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A novel symmetry property of the Fourier transform
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This manuscript presents and proves a reciprocity relation involving the Fourier transforms of a pair of square-integrable functions, expressec
as a hilinear map. This reciprocity relation reveals a deep symmetry between the time (or spatial) and frequency domains. We explore its
implications in theoretical and applied contexts such as signal processing, quantum mechanics, and computational physics. Additionally, we
discuss the role of this relation in the bilinear nature of Fourier analysis.
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1. Introduction We discuss the bilinear nature of this reciprocity and its po-
tential applications. The manuscript is divided as follows. In
The Fourier transform (FT) is probably the most known andsec. 2, some properties of the Fourier transform that are re-
applied integral transform in sciences and engineering. It wagted to Eq. ) are discussed. In Sec. 3, the new property is
introduced first by the French mathematician Joseph Fourigfroved and named. Also, this section discussed its practical

when he was characterizing the behavior of the heat alongnplications with illustrative examples. Finally, the conclu-
a rigid bar [1,2]. FT provides a connection between thesjons are given.

time/spatial domain and the frequency domain. It has wide
applications in various fields such as optics [3-6], quantu . .
mechanics [7-10], and acoustics [11-13]. Itis a very impor-=" Properties of the Fourier transform

tant mathematical tool for signal analysis [14,15] and digitalBefore we introduce the bilinear reciprocity property be-

image processing [16], where it is commonly used as a filtefeen pairs of square-integrable functions, we introduce the

or feature extractor [17'1_9]' L . most well-known properties of the Fourier transform that can
The FT takes a functioifi(x) living in the space domain pq related to the mentioned property.

« and gets its representation in the spatial frequency domaipinearity. The first property is linearity. Given the functions
k. The standard definitions of the one-dimensional FT and |t§f(x) andg(z), anda andb are constants

inverse read as [20,21]
- | Flaf(x) + by(x)] = aF (k) + bG (k). @)
FUa) = F ) = [ fla)e s, @

The FT of a linear combination of functions is the same lin-

1 oo ear combination of their transforms. This property allows us

g‘*l[F(/g)] = f(z) = 27/ F(k)e““dk, 2) to break down complex functions into simpler components
T J—oo [22].

where (z, k) are the space and spatial frequency variableg—Ime shifting. the time shifting property conside¢z) and

running along the real axds-oo, c0). The FT of the func- Its FT F'(k), then,
tion f(x) is defined only when the integral converges for all F[f(x — m0)] = e T F(k). (5)
values ofk.

In this manuscript, we investigate a symmetry in theShifting a signal in the time domain corresponds to multiply-
Fourier transform that expresses a reciprocity relation being its FT by a complex exponential. This is useful when
tween two square-integrable functions and their FTs. Thignalyzing delayed functions [15].
symmetry is represented as a bilinear map, demonstrating drfequency shifting. This property relates the functiof{z)
equivalence between the integrals of the Fourier transformand its Fouriet (k) with,
of two functions in different orders. To the best of our knowl- ot
edge, this property has not been published anywhere else. Zle™ f(@)] = F(k = ko). ©)

Therefore, the primary goal of this manuscript is to derivemultiplying a signal by a complex exponential shifts its spec-
and prove a Fourier transform bilinear reciprocity relation oftrum in the frequency domain. This property is fundamental

the form, in modulation applications [15].
+oo oo Symmetry. This property is stated as,
| Fr@lanae= [ Sl @) ) — PO, )
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The FT of a real signal exhibits conjugate symmetry. Proof Let us apply the definition of the FT Eq.(1) in both
Duality. The duality property of the FT for a single function sides of the equality in E@J. Let us get first for the left side
f(z) is written as,

+oo
F(f(@)]g(k)dk
FIF(@)] = 2nf(~F). ®) L@
+oo  ptoo

The above equation means that FT of a time-domain signal = / / f(x)g(k)e~**dzdk, (12)
corresponds to an inverse FT in the frequency domain and —oo J—o0o
vice-versa [22]. _ and then for the right side,
Convolution theorem. The convolution theorem relates two
given functionsf(z) andg(x) and their Fourier transforms tee
F(k) andG(k), with the following expression, _ Zlo(@)lf (k)dk

Zf(@)* 9(@) = Z[[(@)] - Zlg@). (O _ /+°° /Jroog(a:)f(/f)e‘mdxdk. (13)

Convolution in the time domain corresponds to multiplication
in the frequency domain.

Multiplication theorem. Similar to the convolution theo-
rem, the multiplication theorem states,

Comparing the right sides of Eqsl4) and (L5) and observ-
ing that the reciprocal variablesand run interchangeably
over the real axi$—oo, o), it is easy to conclude that both
integrals necessarily yield the same value.
Equation B) expresses a duality of the FT ¢fx) paired
T () g@)] = o FU @)= Flg@). A0 iy g(k), which behaves the same as the FEE}i; paired
with f(k). This duality suggests that knowledge of a sys-
tem in Fourier analysis can be equivalently represented in
two complementary ways. Our knowledge of the system in
Fourier analysis is invariant under a change of representation,
tion £(z) which aligns with the epistemological idea that different per-
' spectives of a system can lead to the same understanding, giv-
1 ing a global perspective on the system. Therefore in Fourier
/\f(:v)|2 do = / |F()[* dk. (11)  analysis, the knowledge of a system is not fragmented but
interconnected. While the two integrals are equal, they rep-
The total amplitude of a function remains the same whetheresent different ways of understanding the system.
computed in the time/space domain or frequency domain Notice that Eq.8) holds for FT linearity property. There-
[23]. Once we have stated the properties that can be relatef@re, it is directly related to Eq4j. Equations%) and [6) are
to the proposed property, we can follow up with the proof ofthe relations of the space/time and frequency-shifting prop-
the bilinear reciprocity property in the following section. erties, respectively. They cannot be interchangeable in Egs.
(14) and (15) since they do not consider any shifting parame-
terszq or ko. Therefore, Eq.I3) is not a consequence of Eq.
(4) or Eq. ).
Observe that the symmetry property expressed inBg. (
ealso applies in Eq3), replacing Eq.[T) in Eq. (14),

Multiplication in the time domain corresponds to convolution
in the frequency domain.

Parseval’'s theorem.The Parseval’s theorem, an implication
of the energy conservation principle, considers for any func

3. The swapping symmetry property of
Fourier transform

The swapping pairs symmetry property of the FT can b

stated as the following theorem. +o0
Theorem If f(z) and g(z) are two square integrable / Ff(—=)]g(k)dk
functions depending only on the real variable (—oo, o), -
then the following equality holds, _ /+°° /+°° F(@)g(k)e e drdlk (14)
+oo +oo —o0 JToo
| Fr@latide= [ Flg@ls®dk. @ and then Eq i Eq. 15,
+oo
Above, equality implies that functiong(z) andg(x) can be / Flg(—x))f(k)dk
interchanged in the integrands by keeping invariant the evalu- -

ation of the integral. Nevertheless, be aware that because the oo ptoo 4

functionsf () andg(z) are independent each other, then the = / / g(@) f(k)e™* drdk. (15)
integrandsZ [f (x)]g(k) and.Z[g(x)]f (k) will be different T T

in general. To the best of my knowledge, the symmetry prop- Convolution theorem and multiplication theorem con-
erty of the FT in Eq./8) has not been reported nor applied in sider shifting parameters which are not presented in/8)q. (
the literature associated to FT. The computations between the functions in the mentioned
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theorem are only in space/time domain or on the frequencgrguments. This can be seen in the following form for the
domain. On the other hand, the computation between thbilinear mapB(f, g),
functions in Eg./8) are mixed in space/time domain and fre- ~
guency domain. Therefore, E®)(is not directly related to B(f,9) :/ Zf(2)]g(k) dk. (16)
the convolution theorem and multiplication theorem. —o0

Equation [B) is not so related to the Parseval theorem in Abilinear form B on L2 is amapB : L2 x L? — C such
a direct way. Parseval's theorem states that the inner proqhat for all functionsf, g, h € L2 and scalars., 3 € C
uct of a:;unction in the tijme do;nain is p:jefsferved indthe fre- Linearity in the f7irs’t argument: B(Oéf7+ Bg.h) —
guency domain. In Eq'3] considers two different indepen- 2 ’
dent square-integrable functions. Equat@ngannot be seen aB(f,h) +8B(g,h) forall f,g,h € L7 and scalars, .
as the inner product between functiofig:) and g(x) and o0
the Fourier representation of the other. The inner product Blaf+pg,h) = /Ooy[o‘f(x) + Bg(@)]h(k)dk

measures the extent to which one function projects onto an-

other. If the inner product is large, it indicates that the two - a/oo Ff(x)|h(k)dk + 5/00 Flg(x)h(k)dk
functions are similar in shape or behavior over the domain —o0 —oc0
x € (—o0,00). Conversely, if the inner product is zero, the — aB(f,h) + BB(g, h). 17)

functions are orthogonal. But E)(is not an inner product
since it does not consider the conjugate of any of the func- | inearity in the second argument: B(f, ag + 8h) =
tions of their Fourier representation. The operation computegéB(ﬁg) + BB(f,h) forall f,g,h € L? and scalars, 3.
in Eq. (3) is not an inner product but a bilinear map.

A bilinear map is an operation that maps two functions B(f,ag+ Bh) = /oo @) (ag(e) + Sh()dk
into a scalar through two linear operations [24]. In the con- —o0
text of Fourier transforms, we are dealing with a bilinear oo 0o
map because we are performing an integral that involves both :a/ ﬁ[f(x)]g(k)korﬂ/ F[f(z)|n(k)dk
Z[f(x)] and g(k), and similarly for the inverse. The key e e

property of a bilinear map is that it is linear in both of its =aB(f,g) + BB(f,h). (18)
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FIGURE 1. Plots for first example. a) The spatial domainfdfc) andg(x), in black and red, respectively. B)(k) andG(k), in black and
red, respectively. ¢y [f(x)]g(k). d) f(k).Z[g(x)].
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FIGURE 2. Plots for the second example. a) The spatial domaifi(@f andg(z), in black and red respectively. b) The spectral domain of
f(z) andg(x), in black and red respectively. c) The integraftf (z)]g(k) and in d) The other integratg(k).7 [g(x)].

If both conditions are satisfied, then the mas a bilin-  two integrals, we conclude that they have the same value of
ear form on the spack?. In the case of Eql) are satisfied —3.21866.
since it is an integral and the FT is an integral too. Integrals The final example considers the following functions and
are linear operators. Ec@)(is a reflection of this bilinearity. the frequency representation.
Thus, both sides of the equation are equal, proving the reci- 1
procity relation. This result demonstrates the bilinear sym- f(z) = 1122

g(x) = Ai(z),
metry inherent in the Fourier transform. Therefore, we shall o ) . L . .
call Eq. B) the Fourier transform bilinear reciprocity prop- Where Alz) is an Airy function, which is a special function
erty. that is an independent solution of the following differential

equation

(19)

The following example considers the two classical func-
tions in Fourier analysisf(z) = e’ andg(zx) a step rect-
angle function. The plot of th¢(z) and g(z) is in up-left
of Fig. 1. On the same figure at thup-right is the spectral
representation of (x) andg(x). The integrants of Eq[3]
are plotted atbottom-left bottom-right As predicted by
Eqg. (3), the area below the curve of integran® f (z)]g(k),
f(k)-Z[g(x)] has the same value. The value is 1.3047.

d’y
For this example, it is important to remark that(4) is a
square-integrable function. The Ff&x) andg(zx) are given

by,

(20)

ik3

P =[5, 6= —.

The next example considers a more complicated paiin Eq. (19) is plotted inup-leftof Fig. 3, f(z) andg(z) are
of functions and their FTs. f(z) = e—”2H4(x), where inred and black, respectively. Equati@iy is plotted inup-
Hy(x) is a Hermite polynomial of 4-th order ang{z) =  right of Fig. 3. In black isF'(k), and in red and orange are
cos(m)e—wz/f’. The space domain and frequenciesf¢f)  the real and imaginary parts 6f(k). At bottom-leftis the
andg(z) are presented inp-leftandup-right of Fig. 2, re-  integrantF(k)g(k) and atbottom-rightis f(k)G(k), where
spectively. .Z#[f(x)]g(k) is ploted in thebottom-leftand in black is the real part and in orange the imaginary. Numer-
f(k)Z[g(x)] in the bottom-rightof the same figure. After ically computing both integrals of Eg3) for this example,
numerically computing the integral ovér oo, co) over the we get the result of 0.703319 in both cases.

(21)
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FIGURE 3. Plots for the third example. a) The spatial domainf¢f) andg(z), in black and red respectively. b) Spectral domditik)
andG(k). F(k) is in black, the real part of7(k) is red and it's imaginary is orange. c) The integrafff(z)]g(k). d) The real part of
f(k)ZF[g(x)] is black and it's imaginary is orange.

We have computed three different examples, and the retion, and Fourier-domain analysis [16]. But for the moment,
sults are just as expected by E8).(This should not be a sur- all the mentioned potential applications are considered to be
prise since the proof was done for a pair of square-integrablthe next step in this research and are out of the scope of this
functions and the FTs. We had obtained a bilinear symmetrynanuscript.
of the FT. The FT is widely applied in several fields in science
_anq engineering. Therefore, this _blllnea_r symmetry prowdeSZL Conclusion and future directions
insights in all the fields where FT is applied.

In this manuscript, we presented the Fourier transform bi-

For example, in signal processing, the bilinear map nal. X - h s the bili
ture of the Fourier transform may allow us to manipulate sig-'""¢&/ remprogty property t "’}t reveafs the bilinear symmel-
nals by exchanging their roles in the time and frequency dolTY Petween the Fourier transforms of two square-integrable

mains. The reciprocity relation can be used in filter designfunctions. This result highlights the deep connection between

where the relationship between time-domain signals and thefpe spatial and frequency domains and provides new insights
frequency-domain counterparts is key. This symmetry couldt© the symmetry of Fourier analysis. We provided some
also simplify the design of algorithms for signal reconstruc-€X@mples that behaved as expected. o L
tion or denoising [15]. In quantum mechanics, Fourier trans- P uture research shall explore the applications of this bi-

forms are employed to relate wavefunctions in position Spacgnear_symmetry in _flelds where FT is appl_led, such as op-
and momentum space. The reciprocity relation highlights thdiCS: Signal processing to quantum mechanics, computational
inherent symmetry in the exchange of spatial and momenRNYSics and numerical methods.

tum representations, which could help in simplifying prob-

lems involving wave-particle duality and quantum state repfunding

resentations [7,9]. The bilinear nature of the Fourier trans-

form reciprocity relation has practical implications in com- There is no funding award related to this research.
putational physics and numerical methods. The ability to

exchange functions and their Fourier transforms efficientlyDjsclosures

can improve algorithms for processing large datasets, espe-

cially when performing operations like filtering, deconvolu- The author declares no conflicts of interest.
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