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A novel symmetry property of the Fourier transform
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This manuscript presents and proves a reciprocity relation involving the Fourier transforms of a pair of square-integrable functions, expressed
as a bilinear map. This reciprocity relation reveals a deep symmetry between the time (or spatial) and frequency domains. We explore its
implications in theoretical and applied contexts such as signal processing, quantum mechanics, and computational physics. Additionally, we
discuss the role of this relation in the bilinear nature of Fourier analysis.
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1. Introduction

The Fourier transform (FT) is probably the most known and
applied integral transform in sciences and engineering. It was
introduced first by the French mathematician Joseph Fourier
when he was characterizing the behavior of the heat along
a rigid bar [1,2]. FT provides a connection between the
time/spatial domain and the frequency domain. It has wide
applications in various fields such as optics [3-6], quantum
mechanics [7-10], and acoustics [11-13]. It is a very impor-
tant mathematical tool for signal analysis [14,15] and digital
image processing [16], where it is commonly used as a filter
or feature extractor [17-19].

The FT takes a functionf(x) living in the space domain
x and gets its representation in the spatial frequency domain
k. The standard definitions of the one-dimensional FT and its
inverse read as [20,21]

F [f(x)] = F (k) =
∫ ∞

−∞
f(x)e−ikxdx, (1)

F−1[F (k)] = f(x) =
1
2π

∫ ∞

−∞
F (k)eikxdk, (2)

where (x, k) are the space and spatial frequency variables
running along the real axes(−∞,∞). The FT of the func-
tion f(x) is defined only when the integral converges for all
values ofk.

In this manuscript, we investigate a symmetry in the
Fourier transform that expresses a reciprocity relation be-
tween two square-integrable functions and their FTs. This
symmetry is represented as a bilinear map, demonstrating an
equivalence between the integrals of the Fourier transforms
of two functions in different orders. To the best of our knowl-
edge, this property has not been published anywhere else.

Therefore, the primary goal of this manuscript is to derive
and prove a Fourier transform bilinear reciprocity relation of
the form,

∫ +∞

−∞
F [f(x)]g(k)dk =

∫ +∞

−∞
F [g(x)]f(k)dk. (3)

We discuss the bilinear nature of this reciprocity and its po-
tential applications. The manuscript is divided as follows. In
Sec. 2, some properties of the Fourier transform that are re-
lated to Eq. (3) are discussed. In Sec. 3, the new property is
proved and named. Also, this section discussed its practical
implications with illustrative examples. Finally, the conclu-
sions are given.

2. Properties of the Fourier transform

Before we introduce the bilinear reciprocity property be-
tween pairs of square-integrable functions, we introduce the
most well-known properties of the Fourier transform that can
be related to the mentioned property.
Linearity. The first property is linearity. Given the functions
f(x) andg(x), anda andb are constants,

F [af(x) + bg(x)] = aF (k) + bG(k). (4)

The FT of a linear combination of functions is the same lin-
ear combination of their transforms. This property allows us
to break down complex functions into simpler components
[22].
Time shifting. the time shifting property considersf(x) and
its FTF (k), then,

F [f(x− x0)] = e−jkx0F (k). (5)

Shifting a signal in the time domain corresponds to multiply-
ing its FT by a complex exponential. This is useful when
analyzing delayed functions [15].
Frequency shifting. This property relates the functionf(x)
and its FourierF (k) with,

F [ejk0tf(x)] = F (k − k0). (6)

Multiplying a signal by a complex exponential shifts its spec-
trum in the frequency domain. This property is fundamental
in modulation applications [15].
Symmetry. This property is stated as,

F (−k) = F ∗(k). (7)
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The FT of a real signal exhibits conjugate symmetry.
Duality. The duality property of the FT for a single function
f(x) is written as,

F [F (x)] = 2πf(−k). (8)

The above equation means that FT of a time-domain signal
corresponds to an inverse FT in the frequency domain and
vice-versa [22].
Convolution theorem. The convolution theorem relates two
given functionsf(x) andg(x) and their Fourier transforms
F (k) andG(k), with the following expression,

F [f(x) ∗ g(x)] = F [f(x)] ·F [g(x)]. (9)

Convolution in the time domain corresponds to multiplication
in the frequency domain.
Multiplication theorem. Similar to the convolution theo-
rem, the multiplication theorem states,

F [f(x) · g(x)] =
1
2π

F [f(x)] ∗F [g(x)]. (10)

Multiplication in the time domain corresponds to convolution
in the frequency domain.
Parseval’s theorem.The Parseval’s theorem, an implication
of the energy conservation principle, considers for any func-
tion f(x),

∫
|f(x)|2 dx =

1
2π

∫
|F (k)|2 dk. (11)

The total amplitude of a function remains the same whether
computed in the time/space domain or frequency domain
[23]. Once we have stated the properties that can be related
to the proposed property, we can follow up with the proof of
the bilinear reciprocity property in the following section.

3. The swapping symmetry property of
Fourier transform

The swapping pairs symmetry property of the FT can be
stated as the following theorem.

Theorem If f(x) and g(x) are two square integrable
functions depending only on the real variablex ∈ (−∞,∞),
then the following equality holds,

∫ +∞

−∞
F [f(x)]g(k)dk =

∫ +∞

−∞
F [g(x)]f(k)dk. (3)

Above, equality implies that functionsf(x) andg(x) can be
interchanged in the integrands by keeping invariant the evalu-
ation of the integral. Nevertheless, be aware that because the
functionsf(x) andg(x) are independent each other, then the
integrandsF [f(x)]g(k) andF [g(x)]f(k) will be different
in general. To the best of my knowledge, the symmetry prop-
erty of the FT in Eq. (3) has not been reported nor applied in
the literature associated to FT.

Proof Let us apply the definition of the FT Eq.(1) in both
sides of the equality in Eq.(3). Let us get first for the left side

∫ +∞

−∞
F [f(x)]g(k)dk

=
∫ +∞

−∞

∫ +∞

−∞
f(x)g(k)e−ikxdxdk, (12)

and then for the right side,
∫ +∞

−∞
F [g(x)]f(k)dk

=
∫ +∞

−∞

∫ +∞

−∞
g(x)f(k)e−ikxdxdk. (13)

Comparing the right sides of Eqs. (14) and (15) and observ-
ing that the reciprocal variablesx andk run interchangeably
over the real axis(−∞,∞), it is easy to conclude that both
integrals necessarily yield the same value.

Equation (3) expresses a duality of the FT off(x) paired
with g(k), which behaves the same as the FT ofg(x) paired
with f(k). This duality suggests that knowledge of a sys-
tem in Fourier analysis can be equivalently represented in
two complementary ways. Our knowledge of the system in
Fourier analysis is invariant under a change of representation,
which aligns with the epistemological idea that different per-
spectives of a system can lead to the same understanding, giv-
ing a global perspective on the system. Therefore in Fourier
analysis, the knowledge of a system is not fragmented but
interconnected. While the two integrals are equal, they rep-
resent different ways of understanding the system.

Notice that Eq. (3) holds for FT linearity property. There-
fore, it is directly related to Eq. (4). Equations (5) and (6) are
the relations of the space/time and frequency-shifting prop-
erties, respectively. They cannot be interchangeable in Eqs.
(14) and (15) since they do not consider any shifting parame-
tersx0 or k0. Therefore, Eq. (3) is not a consequence of Eq.
(4) or Eq. (5).

Observe that the symmetry property expressed in Eq. (7)
also applies in Eq. (3), replacing Eq. (7) in Eq. (14),

∫ +∞

−∞
F [f(−x)]g(k)dk

=
∫ +∞

−∞

∫ +∞

−∞
f(x)g(k)eikxdxdk, (14)

and then Eq. (7) in Eq. (15),
∫ +∞

−∞
F [g(−x)]f(k)dk

=
∫ +∞

−∞

∫ +∞

−∞
g(x)f(k)eikxdxdk. (15)

Convolution theorem and multiplication theorem con-
sider shifting parameters which are not presented in Eq. (3).
The computations between the functions in the mentioned
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theorem are only in space/time domain or on the frequency
domain. On the other hand, the computation between the
functions in Eq. (3) are mixed in space/time domain and fre-
quency domain. Therefore, Eq. (3) is not directly related to
the convolution theorem and multiplication theorem.

Equation (3) is not so related to the Parseval theorem in
a direct way. Parseval’s theorem states that the inner prod-
uct of a function in the time domain is preserved in the fre-
quency domain. In Eq. (3) considers two different indepen-
dent square-integrable functions. Equation (3) cannot be seen
as the inner product between functionsf(x) and g(x) and
the Fourier representation of the other. The inner product
measures the extent to which one function projects onto an-
other. If the inner product is large, it indicates that the two
functions are similar in shape or behavior over the domain
x ∈ (−∞,∞). Conversely, if the inner product is zero, the
functions are orthogonal. But Eq. (3) is not an inner product
since it does not consider the conjugate of any of the func-
tions of their Fourier representation. The operation computed
in Eq. (3) is not an inner product but a bilinear map.

A bilinear map is an operation that maps two functions
into a scalar through two linear operations [24]. In the con-
text of Fourier transforms, we are dealing with a bilinear
map because we are performing an integral that involves both
F [f(x)] and g(k), and similarly for the inverse. The key
property of a bilinear map is that it is linear in both of its

arguments. This can be seen in the following form for the
bilinear mapB(f, g),

B(f, g) =
∫ ∞

−∞
F [f(x)]g(k) dk. (16)

A bilinear formB onL2 is a mapB : L2×L2 → C such
that for all functionsf, g, h ∈ L2 and scalarsα, β ∈ C

Linearity in the first argument: B(αf + βg, h) =
αB(f, h) + βB(g, h) for all f, g, h ∈ L2 and scalarsα, β.

B(αf + βg, h) =
∫ ∞

−∞
F [αf(x) + βg(x)]h(k)dk

= α

∫ ∞

−∞
F [f(x)]h(k)dk + β

∫ ∞

−∞
F [g(x)]h(k)dk

= αB(f, h) + βB(g, h). (17)

Linearity in the second argument: B(f, αg + βh) =
αB(f, g) + βB(f, h) for all f, g, h ∈ L2 and scalarsα, β.

B(f, αg + βh) =
∫ ∞

−∞
F [f(x)](αg(x) + βh(k))dk

=α

∫ ∞

−∞
F [f(x)]g(k)dk+β

∫ ∞

−∞
F [f(x)]h(k)dk

= αB(f, g) + βB(f, h). (18)

FIGURE 1. Plots for first example. a) The spatial domain off(x) andg(x), in black and red, respectively. b)F (k) andG(k), in black and
red, respectively. c)F [f(x)]g(k). d) f(k)F [g(x)].
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FIGURE 2. Plots for the second example. a) The spatial domain off(x) andg(x), in black and red respectively. b) The spectral domain of
f(x) andg(x), in black and red respectively. c) The integrantF [f(x)]g(k) and in d) The other integratef(k)F [g(x)].

If both conditions are satisfied, then the mapB is a bilin-
ear form on the spaceL2. In the case of Eq. (16) are satisfied
since it is an integral and the FT is an integral too. Integrals
are linear operators. Eq. (3) is a reflection of this bilinearity.
Thus, both sides of the equation are equal, proving the reci-
procity relation. This result demonstrates the bilinear sym-
metry inherent in the Fourier transform. Therefore, we shall
call Eq. (3) the Fourier transform bilinear reciprocity prop-
erty.

The following example considers the two classical func-
tions in Fourier analysis,f(x) = e−x2

andg(x) a step rect-
angle function. The plot of thef(x) andg(x) is in up-left
of Fig. 1. On the same figure at theup-right is the spectral
representation off(x) andg(x). The integrants of Eq. (3)
are plotted atbottom-left bottom-right. As predicted by
Eq. (3), the area below the curve of integrantsF [f(x)]g(k),
f(k)F [g(x)] has the same value. The value is 1.3047.

The next example considers a more complicated pair
of functions and their FTs.f(x) = e−x2

H4(x), where
H4(x) is a Hermite polynomial of 4-th order andg(x) =
cos(x)e−x2/5. The space domain and frequencies off(x)
andg(x) are presented inup-left andup-right of Fig. 2, re-
spectively. F [f(x)]g(k) is ploted in thebottom-leftand
f(k)F [g(x)] in the bottom-rightof the same figure. After
numerically computing the integral over(−∞,∞) over the

two integrals, we conclude that they have the same value of
−3.21866.

The final example considers the following functions and
the frequency representation.

f(x) =
1

1 + x2
, g(x) = Ai(x), (19)

where Ai(x) is an Airy function, which is a special function
that is an independent solution of the following differential
equation

d2y

dx2
− xy = 0. (20)

For this example, it is important to remark that Ai(x) is a
square-integrable function. The FTsf(x) andg(x) are given
by,

F (k) =
√

π

2
e−|k|, G(k) =

e−
ik3
3√

2π
, (21)

in Eq. (19) is plotted inup-left of Fig. 3, f(x) andg(x) are
in red and black, respectively. Equation (21) is plotted inup-
right of Fig. 3. In black isF (k), and in red and orange are
the real and imaginary parts ofG(k). At bottom-leftis the
integrantF (k)g(k) and atbottom-rightis f(k)G(k), where
in black is the real part and in orange the imaginary. Numer-
ically computing both integrals of Eq. (3) for this example,
we get the result of 0.703319 in both cases.
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FIGURE 3. Plots for the third example. a) The spatial domain off(x) andg(x), in black and red respectively. b) Spectral domain,F (k)
andG(k). F (k) is in black, the real part ofG(k) is red and it’s imaginary is orange. c) The integrantF [f(x)]g(k). d) The real part of
f(k)F [g(x)] is black and it’s imaginary is orange.

We have computed three different examples, and the re-
sults are just as expected by Eq. (3). This should not be a sur-
prise since the proof was done for a pair of square-integrable
functions and the FTs. We had obtained a bilinear symmetry
of the FT. The FT is widely applied in several fields in science
and engineering. Therefore, this bilinear symmetry provides
insights in all the fields where FT is applied.

For example, in signal processing, the bilinear map na-
ture of the Fourier transform may allow us to manipulate sig-
nals by exchanging their roles in the time and frequency do-
mains. The reciprocity relation can be used in filter design,
where the relationship between time-domain signals and their
frequency-domain counterparts is key. This symmetry could
also simplify the design of algorithms for signal reconstruc-
tion or denoising [15]. In quantum mechanics, Fourier trans-
forms are employed to relate wavefunctions in position space
and momentum space. The reciprocity relation highlights the
inherent symmetry in the exchange of spatial and momen-
tum representations, which could help in simplifying prob-
lems involving wave-particle duality and quantum state rep-
resentations [7,9]. The bilinear nature of the Fourier trans-
form reciprocity relation has practical implications in com-
putational physics and numerical methods. The ability to
exchange functions and their Fourier transforms efficiently
can improve algorithms for processing large datasets, espe-
cially when performing operations like filtering, deconvolu-

tion, and Fourier-domain analysis [16]. But for the moment,
all the mentioned potential applications are considered to be
the next step in this research and are out of the scope of this
manuscript.

4. Conclusion and future directions

In this manuscript, we presented the Fourier transform bi-
linear reciprocity property that reveals the bilinear symme-
try between the Fourier transforms of two square-integrable
functions. This result highlights the deep connection between
the spatial and frequency domains and provides new insights
into the symmetry of Fourier analysis. We provided some
examples that behaved as expected.

Future research shall explore the applications of this bi-
linear symmetry in fields where FT is applied, such as op-
tics, signal processing to quantum mechanics, computational
physics and numerical methods.
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