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A comprehensive algorithm using a fixed toroidal
magnetic field for plasma equilibrium with flow
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This study presents a finite element method (FEM) solver developed to compute the steady equilibrium of an axisymmetric plasma with
toroidal flow. The main objective of the algorithm is to determine the free parameters of the toroidal current source using two key constraints:
the measured toroidal magnetic field (TMF) at the magnetic axis and the global error defined by Hilbert. To ensure the accuracy of the
performed code, the validation was performed using typical parameters of the JT-60SA (Japan Torus-60 Super Advanced) experiments, and
its TMF equal toB0 = 2.25 T. The algorithm reveals a reconstruction error of approximately 0.1% for the flux function. The results also
indicate that for a Mach number at the major radius between 0.2 and 0.3, the maximum plasma current reaches 5.5 MA. Furthermore, the
normalized beta and safety factor are around 3, the average poloidal beta is 0.8, the normalized inductance is 0.75, and the toroidal frequency
(ω) at the major radius is 63 krad/s. These results are found in good agreement with experimental data. Additionally, the study provides
a quantitative assessment of how the toroidal flow affects plasma parameters and demonstrates the relationship between poloidal beta and
rotation velocity.
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1. Introduction

Tokamaks are the primary devices for achieving controlled
thermonuclear fusion using magnetic confinement. The first
step in the modeling and analysis involves magnetohydrody-
namic (MHD) equilibrium calculations, typically based on
the Grad-Shafranov equation (GS) [1,2], which assumes a
static, and axisymmetric plasma. However, this assumption
does not accurately reflect experimental observations, where
significant toroidal and poloidal rotations often occur even
without external momentum sources. Advances in plasma
injection technics in the early 1980s allowed toroidal rota-
tion velocities in tokamaks to reach 100-150 km/s [3]. These
flows are not merely secondary phenomena; they can greatly
influence plasma stability [4,5] and affect critical confine-
ment structures such as the magnetic separatrix and X-points,
which are vital for effective plasma containment.

Earlier studies primarily incorporated plasma rotation in
stability analyses, while often neglecting its role in equilib-
rium modeling. However, several key studies [6-13] have em-
phasized the necessity of including rotation in both stability
and equilibrium equations to achieve a more consistent and
realistic representation of plasma behavior in tokamaks. Due
to its complexity, fully integrating flow effects into equilib-
rium formulations remains a significant challenge in current

research. To address this, the GS equation has been gener-
alized by adding inertial terms associated with plasma flow,
resulting in the so-called generalized Grad-Shafranov (GGS)
equation.

The GGS equation requires the definition of two arbitrary
scalar functions: plasma kinetic pressure (P) and the diamag-
netic function (F), which are two components of the toroidal
current density and cannot be self-consistently determined
within the MHD model.

Instead, “free” functions are either determined from ex-
perimental measurements to adjust the parameters of the
MHD equilibrium model, using various existing simulation
codes such as CHEASE [14], FLOW [15], M3D, and ECOM
[16]. Experimental measurements used for equilibrium stud-
ies typically include plasma shape, plasma current, magnetic
field data, and pressure profiles derived from temperature
and density diagnostics. Alternatively, simple analytical pro-
files can be used to approximate realistic plasma conditions.
However, arbitrarily specifying current source terms to ana-
lyze toroidal velocity effects does not provide reliable con-
trol over plasma parameters. A direct approach to control the
current profile involves establishing specific physical plasma
parameters as fixed constraints. These may include the total
plasma current, poloidal plasma beta, safety factor, or max-
imum plasma pressure. The current source is then modified

mailto: djellouli.amina@univ-tlemcen.dz�
mailto: assiarachida.senoudi@univ-tlemcen.dz�


2 A. DJELLOULI AND A. RACHIDA SENOUDI

to align with these predetermined experimental parameters.
This approach has been explored in several publications [17-
19].

Theoretical studies [6] have demonstrated that key
plasma quantities, including the total plasma current, depend
on the toroidal Mach number (the ratio of plasma velocity to
sound speed). This suggests that, instead of traditional con-
straints such as plasma current, safety factors, or pressure at
the magnetic axis, it may be possible to consider an alter-
native constraint that, to our knowledge, has not been previ-
ously explored: the on-axis toroidal magnetic field (TMF).
Using the toroidal magnetic field (TMF) as a constraint pro-
vides a clear and consistent method for selecting current pro-
files in numerical studies of steady-state plasma equilibrium.

This is particularly relevant, as the toroidal magnetic field
is often considered constant over time or within a given op-
erating regime, especially in static equilibrium calculations,
where dynamic variations are neglected. For example, the JT-
60SA features eighteen D-coils designed to operate at 25.7
kA, producing a field of 2.25 T on the toroidal axis surround-
ing the tokamak [22]. Since the problem involves the deter-
mination of two free parameters, it is necessary to introduce a
second constraint to fully define the equilibrium. To address
this, an exact analytical solution is used as a reference. This
approach not only provides a consistent framework for select-
ing the additional constraint but also ensures that the numer-
ical equilibrium remains physically meaningful and closely
aligned with known theoretical results.

This work presents a computational framework for nu-
merically calculating current density while satisfying two
specific constraints. The first constraint keeps the TMF at the
magnetic axis at a constant value that corresponds to mea-

TABLE I. Typical parameters of Tokamaks JT-60SA [20] and
ITER [21].

parameters JT-60SA ITER like

full IP -shape inductive

Plasma currentIP (MA) 5.50 4.60

Toroidal magnetic fieldB0 (T) 2.25 2.28

Safety factorq95 3.00 3.20

Major radiusR0 (m) 2.96 2.93

Minor radius a (m) 1.18 1.14

Aspect ratioA 2.5 2.6

Elongationκx/κ95 1.87/1.72 1.81/1.70

Triangularityδx/δ95 0.50/0.40 0.41/0.33

Shape factor (S=q95IP/(aB0)) 6.30 5.70

Normalized BetaβN(mT/MA) 3.1 2.8

Electron density

〈ne〉, ne(0) (1020m−3)
0.56/0.77 0.81/1.11

Temperature〈Te〉, Te(0) (keV) 6.3/13.5 3.7/8

Plasma volume (m3) 131 122

sured data. The second constraint reduces the overall error
in Hilbert space, bringing the exact and numerical solutions
of the GGS equation into alignment. Following this process,
various output parameters can be determined. Plasma equi-
librium is treated either by imposing a fixed boundary [19,23]
or by adopting a free boundary approach [24]. While using a
fixed boundary is common practice in this field, it limits the
modeling of certain dynamic effects. However, this choice
is suitable for the study’s objective, which focuses on under-
standing the impact of flow on internal plasma parameters.
The computational domain uses the smooth D-shaped Miller
parameterization [25,26], which provides a compact expres-
sion for the flux surface contour. This parameterization is
also capable to generate circular cross-section configurations
However, it relies on an asymptotic expansion that assumes
a small inverse aspect ratio,ε = a/R0, whereR0 anda de-
note the major and minor radius of the torus, respectively. We
have used typical plasma parameters for the JT-60SA (Japan
Torus-60 Super Advanced), listed in Table I [20], to validate
our code.

The article is organized as follows: Section 2 explains
the procedure for introducing toroidal flow into the GS equa-
tion, based on the assumptions of Maschke and Perrin [6] and
Ivanov [8]. Section 3 describes the computational domain.
Section 4 provides the exact analytical solution, along with
the boundary conditions. Section 5 outlines the numerical
method encompass with the Finite Element Method (FEM)
and an overview of the proposed computational framework.
Section 6 validates the algorithm, comparing the exact solu-
tion with the numerical equilibrium in a full-current induc-
tive plasma scenario for the JT-60SA. Finally, Sec. 7 presents
a quantitative analysis of the effect of toroidal flow on key
internal parameters of the equilibrium plasma. In the last sec-
tion, our conclusions and perspectives are presented.

2. Formulation of the general equilibrium

The magnetohydrodynamic (MHD) equilibrium is a funda-
mental concept for confined nuclear fusion and tokamak
plasma equilibrium, in the presence of toroidal rotation. The
set of fundamental equations of stationary MHD [6,11] pro-
vides a general description of plasma fluid under magnetic
induction, namely the conservation of mass (1), the conser-
vation of momentum (2), Gauss’s law (3), Ampere’s law (4),
Ohm’s law (5) and the thermodynamics laws (6,7,8),

−→∇ · (ρ−→v ) = 0, (1)

ρ
(−→v · −→∇

)−→v =
−→
J ∧ −→B −−→∇P, (2)

−→∇ · −→B = 0, (3)

µ0
−→
J =

−→∇ ∧−→B, (4)

−→∇ ∧ (−→v ∧ −→B ) = 0, (5)
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−→v · −→∇S = 0, (6)

P = ρRT, (7)

P = A(S)ργ , (8)

where,P , m andT , are respectively, the mass, kinetic pres-
sure and temperature of plasma.

−→
B is the magnetic induction,−→

J is the current density,µ0 is the vacuum magnetic perme-
ability. The mass specific gas constantR represents the ratio
of gas constant and the gas molecular weight. The caloric
state equation in Eq. (8) is due to the fact that internal energy
of the plasma considered as an ideal gas, is proportional only
to the temperature, whereA is function of the entropyS. The
parameterγ represents the ratio of the two specific heats and
has a value of5/3 for ideal monatomic gas.

Since tokamaks have an axisymmetric geometry, it is con-
venient to formulate the plasma equilibrium problem in a
cylindrical coordinate system(r, ϕ, z), where(r, z) repre-
sents the poloidal plane section andϕ the toroidal angle in the
symmetric direction with−→e ϕ, the unit vector. Considering
only a plane section atϕ= constant, it easy to establish from
Eq. (3), that the total magnetic field

−→
B =

−→∇ψ∧−→∇ϕ+F
−→∇ϕ,

whereψ =
∫∫

Ω

−→
B. −→nP drdz, is the poloidal flux function,

F = r
−→
B.−→e ϕ is the diamagnetic function,Ω is the plasma

domain and−→nP is the poloidal outgoing normal vector. The
poloidal magnetic fluxψ can usefully describe the plasma
equilibrium configuration and has nested magnetic surfaces.
The compounds of the magnetic field are deduced as follows:

Br = −1
r

∂ψ

∂z
, Bz =

1
r

∂ψ

∂r
, Bϕ =

F

r
. (9)

The toroidal magnetic field, namelyBϕ, is a key parameter
in our algorithm, serving to properly adjust the equilibrium
parameters.

In axisymmetric flow, and assuming for simplicity that
the flow velocity is purely in the toroidal direction,i.e.−→v = vϕ

−→e ϕ, it is possible from Eq. (5), to establish that,
vϕ = rω (ψ), with ω is the toroidal rotation angular fre-
quency of the flux surface.

Derivation of Eq. (2) with respect to Eqs. (6), (7) and pre-
vious relation, leads to,

µ0ρr3ω2−→∇r − µ0r
2−→∇P =

(
∆∗ψ + F

dF

dψ

)−→∇ψ, (10)

where,
−→∇ is the grad operator in poloidal plane section and

the Laplacian-type symbol∆∗ has the form,

∆∗ = r
∂

∂r

(
1
r

∂

∂r

)
+

∂2

∂z2
. (11)

It is easy to establish from Eq. (10) that the pressure is
function ofψ andr i.e., P ≡ P (ψ, r). Expansion of Eq. (10)
with correlating its terms, leads to the following two separate
relations,

−∆∗ψ = µ0r
2 dP

dψ
+ F

dF

dψ
(12)

ρrω2 − ∂P

∂r

∣∣∣∣
ψ=cst

= 0, (13)

where the derivative ofP with respect tor is taken at con-
stantψ. We will present two solutions of Eq. (13) depending
on the choice the functionals ofψ.

The equilibrium problem is quite challenging because
the GGS equation involves several functionals ofψ, namely,
P (ψ), T (ψ), ω(ψ), F (ψ) andρ(ψ). To further simplify the
GGS equation, additional assumptions are needed, and the
choice of these assumptions determines the nature of the so-
lution.

The first solution follows the assumption proposed by [8],
where the term (ρω2) does not explicitly depend on the posi-
tion r and is a functional ofψ. Assuming that the density is
constant on magnetic surfaces,i.e., ρ = ρ(ψ) andω = ω(ψ),
thus in this case the integration of the Eq. (13) leads to:

P (ψ, r) = P (ψ) + ρω2 r2

2
,

⇒ P ′ = P
′
+ (ρω2)′

r2

2
. (14)

The prime denotes the derivative with respect to the
poloidal flux functionψ. P (ψ) is the static pressure depend-
ing only on the poloidal fluxψ. This form clearly separates
the centrifugal contribution of plasma rotation from the total
pressure.

In this case, the Eq. (12) lead to following form:

−∆∗ψ = µ0r
2 dP

dψ
+ µ0

r4

2
d(ρω2)

dψ
+ F

dF

dψ
. (15)

Although the resulting pressure expression is simpler,
the computation of the particular solution to the previous
PDE depends on the chosen velocity profile. As reported in
Ref. [8], a nonlinear profile based on(ρω2)′ was proposed.

This simplified expression of pressure introduces chal-
lenges, given the nonlinearity of the profile, when seeking an
analytical solution - a fundamental requirement for the de-
velopment of our algorithm. Nonetheless, it does not pose
difficulties in the numerical resolution process, where such
explicit forms can be readily implemented for the GSS equa-
tion.

The second solution follows the assumption where, the
entropy is assumed to be constant at the magnetic surface, as
cited in Refs. [6,18] also in Green and Karlson works [27],
and the plasma temperature should depend on the flux func-
tion, i.e. T = T (ψ). This last assumption implies that the
thermal conductivity of the plasma is greater along the mag-
netic lines than between them. Using the Eq. (7), the inte-
gration of Eq. (13) with the integration constant chosen at
r = R0 for convenience, leads to,

P = P (ψ) exp
(

ω2

2RT
(r2 −R2

0)
)

. (16)

Rev. Mex. Fis.71061501
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In the following development, we opted for the more gen-
eral solution (16) of Eq. (13), which enables us to obtain the
analytical expressions needed to effectively develop and vali-
date our algorithm. Thus, our approach preserves the general
form to facilitate analytical development while ensuring nu-
merical tractability within the finite element framework.

General equilibrium equation with purely toroidal rota-
tion, over a closed plasma domain is established by substitut-
ing eq. (16) into eq. (12),

−∆∗ψ = F
dF

dψ
+ µ0r

2

[
dP

dψ
+ P

(r2 −R2
0)

2R

d

dψ

(
ω2

T

)]

× exp
(

ω2

2RT
(r2 −R2

0)
)

. (17)

The toroidal Mach number,M , is defined as the ratio of
the plasma toroidal velocity,vϕ, to the sound speed,Cs,

M =
vϕ

Cs
, Cs =

(
∂P

∂ρ

) 1
2

S=cst

⇒ M2 =
r2ω2

γRT

ω(ψ, r) =

√
γP (ψ, r)

ρ

M

r
, P (ψ, r) =

ρ

γ

v2
ρ

M2
. (18)

According to Maschke and Perrin works [6], for positive
value of internal energy,M2 < 2/(γ − 1), henceM2 < 3.

The equilibrium problem is quite challenging because the
GGS equation involvesF (ψ), P (ψ), ω(ψ) andT (ψ). Solv-
ing the Eq. (17) requires prior knowledge of these profiles.
To reduce the complexity, certain assumptions were made:
the toroidal frequencyω and the temperatureT were consid-
ered constant on each magnetic surface.

As a result, the GGS equation accounting for toroidal
flow is expressed in this way.

−∆∗ψ = µ0rJϕ,

Jϕ = r
dP

dψ
exp

(
ω2

2RT
(r2 −R2

0)
)

+
F

µ0r

dF

dψ
, (19)

whereJϕ denotes the toroidal current source. SinceF does
not include the Mach number, it can be consistently used as a
constraint for any Mach number.

3. Plasma computational domain

The computational domain is established by designating a
fixed boundary, chosen in our code as the outermost closed
flux surface. This boundary is parametrized using Müller’s
formula [25,26] for Dshape plasmas, which is expressed as
follows,

r = R0 + a cos (θ + arcsin (δ) sin (θ)), (20)

z = κa sin (θ), (21)

whereR0 anda represent the major and minor radius, respec-
tively, ε = a/R0, the inverse aspect ratio,κ, the elongation,

FIGURE 1. Computational plasma domain by Müller parametriza-
tion and locations of the higher, inner and outer points in a typical
plasma boundary. These points are used to define the shaping pa-
rameters in Eqs. (20) and (21): the major and minor radius, elon-
gation and triangularity.

δ, the triangularity and again the poloidal angleθ ∈ [0, 2π].
The Fig. 1 shows the points that determine the height and
the major and minor radius on a typical plasma border. It is
generally possible to solve problem in an open domain, by
setting an artificial computational boundaryΓV located at a
finite distance from the plasma border. A single or double
null configuration can be achieved by following the strategy
proposed in Ref. [28].

4. Exact solution of the GGS equation

Typically, the profiles of plasma pressure and diamagnetic
functions are chosen to ensure that the source term vanishes
at the plasma boundary, thereby modeling the effect of a per-
fectly conducting wall, as in the case of Solovev:

µ0P = P0 (ψ − ψb) , F 2 = 2F0 (ψ − ψb) , (22)

whereψb is the flux function at the plasma boundary,P0 and
F0 are free parameters which can be tuned to constrain the
specified equilibrium, this will be discussed further below.

The exact solution (ψexact) of the GGS given in Eq. (19) is
the sum of vacuum (ψv) and particular (ψP ) solutions. Zheng
and et al. in Ref. [29] proposed a homogeneous solution
satisfying the equation−∆∗ψv = 0, with general arbitrary
polynomial degree, having up-down symmetry. By truncat-
ing the series, the solution is then written forn = 4 as fol-
lows,
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ψexact(r, z)=
n∑

i=1

ciψi+P0

(
R2

0

γM2
0

)2
[
1+

γM2
0

2R2
0

(r2−R2
0)

− exp
(

γM2
0

2R2
0

(r2 −R2
0)

)]
− F0

2
z2. (23)

where ci are the constants computed from boundary con-
ditions and the basic functions areψ1 = 1, ψ2 = r2,
ψ3 =

(
r4 − 4r2z2

)
andψ4 = r2 ln (r) − z2. Note that, the

second term of Eq. (23) represents the particular solution and
satisfies the GS equation with flow. We have introduced in
Eq. (19), additional simplification,ω2/RT = γ(M2

0 /R2
0) =

cst, withM0, the Mach number at the major radiusr = R0.
The equilibrium profiles are determined by imposing a

Dirichlet condition on the plasma boundary, settingψ =
ψb = 0. To enforce this constraint, key extremal points on
the boundary - the inner point (rI ), the outer equatorial point
(rO), and the uppermost point (rUp) - are selected, as illus-
trated in Fig. 1. Owing to the up-down symmetry and the
resulting redundancy, a Neumann condition is additionally
imposed to ensure a net zero magnetic flux [19].





ψ (R0 + a, 0) = ψb,

ψ (R0 − a, 0) = ψb,

ψ (R0 − δa, κa) = ψb,

1
r

dψ
dr

∣∣∣∣r=rUp=R0−δa,
z=b=κa

= 0.

Using the boundary conditions, the Appendix A shows
the mathematical derivations of the analytical expressions of
the constants

(
ci, i = 1, 4

)
for the exact solution of the GGS

equation with flow. The calculation ofci is a linear algebraic
problem, involving four unknowns and it is trivial computa-
tionally. As we can see in Appendix A, all the constantsci are
found in terms of the geometrical parameters(R0, a, κ, δ) de-
scribing the plasma cross section, the Mach number and the
free parametersP0 andF0 of current density.

5. Numerical method

5.1. Problem specification

Numerical solution is carried out using the FEM applied to
a matrix system derived from the variational principle. The
numerical implementation employed FreeFEM++ [30], an
open-source C++ environment for nonlinear partial differ-
ential equations (PDE) (https://www.freefem.org/
ff++/ ).

∫∫

Ω

−→∇ψ ×−→∇v dS +
∫∫

Ω

1
r

∂ψ

∂r
v dS

=
∫∫

Ω

[
P0r

2 exp
(

γM2
0

2R2
0

(r2 −R2
0)

)
+ F0

]
v dS. (24)

FIGURE 2. Subdivision of computational plasma domain “mesh-
ing”.

The PDE given in Eq. (19) is cast in its weak form (inte-
gral) via the variational principle, withψ andv the unknown
poloidal function and test function, respectively anddS the
surface element of plasma domain.

The boundaries are defined parametrically, and the
mesh (with node connectivity) is generated automatically.
FreeFEM++ provides an adaptive mesh generator. We subdi-
vided the computational domain with P3 (cubic, third-order)
elements (Fig. 2). For each element, the surface integrals
of the basis functions in Eq. (24) are computed, yielding
a linear matrix system for the poloidal flux, asAψ = B.
Free FEM++ provides both direct and iterative linear solvers
and in this simulation, a direct solver was used; if the cur-
rent source depended nonlinearly onψ, an iterative approach
would be more adequate.

5.2. Algorithm

The code computes both the exact and FEM solutions of
Eq. (19). To fix the two free parametersP0 andF0 [Eq. (23)],
we impose: (i) the computed on-axis toroidal field namedBρ

using the Eq. (9), equals the measured value (B0 = 2.25T
for JT-60SA chosen as the test), and (ii) the global error in
Hilbert space between exact and numerical solutions of GGS
equation solutions is minimized. For each Mach number,
P0 and F0 are updated via two nested iterations: at each
step, these parameters are adjusted so that the recalculated
Bρ, equals the measurement,B0, and the relative error be-
tween successive iterates falls below a prescribed stopping
error, named Tol (held fixed to 0.08%). This error, defined in
Hilbert space [30], serves both as the stopping criterion and
as the metric for alignment of the two solutions.

Error =

(∫∫
Ω

(
ψexact− ψFEM

)2
dΩ∫∫

Ω
ψ2

exactdΩ

) 1
2

. (25)
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In summary, the inner (minor) loop of our algorithm man-
ages the global error between the analytical and numerical
solutions, while the outer (major) loop controls the value of
the TMF. The input data consist of the toroidal magnetic flux
at magnetic-axis and the toroidal Mach number. On an Intel
Core i7 processor, the computation completes within 8 min-
utes.

Once the free parameters ensuring equilibrium have been
determined, the solution is then consistently calculated, al-
lowing the specification of many important physical quanti-
ties. These include, the total toroidal plasma current (IP),
the ratio between the average particle pressure in the volume
and the average poloidal magnetic field pressure along the
plasma boundary (βP), the toroidal beta (βT), the normalized
beta (βN), the safety factor at 95% of the plasma surface (q95),
and the plasma internal inductance (li):

IP =
∫∫

Ω

Jϕrdrdz, (26)

βP = 2µ0
〈P 〉
B2

P

, (27)

βT = 2µ0
〈P 〉
B2

0

, (28)

βN = βT
aB0

IP
, (29)

q95 = ε
B0

µ0IP

∮

ΓP

dl, (30)

li = 4
〈 B2

P
2µ0
〉

µ0I2
PR0

, (31)

whereB0 is on-axis toroidal field andBP is the poloidal mag-
netic field at the edge, the meaning of the symbols is

〈·〉 =

∫∫
Ω
·rdrdz∫∫

Ω
rdrdz

and · =

∮
ΓP
·dl∮

ΓP
dl

.

βP = 2µ0
〈P 〉

[µ0IP∮
dl

]2
, 〈P 〉 =

∫∫
Ω

P (ψ, r)rdrdz

VP

⇒ βP =
2µ0

[µ0IP∮
dl

]2

∫∫
Ω

P (ψ, r)rdrdz

VP
, (32)

whereVp represents the total plasma volume (given in Ta-
ble I). The relationship between the poloidal beta factor and
the toroidal velocity is determined through the previous equa-
tion. As a complement to this work, we have provided in Ap-
pendix B, the mathematical development to explicitly derive
the relationship between the poloidal beta and the toroidal
velocity.

Note that the FEM evaluation of all surface and curvi-
linear integrals in the above expressions must be performed

with care both within the plasma domain and along the closed
constant-flux boundary.

The algorithm performed the following steps:

ALGORITHM.

Input data: R0, a, δ, κ, M0, B0 andkmax:

maximal number of iterations.

Output data: ψexact: analytical flux surface,

ψFEM: numerical flux surface,

Error, Tol, IP, βP, βT, βN, q95, li and ω.

1: Set:P0 = 0., ∆P0 = 0.001, ∆F0 = 0.001

. Initial values of free parameters.

2: for i = 1 to kmax

3: F0 ← 0.

4: Compute the constants(c1, c2, c3, c4)

for initial values of current free

parameters (Appendix A).

5: Compute the exact solution of GSTR Eq. (23).

6: Specify the source termJϕ and calculate

the numerical solution of GSTR Eq. (19).

7: ComputeError Eq. (25).

8: Tol← Error.

9: for k = 1 to kmax

10: F0 ← F0 + ∆F0.

11: Update the calculation of(c1, c2, c3, c4)

(Appendix A).

12: Update the calculation of exact solution Eq. (23).

13: Update the source termJϕ and calculate again

numerical solution of GSTR Eq. (19).

14: UpdateError in Eq. (25).

15: if (Error ≤ Tol) then:

16: Tol← Error . Update the tolerance.

17: else

18: break . The tolerance is reached.

19: end if

20: end for

21: Computeψ at r = R0.

22: ComputeBρ from the diamagnetic function F,

atr = R0 . Using the Eq. (9)

23: if (|Bρ −B0| > 10−3) then:

24: P0 ← P0 + ∆P0 . Incrementation

of free parameter

25: else

26: break . Total toroidal magnetic

field achieved

27: end if

28: end for

29: Post-processing:compute the physical quantities

at the equilibrium Eqs. (26-31).

30: End program.
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TABLE II. Computed equilibrium parameters of JT-60SA full plasma current inductive, for several values of Mach number at major radius.

JT-60SA
Experimental

values [20]

M0 0.1 0.2 0.3 0.4 0.5

IP(MA) 5.6285 5.5196 5.3623 5.1905 5.0134 5.5

q95 2.7762 2.8348 2.9184 3.0134 3.1201 ∼ 3

li 0.7465 0.7445 0.7415 0.7375 0.7330 [0.8-1]

βT(%) 7.5690 7.0120 6.2541 5.4325 4.6213 6.5

βP 0.8996 0.8669 0.8168 0.7550 0.6859 0.81

βN(m T/MA) 3.5703 3.3728 3.0965 2.7787 2.4473 3.1

Bρ(T) 2.2498 2.2493 2.2490 2.2498 2.2493 2.25

ErrorBρ (%) 0.0089 0.0311 0.0444 0.0089 0.0311 -

FIGURE 3. Poloidal flux surface of JT-60SA plasma. The dashed
line represents the exact solution and the solid line corresponds to
numerical one, a) forM0 → 0 and b)M0 = 0.3.

6. Tests and benchmarking

To validate our results and to confirm the accuracy of the al-
gorithm, we made a benchmark comparison between our an-
alytical and numerical results, by using the spatial configura-
tion of the JT-60SA fullIP.

Figure 3 displays the flux contours forM0 → 0 (static
case) andM0 = 0.3, where, the simulation data have been
taken from Table I. The comparison between the analyti-
cal and numerical solutions reveals a good agreement with
a stopping error of Tol= 10−3. The poloidal flux increases
monotonically towards the magnetic axis, reaching a maxi-
mum value.

Table II displays the computational results of the equilib-
rium parameters of the JT-60SA full plasma current at sev-
eral values ofM0, by using the programming code. Table II
shows that the Mach number value corresponding to the op-
erational parameters for JT-60SA, was found to be between
[0.2-0.3]. This result in a good agreement with the relatively

weak neutral beams used for the plasma heating as reported
in Ref. [24].

The validation described above, shows that our algorithm
has successfully minimized the global relative error while
keeping the total toroidal field constant. We have confirmed
that our algorithm offers a unique equilibrium solution with
a good accuracy, consistent and in good agreement with the
experimental data. Furthermore, we have also checked that,
when the Mach number gets close to zero, our code can gen-
erate Solovev’s equilibrium without the toroidal rotation.

7. Results and interpretations

In the following, we will examine the effect of toroidal flow
on some physical profiles of the JT-60SA plasma at equilib-
rium. Authors in Refs. [5,31,32] have indicated that the ac-
tual Mach number in various reactor experiments should be

FIGURE 4. Radial profile of current density on the midplane, for
several values ofM0.
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FIGURE 5. Evolution of the plasma current of JT-60SA as function
of Mach number.

within the range of[0.1− 0.5] for plasma stability. So, in or-
der to stay aligned with conventional values, we have selected
M0 in the range of[0.1− 0.7].

Radial evolution of the current densityJϕ calculated on
the median plane, exhibits a nonlinear distribution with a
minimum, positioned atr = R0 for a low Mach number as
shown in Fig. 4. WhenM0 increases, the value of the current
density at the center decreases and its position can be slightly
adjusted to achieve force balance. In addition, the minimum
position ofJϕ moves to the outer edge and the curve becomes
more symmetric. According to Eq. (19), Jϕ is proportional
to the derivative ofP and the square ofF , the result being
that the plasma center has a lower current density due to high
pressure and high toroidal function, resulting in reverse shear
equilibrium. The parameterF0 plays an important role in re-
ducing current density, especially in areas with a strong mag-
netic field.

The total plasma currentIP could be measured experi-
mentally either computed numerically from the current den-
sity Jϕ in the toroidal direction. As shown in Fig. 5, the most
notableM0 effect is the drop in current from 5.63 to 4.71
MA whenM0 goes from 0.1 to 0.7. This current evolution is
shown by the results presented in Table II. Therefore, when
there is some increase in toroidal rotation, control of the ini-
tial geometric profiles and the total toroidal field leads to a
decrease in plasma current.

Maximum flux surface (ψmax) and its shift position(∆)
are both displayed in Fig. 6a). The volume-averaged pressure
(〈P 〉) with the shift position ofPmax are reported in Fig. 6b).
It is evident that, in addition to the reduction of the magnetic
surface function, there is no change in the position of the
maximum poloidal flux, as seen in Fig. 6a). Toroidal rota-
tion creates a centrifugal force, as described by the first term
in Eq. (2). This outward pushing force is counteracted by
a reduction in plasma pressure, which brings the plasma col-

FIGURE 6. a) Effect of the toroidal rotation on maximum magnetic
flux surface and its shift position and b) average pressure and shift
position of maximum pressure.

umn back to its initial position. Pustovitov’s work [13] has
proved that rotational velocity has no significant effect on
the GS shift. By manipulating the parameterM0, we can
reduce the contribution of the pressure terms and achieve
this result. The algorithm guarantees this operation. Simi-
larly, the Fig. 6b) shows that asM0 increases, the value of
〈P 〉 decreases and reaches 111.71 kPa atM0 = 0.2. We
have compared this result by calculating〈P 〉 from the elec-
tron and ion energies, which we have found to be〈Te〉 =
〈Ti〉 = 6.3 keV (see Table I), with the data simulation
ρ = n×2.5×m, n = 0.56×1020m−3, m = 1.67×10−27 kg
and R = 3305.96 J/(kg K). Equation (7) yields a value
of 112.9 kPa with a relative error of 1%. Our code have
provided a good result even when the operating parameters
weren’t exactly atM0 = 0.2. The shift∆ increases non-
linearly with M0 as predicted by Maschke and Perin’s theo-
retical work [6].
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FIGURE 7. Effect of toroidal rotation on physical quantities, a) internal induction, b) safety factorq95, c) toroidal beta and d) poloidal beta.

FIGURE 8. Several equilibrium profiles upon radial position of JT-60SA plasma, a) poloidal fluxψ(r, 0), b) plasma pressureP (r, 0), c)
toroidal functionF (r, 0) and d) toroidal frequencyω(r, 0), all computed in thez-axis and forM0 = 0.1, 0.2, 0.3 and 0.4.

The parameters as plasma internal induction, betas and
safety factors are also affected byM0, as shown in Fig. 7.
The choice of current density terms resulted in paramagnetic
plasma withβP less than 1. Poloidal beta decreased slowly
from 0.89 to 0.54, as seen in Fig. 7d), guaranteeing hence
plasma stability, otherwise thermal pressure would cause the
plasma to grow and move in the vacuum chamber until con-
finement was lost. The evolution ofβP is similar to that re-
ported in Ref. [33]. Furthermore, Ilgisonis in Ref. [34], re-
ported that toroidal rotation causes an increase of the equi-
librium β limit, by 1.6 to 2.5 times compared to the static
equilibrium. We have shown that this statement is incorrect
and that our results lign with those of Pustovitov [13]. In
fact, the equilibrium beta limit for a rotating plasma should
be lower than that for a non-rotating plasma.

In high-beta plasma, toroidal beta dominates the total beta
which is then equal toβT. Indeed, plasmaβT is often ex-
pressed in terms ofβN, an operational parameter indicating
how close the plasma is to reaching a non-equilibrium state.
Similar variation ofβT is reported in Fig. 7c) where we can
see thatβT decreases sharply from 7.83 to 4.78. In reality,
the equilibrium must maintain fairly high beta values, and a
necessary and sufficient condition for achieving high beta is
to increase the pressure gradient (i.e. decreaseψ or increase
P ); paradoxically, this does not happen when toroidal rota-
tion increases. No significant effect in the internal induction
is observed in Fig. 7a), and our calculations resulted inli of
0.7 (70%) using Solov’ev equilibria. For this reason,li could
potentially be used as a constraint parameter in the study
in the presence of toroidal flow. Figure 7b) shows thatM0

increases the safety factorq95 parameter, which can be at-
tributed to a reduction in the total plasma current.

Additional equilibrium profiles are plotted in Fig. 8, as
function of radial position and atz-axis, namely, poloidal
flux, plasma pressure, toroidal function, and toroidal rota-
tion frequency at the center, all calculated for several values
of M0. All profiles show maximum value near the plasma
center. The toroidal field function is not influenced byM0

as indicated in Fig. 8c), since it is proportional to the total
toroidal magnetic fieldB0, which was maintained constant
in the algorithm.

Figure 8d) shows how the toroidal frequencyω varies ra-
dially in the midplane. The toroidal velocity in tokamak ex-
periments is usually maximum at the center of the plasma
column. This is to be expected since the pressure is higher
there. The toroidal velocity does not vanish at the outer
edge of the plasma boundary, indicating a gradual transition
beyond the confined region. From the Fig. 8d), we found
ω = 62.69 krad/s andvρ = 62.69 × 2.96 ' 180 km/s, for
M0 = 0.2. We may compare by computingω from the en-
ergyT = 13.5 keV (central electron temperature reported in
Table I), which equates toT = 156.65× 106 K. By applying
Eqs. (7) and (18), we obtainω ' 62.77 krad/s with 0.13%
relative error.

Figure 9 is used for comparison with the results obtained
using the FLOW code by Guazzotto [15]. Among the data re-
ported in that work, the authors provided the midplane profile
of vρ (which is proportional toω) for an NSTX equilibrium.
We plot the corresponding profile for JT-60SA atM0 = 0.2
(operational mode). Although the two devices differ and the
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FIGURE 9. Midplane profile of toroidal velocity atM0 = 0.2 (on
left panel) and evolution of the toroidal velocity at center, upon
poloidal beta (on right panel). Fitted curve of rotational velocity is:
vϕ = a + b × exp(c × βP )), with a = 448, b = −0.815 and
c = 6.719.

FIGURE 10. Relation between beta poloidal and toroidal velocity
(through the Mach number) forr = R0 for JT-60SA plasma.

absolute values are not directly comparable, both profiles ex-
hibit similar behavior - notably, a rightward axial shift rela-
tive to the magnetic axis.

We have also plot in Fig. 9,vρ computed at R-axis, as
function of poloidal beta. The evolution of the toroidal ve-
locity is similar to that reported in Ref. [33]. Fitting the data
points makes it possible to establish a direct relationship be-
tween the toroidal velocity and the poloidal beta. The curve
is of form: vϕ = a + b × exp(c × βP) with the coefficients
a = 448, b = −0.815 andc = 6.719. This formula is useful
from a theoretical and experimental point of view.

Figure 10 clearly illustrates the dependence of the
toroidal velocity (through the Mach number) on the poloidal
beta, and this result is consistent with that obtained by Naka-
mura [33]. The calculation was performed using the relation
derived in Appendix B, evaluated at the point of maximum
velocity, i.e., in the vicinity ofR0. Although plasma pressure
is described differently in our paper and in that of Nakamura
[33] and Ivanov [8], the predictions obtained regarding the

relationship between toroidal velocity and poloidal beta are
similar.

8. Conclusion

In this work, we developed a numerical approach based on
the finite element method to solve the Grad-Shafranov equa-
tion with toroidal flow. The implemented FEM algorithm,
provides the magnetic configuration of 2D toroidally sym-
metric equilibria while maintaining the toroidal magnetic
field (TMF) constant along the R-axis and equal to the mea-
sured value. The numerical results show a good agreement
with the operating parameters, as validated against JT-60SA
experimental data. The proposed algorithm yields a recon-
struction error of approximately 0.1% for the poloidal flux
function and less than 0.04% for the TMF. The effect of the
toroidal Mach number was also studied using the same code,
providing valuable insights into the control of plasma pres-
sure, current, and rotation profiles. The most notable numer-
ical prediction is that the plasma current (IP) decreases as the
toroidal flow increases. Future improvements to the proposed
algorithm could include the implementation of free boundary
conditions with coil effects, as well as a more precise treat-
ment of magnetic field fluctuations.

Appendix A

Using new notations for the positions as follows:rO =
R0 + a, rI = R0 − a, rUp = R0 − δa andb = κa,





ψ (rO, 0) = ψb,

ψ (rI , 0) = ψb,

ψ (rUp, b) = ψb,

1
r

dψ
dr

∣∣∣∣r=rUp

z=b

= 0,

(A.1a)

⇒





ψh (rO, 0) = ψb − ψP (rO, 0) ,

ψh (rI , 0) = ψb − ψP (rI , 0) ,

ψh (rUp, b) = ψb − ψP (rUp, b) ,

1
r

dψh

dr

∣∣∣∣r=rUp,
z=b

= − 1
r

dψP

dr

∣∣∣∣r=rUp

z=b

,

(A.1b)

which it’s can be written as linear system matrixAc = B,
with the matrixA and the vector unknownc,

A =




1 r2
O r4

O r2
O ln(rO)

1 r2
I r4

I r2
I ln(IO)

1 r2
Up r4

Up−4r2
Upb

2 r2
Up ln(rUp)−b2

0 2 4r2
Up−8b2 2 ln(rUp)+1


 , (A.2a)

c =
(
c1 c2 c3 c4

)T
andB =

(
B1 B2 B3 B4

)T
,

with,
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



B1 = ψb − P0

(
R2

0
γM2

0

)2[
1 + γM2

0
2R2

0
(r2

O −R2
0)− exp

(γM2
0

2R2
0
(r2

O −R2
0)

)]
,

B2 = ψb − P0

(
R2

0
γM2

0

)2[
1 + γM2

0
2R2

0
(r2

I −R2
0)− exp

(γM2
0

2R2
0
(r2

I −R2
0)

)]
,

B3 = ψb − P0

(
R2

0
γM2

0

)2[
1 + γM2

0
2R2

0
(r2

Up −R2
0)− exp

(γM2
0

2R2
0
(r2

Up −R2
0)

)]
+ F0

2 b2,

B4 = P0

(
R2

0
γM2

0

)[
1− exp

(γM2
0

2R2
0
(r2

Up −R2
0)

)]
.

(A.2b)

The four unknown constants are analytically determined using the Cramer method, with the determinant of matrix A
expressed as follows:

det[A] = r2
I

[
4b2r2

O + (r2
O − rUp)2

]
ln(r2

I )− r2
O

[
4b2r2

I + (r2
I − rUp)2

]
ln(r2

O) + (r2
I − r2

O)

[
−8b4 − 2b2(r2

I + r2
O)

+ (r2
I − r2

Up)(r2
O − r2

Up) + (r2
Ir2

Up − r2
Up) ln(r2

Up)

]
.

(A.3)

The constants of the exact solution of the GGS are found as:

c1 =
[
B3r

2
Ir2

O(r2
I − r2

O) + 8b4(B2r
2
O −B1r

2
I ) + b2

(
2(B2r

4
O −B1r

4
I ) + B4r

2
Ir2

O(r2
I − r2

O)
)

+ r2
Up

(
B2r

2
O(r2

O − r2
Up)

+ B1r
2
I (r2

Up − r2
I )

)
+

r2
I

2
(
2B3r

2
O(4b2 + r2

O)− r2
Or2

Up(4B3 + B4(4b2 + r2
O)) + r4

Up(2B1 + B4r
2
O)

)
ln(r2

I )

+
r2
O

2
(−2B3r

2
I (4b2 + r2

I ) + r2
Ir2

Up × (4B3 + B4(4b2 + r2
I ))− r4

Up(2B2 + B4r
2
I )

)
ln(r2

O)

+
1
2
(
2B3r

2
Ir2

O(r2
I − r2

O) + B4r
2
Ir2

Or2
Up(r

2
O − r2

I ) + 2(B2r
2
O −B1r

2
I )r4

Up

)
ln(r2

Up)
]
/det[A], (A.4)

c2 =
[
8b4 (B1 −B2) + (B1 −B3)r4

I + (B3 −B2)r4
I + b2B4(r4

O − r4
I ) + (B2 −B1)r4

Up +
r2
I

2
(8b2(B1 −B3)

+ B4(r4
O − r4

Up) + 4(B3 −B1 + b2B4)r2
Up) ln(r2

I ) +
r2
O

2
(8b2(B3 −B2) + B4(r4

Up − r4
I )

+ 4(B2 −B3 − b2B4)r2
Up) ln(r2

O) +
1
2
(2(B1 −B3)r4

I + 2(B3 −B2)r4
O + B4(r4

I − r4
O)r2

Up

+ 2(B1 −B2)r4
Up) ln(r2

Up)
]
/det[A], (A.5)

c3 =
[
(B1 −B2)(2b2 + r2

Up) + r2
I (B3 −B1) + r2

O(B2 −B3) + b2B4(r2
I − r2

O) +
r2
I

2
(2(B1 −B3)

+ B4(r2
Up − r2

O)) ln(r2
I ) +

r2
O

2
(2(B3 −B2) + B4(r2

I − r2
Up)) ln(r2

O) +
1
2
(2(B2r

2
O −B1r

2
I )

+ (r2
I − r2

O)(2B3 −B4r
2
Up)) ln(r2

Up)
]
/det[A], (A.6)

c4 =
[
2r2

I (B3 −B1)(r2
I − 2r2

Up) + 2r2
O(B2 −B3)(r2

O − 2r2
Up) + (r2

I − r2
O)(B4(r2

Ir2
O − r2

Up(r
2
I + r2

O) + r4
Up − 4b2r2

Up)

+ 8b2B3) + 2(B2 −B1)r4
Up + 8b2(B2r

2
O −B1r

2
I )

]
/det[A], (A.7)
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Appendix B

The beta poloidal is defined as:

βP = 2µ0
〈P 〉[

µ0IP∮
dl

]2 . (B.1)

The plasma perimeter is approximated as follows:

L =
∮

dl = 2πa

√
1 + κ2

2
. (B.2)

We have seen from the results obtained previously that the plasma velocity is maximal nearr = R0; therefore, we will
derivate the formulas in the vicinity ofR0. Theses following expansions are carried out atr ≈ R0:

(r2 −R2
0) = (r −R0)(r + R0) = 2R0(r −R0) ⇒ exp

[
γM2

0

2R2
0

(r2 −R2
0)

]
= exp

[
γM2

0

R0
(r −R0)

]
. (B.3)

To simplify the expressions, let us set:α = γM2
0 /R0.

B.1 The average pressure calculation

〈P 〉VP =
∫∫

Ω

Prdrdz =
1
µ0

∫∫

Ω

P0ψa exp
[
γM2

0

R0
(r −R0)

]
rdrdz. (B.4)

The pressure is given through in Eq.(16) and Eq. (22). ψa is the magnetic flux at R-axis. The limits of integration are
taken:r = R0 − a,R0 + a etz = −b, b:

I1 =
∫∫

exp
[
γM2

0

R0
r

]
rdrdz = 2b

[
r

α
− 1

α2

]
exp(αr)

∣∣∣∣
R0+a

R0−a

〈P 〉VP =
2b

µ0
P0ψa

×
[

2
α

(
R0 sinh (αa) + a cosh (αa)

)
− 2

α2
sinh (αa)

]
. (B.5)

B.2 The plasma current calculation

IP =
1
µ0

∫∫ [
rP0 exp

[
γM2

0

R0
(r −R0)

]
+

F0

r

]
drdz, (B.6)

I2 =
∫∫

exp
[
γM2

0

R0
r

]
rdrdz = 2b

[
r

α
− 1

α2

]
exp(αr)

∣∣∣∣
R0+a

R0−a

, (B.7)

I3 = F0

∫∫
drdz

r
= F02b ln

(
R0 + a

R0 − a

)
. (B.8)

The plasma current after developement lead to:

µ0IP = 2bP0

[
a

α
2 cosh (αa) +

(
R0

α
− 1

α2

)
2 sinh (αa)

]
+ F02b ln

(
R0 + a

R0 − a

)
. (B.9)

The final relation of poloidal beta expressed as follow:

βP =
2µ0

VP

2b
µ0

P0ψa

[
2
α

(
R0 sinh (αa) + a cosh (αa)

)
− 2

α2 sinh (αa)
]

[
2bP0

[
a
α2 cosh (αa) +

(
R0
α − 1

α2

)
2 sinh (αa)

]
+ F02b ln

(
R0+a
R0−a

)]2 × (L)2, (B.10)

with

α =
γvρ(R0)2

R0C2
s

. (B.11)

This relation gives beta as a function of the toroidal velocity and clearly shows that if the velocity increases, then beta poloidal
decreases. The calculation is performed using Python programming.
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