32)
0
where the logarithm is taken in basaince we are interested in natural units. The inte@2) is easily obtained for the case
of b = 0. Forb # 0 one can also show that the integral tends to the same \@2)ieT(he integral 81) can be decomposed into
four separate integrals
IyN?2
432

For the other three integral parts, it is connivent to introduce the orthonormal Laguerre polynomials

h zPe® [Lgl’\_l(:c)]2 dx = —ﬁ. (33)

™

Sy =

P(n+1) H
() { ()\JrnJrl)] n(@), (34)
because they satisfy the simplified orthonormal relation

/ LN (2)L) (x)e 2 do = Sy (35)
0
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6 A. BECIR AND M. MOUMNI

TABLE |. Fisher information and Shannon entropy for some diatomic moleculeswitld.2, D = 0.4 in atomic units.

Fisher Information Shannon Entropy
n m I(Csz) I(Liz) I(SiSn) S(C's2) S(Liz) S(SiSn)
0 1.20 3.01 6.32 6.2815 5.3274 4.6874
1 1 1.15 2.86 6.46 6.3875 5.4561 4.7559
2 1.13 2.75 6.52 6.5810 5.6816 4.8837
0 1.39 3.34 8.20 6.9706 6.0591 5.2857
2 1 1.32 3.14 7.80 7.0611 6.1641 5.3459
2 1.25 291 7.73 7.2296 6.3581 5.4591
0 1.25 2.84 8.11 8.0276 7.1660 6.2181
4 1 1.18 2.74 7.84 8.0971 7.2455 6.2676
2 1.10 2.52 7.61 8.2311 7.3980 6.3601
0 0.998 2.27 7.08 8.8416 8.0125 6.9510
6 1 0.958 2.17 6.74 8.8981 8.0750 6.9925
2 0.910 2.01 6.66 9.0096 8.2010 7.0710
0 0.798 1.77 5.95 9.5087 8.7020 7.5595
8 1 0.770 1.70 5.76 9.5562 8.7525 7.5960
2 0.733 1.58 5.63 9.6512 8.8600 7.6640

The remaining integrals are then given by

o0

2 2
e [ () i)
0
Sy = 7;2722 /azz’\e”” [L?{\fl(ff)f log (z2*~1e~%) dx = (n+2X0) [-(2A - 1)‘1;22‘:_?\;\ +1)+2n+2)0+ 1}7 37)
0
where¥(z) = I'' (z) /T'(z) is the Digamma function [57].
N2T 2\) [ T 2 N 2
Sy = —7:1@15?”_: 1)) /0 ze® [L?_l(x)} log ([Li’\_l(x)} ) dx
-1 (—6n” + 4 nlogn + 2n [log(2m) — 4X — 2] + O(n)) . (38)

2(n+A)

The last integral is derived using thenorm method [58] at the asymptotic limits. By applying E@2)( (33), and 36)—(38),
and simplifying the resulting expression, the Shannon entfjsygiven by

5—24:5—4 +2A 1 i P
= T\ 2t N ) T2ntaa

X (2n)\ +hn 41+ (1= 2))(n+20)T(n+ 2)) — 2n[2AInn + In(27)] + O(n)). (39)

4. Tsallis and Renyi entropies

The Tsallis entropy is a generalization of the Shannon entropy within the framework of non-extensive statistical mechanics. It

is defined as follows [55] )
q_il(l*Wq[P])’ ¢>0, g¢#L (40)

The Renyi entropy serves as another extension of the Shannon entropy and is defined as [55]

T, =
1
Rq = ?qlog (W‘Z[p]) ) q > 0) q 7& 17 (41)
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FIGURE 3. Shannon entropy versus the dissociation energy for FIGURE 4. Shannon entropy versus the dipole momentiar =

D = 0, r. = 1 (all quantities are in atomic units), with = 2 3, ro = 1 (all quantities are in atomic units), with = 2 and
andm = 0. m=2.
where
- N2q( g — Hl2r 2A—1)+1 —qz [722—1 2q
Wilol = [ (ot dr= oy 21 / A1 e A1) g, (42)
0
In (42) we have used the substitutien= 28r and the fact that
2 (2 1)”
2q - q— I
/ @) o = o, (43)
0

To evaluate the integral on the right-hand side of E42) (t is useful to employ the linearization formula of Srivastava-
Niukkanen for the products of various Laguerre polynomials [59]

2" LD (1 2) L) (tow) - - - L&) (t,) Z% A {mit {es}, {t:3) L (), (44)
k=0

which is given in terms of the Lauricella’s hypergeometric functiong-ef 1) variables as

e (s A7y fmi}, {a}, {6:3) = A+ 1), (“1; ml) (0‘2;27”2)

1

. <ar”j74_mr) x Ff(4r+1) [77_'—,”’_'_ 1,—m1,...,—mr,—k;a1 + 17.-.707« + 1777+ 1;t17"'at’r'a1]7 (45)
where the Pochhammer symb@l),, = T'(a + n)/T'(a) and (‘“;[Lm) are the binomial coefficients. For the special case
=0, a1 ==, =22A—-1, my=--=mp=n, c=qt, t1=---=t,=1/q, p=q2A—1)+1, r=2q) we
obtain the linarization

(qt) =D+ L ¢ ] Z% ( (2 — 1) +1,0,2¢, {n}, {2\ — 1}, { }) O (qt). (46)

q

The orthogonality property of the polynomléﬁa ) implies that the term wittk = 0 is the only non-vanishing contribution
to the integral42) [59]. Thus,
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FIGURE 5. Tsallis entropy versus the dissociation energy for FIGURE 6. Renyi entropy versus the dissociation energyfoe=

D = 0, r. = 1 (all quantities are in atomic units), with = 2
andm = 0.
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FIGURE 7. Tsallis entropy versus the dipole moment foe = 3,
r. = 1 (all quantities are in atomic units), with = 2 andm = 2.

/OO xq(2)\—1)+1e—qac [Lg(l‘)]zq dr =
0 q

where

=T(q(2A — 1) +2) (2’\ +n” 1> x POy [q(Q)\—l)—i—Q, =, 052X, 2M T
q

0, re = 1 (all quantities are in atomic units), with = 2 and
m = 0.
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FIGURE 8. Renyi entropy versus the dipole moment foe = 3,
r. = 1 (all quantities are in atomic units), with = 2 andm = 2.

ﬁ'yo <q(2)\ —1)+1,0,2q,{n}, {2) — 1}, {é}) , 47

! , 1] . (48)

| =
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TaBLE Il. Tsallis and the Renyi entropies for some diatomic molecules &vith0.2, D = 0.4 in atomic units.

Tsallis Entropy Renyi Entropy
n m T(Cs2) T(Lis2) T(SiSn) R(Cs2) R(Li2) R(SiSn)
0 0.99751 0.99350 0.98784 5.9954 5.0362 4.4098
1 1 0.99777 0.99430 0.98866 6.1056 5.1670 4.4792
2 0.99816 0.99547 0.99003 6.2992 5.3962 4.6084
0 0.99876 0.996882 0.99336 6.6897 5.7715 5.0144
2 1 0.99887 0.99722 0.99375 6.7849 5.8848 5.0756
2 0.99904 0.99771 0.99443 6.9526 6.0812 5.1898
0 0.99957 0.99898 0.99740 7.7518 6.8894 5.9541
4 1 0.99960 0.99907 0.99753 7.8273 6.9778 6.0038
2 0.99965 0.99920 0.99775 7.9600 7.1311 6.0969
0 0.99981 0.99957 0.99876 8.5686 7.7410 6.6907
6 1 0.99982 0.99960 0.99881 8.6316 7.8141 6.7326
2 0.99984 0.99964 0.99890 8.7413 7.9400 6.8115
0 0.99990 0.99978 0.99933 9.2367 8.4331 7.3023
8 1 0.99991 0.99980 0.99935 9.2909 8.4956 7.3386
2 0.99992 0.99982 0.99939 9.3847 8.6028 7.4069
Hence

N24 (2g — 1)N127 1 1
Wl][p] = 2ﬂ2 2qq| qq(2)\71)+2 Yo (Q(Q)\ - 1) + 1707 QQa {n}a {2)‘ - 1}5 {q}) ) (49)

so that the Tsallis and the Renyi entropies become

1 N24 (2g — 1)!12m 1 1

fa=oo1 [1 Tap T 2ugl g (q(” ~D+L0.2 {nh {22 =1}, {q})] ’ (%0
1 N2¢ (2q — 1)!127 1 1

Ry=q— T (452 21gl quea D2 10 (q(” — 1) 41,02, {n}, {22~ 1}, {q}>> ’ D

where the normalization constaitis defined by expressio20).

5. Results and discussion

ImoIecuIe. A higher dissociation energy implies that the bond

This section is devoted to the discussion of our numericaPetween the atoms within the molecule is more stronger,
and graphical results. For convenience, we use the Hartréthich results to electrons being more tightly held between
atomic units defined byi = ¢ = m, = 4wy = 1 (all fig-  the atoms leading to a higher degree of localization. More-
ures in this article are sketched using atomic units). In Fig. 0Ver, Fig. 1 shows that the Fisher information decreases with
we have examined the effect of dissociation endpgyn the  the increase of AB field parametérindicating a decrease in
Fisher information for different values of the AB field param- localization.

eterd. First, we mention that the Fisher information is related  In Fig. 2 we have plotted the Fisher information against
to the quantum kinetic energy, wherein the kinetic energy ighe dipole moment term® for different values of AB field
decomposed into classical kinetic energy and purely quanturparametep. In this figure, and elsewhere when we discuss
kinetic energy, with the latter term is the Wehzrker term, the impact of dipole moment on different information mea-
which is essentially identical to the Fisher information [60]. sures we have to consider the accuracy of the characteristic
Figure 1 shows that the Fisher information increases with th@umber of the Mathieu function in E¢1@). Therefore, we
increasing of the dissociation ener@, implying raise in  have carefully selected values for the involved parameters to
degree of localization. This is obvious since the dissociaensure that the characteristic number remains consistent with
tion energy is amount of energy required to break the bondifferent leading terms. Fan = 0,1, the accuracy of the
and separate the combining atoms in the molecule. In theharacteristic number (10) is held fox 1. Form = 2, the
framework of electronic structure dissociation energy con-accuracy can be extended to value$ ap to 20. The higher
nects with the degree of electron localization withinthe the angular number, the wider range ob required for the
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10 A. BECIR AND M. MOUMNI

accuracy of the characteristic number. In our case, we chooseeans higher accuracy in predicting localization and stabil-
m = 2. Fig. 2 illustrates that increasing the dipole momentity. The Fisher information decreases with the increasing of
and AB field parametef leads to a decrease in Fisher in- quantum angular number, and increases then decreases
formation, which results to a loss of information regardingwith the increasing of quantum radial number. The ra-
localization. dial number that gives the maximum value to the Fisher in-
In Figs. 3 and 4, we have depicted the influence of dissoformation can be rounded analytically or numerically from
ciation energy and dipole moment on the Shannon entrop¥q. (30).
respectively. The Shannon entropy gives insights into the
precision and spatial localization of particles and it reflect .
the probability distribution and stability of the system. ASG' Conclusion
lower Shannon entropy indicates greater accuracy in predicip this paper, we first derived the exact analytical solution of
ing particle localization and, consequently, higher stability.ine Schidinger equation for a 2D system subjected to a non-
Figure 3 illustrates that dissociation energy reduces ShannQxniral scalar potential and a vector potential of Aharonov-
entropy, thereby enhancing precision and spatial localizationggnm (AB) effect and obtained the corresponding wave func-
This observation aligns with our previous findings, as dissotions and energy eigenvalues, where the non-central poten-
ciation energy governs the bond strength between atoms ifly| js composed of a Kratzer potential plus a dipole mo-
a molecule. Higher dissociation energy implies tighter eleCient term. Subsequently, we conducted both analytical and
tron binding between atoms, leading to increased localizanymerical investigations into the information-theoretic mea-
tion. Figure 4 shows that the dipole moment increases thg,res namely, Fisher information, Shannon entropmnyR
Shannon entropy and hence decreases the precision and léhtropy, and Tsallis entropy.
calization as expected. Moreover, akin to the Fisher informa-  Thg analysis of these information-theoretic measures was
tion scenario, the AB field parameteadversely affects the  carried out for various parameters, including the dissociation
accuracy of particle localization prediction. Shannon e”tr0p3énergyDe, the dipole momenD, the AB field paramete,
increases witld, resulting in a loss of precision and increased g5 \vell as the radial and angular quantum numbers for select
uncertainty regarding particle localization in space as showgjatomic molecules. Our findings showed that the Fisher in-
in Figs. 3and 4. formation increases with an increase in dissociation energy
We should note that we have used a numerical method fODe, while it decreases with increasing of dipole momant
evaluating and plotting the Shannon entropy in Figs. 3 anh\g field parametew, and the radial and angular quantum
4. The reason for this is that the last integral of the ShannoR ;mpers.
entropy Sy, Eq. [38), suits high radial numbers since itis |5 contrast, the ShannongRyi, and Tsallis entropies ex-
calculated in the asymptotic limits [58]. . _ hibit a decrease with the rising dissociation enefgyy, and
In Figs. 5 and 6, as well as 7 and 8, we investigatedy, jncrease with decreasing of dipole moméntAB field
the influence of dissociation energy and dipole moment ony, ameters, and the radial and angular quantum numbers.
Tsallis and Renyi entropies, respectively. These entropies affhese observations collectively suggest that higher dissoci-
just generalizations of Shannon entropy. Figures 5 and %iion energy enhances precision and particle localization in
show that the decreasing dissociation energy results in lowefhace. Furthermore, our observations indicate that increas-
Tsallis and Renyi entropies, which results in enhancing P'€ing the dipole moment, AB field parameter, and radial and

cision and spatial localization. Conversely, increasing theangular quantum numbers reduce the degree of particle lo-
dipole moment leads to higher Tsallis and Renyi entropiesggjization.

thus reducing precision and spatial localization, as depicted

in Figs. 6 and 8. Additionally, an increase in the AB field

paramete® leads to a loss in precision and an increase ifACknowledgement

unc_?rtalnty regarding particle localization in space. _This work is supported by PRFU Research Project PRFU
ables | and Il demonstrate the numerical analysis of ) .
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