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This study presents a finite element method (FEM) solver developed to compute the steady equilibrium of an axisymmetric plasma with
toroidal flow. The main objective of the algorithm is to determine the free parameters of the toroidal current source using two key constraints:
the measured toroidal magnetic field (TMF) at the magnetic axis and the global error defined by Hilbert. To ensure the accuracy of the
performed code, the validation was performed using typical parameters of the JT-60SA (Japan Torus-60 Super Advanced) experiments, an
its TMF equal toB, = 2.25 T. The algorithm reveals a reconstruction error of approximately 0.1% for the flux function. The results also
indicate that for a Mach number at the major radius between 0.2 and 0.3, the maximum plasma current reaches 5.5 MA. Furthermore, the
normalized beta and safety factor are around 3, the average poloidal beta is 0.8, the normalized inductance is 0.75, and the toroidal frequenc
(w) at the major radius is 63 krad/s. These results are found in good agreement with experimental data. Additionally, the study provides
a quantitative assessment of how the toroidal flow affects plasma parameters and demonstrates the relationship between poloidal beta ar
rotation velocity.
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1. Introduction research. To address this, the GS equation has been gener-
alized by adding inertial terms associated with plasma flow,

esulting in the so-called generalized Grad-Shafranov (GGS
Tokamaks are the primary devices for achieving Contm”eo[e-quatio?] g ( )

thermonuclear fusion using magnetic confinement. The first
step in the modeling and analysis involves magnetohydrody- The GGS equation requires the definition of two arbitrary
namic (MHD) equilibrium calculations, typically based on scalar functions: plasma kinetic pressure (P) and the diamag-
the Grad-Shafranov equation (GS) [1,2], which assumes Betic function (F), which are two components of the toroidal
static, and axisymmetric p|asma. However, this assumptioﬁurrent denSity and cannot be Self'ConSiStently determined
does not accurately reflect experimental observations, whepithin the MHD model.
significant toroidal and poloidal rotations often occur even |nstead, “free” functions are either determined from ex-
without external momentum sources. Advances in plasm@erimental measurements to adjust the parameters of the
injection technics in the early 1980s allowed toroidal rota-pHpD equilibrium model, using various existing simulation
tion velocities in tokamaks to reach 100-150 km/s [3]. Thesggdes such as CHEASE [14], FLOW [15], M3D, and ECOM
flows are not merely secondary phenomena; they can great|y 6], Experimental measurements used for equilibrium stud-
influence plasma stability [4,5] and affect critical confine-jes typically include plasma shape, plasma current, magnetic
ment structures such as the magnetic separatrix and X-pointge|d data, and pressure profiles derived from temperature
which are vital for effective plasma containment. and density diagnostics. Alternatively, simple analytical pro-
Earlier studies primarily incorporated plasma rotation infiles can be used to approximate realistic plasma conditions.
stability analyses, while often neglecting its role in equilib- However, arbitrarily specifying current source terms to ana-
rium modeling. However, several key studies [6-13] have emiyze toroidal velocity effects does not provide reliable con-
phasized the necessity of including rotation in both stabilitytrol over plasma parameters. A direct approach to control the
and equilibrium equations to achieve a more consistent andurrent profile involves establishing specific physical plasma
realistic representation of plasma behavior in tokamaks. Duparameters as fixed constraints. These may include the total
to its complexity, fully integrating flow effects into equilib- plasma current, poloidal plasma beta, safety factor, or max-
rium formulations remains a significant challenge in currenimum plasma pressure. The current source is then modified
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to align with these predetermined experimental parametersured data. The second constraint reduces the overall error
This approach has been explored in several publications [17n Hilbert space, bringing the exact and numerical solutions
19]. of the GGS equation into alignment. Following this process,
Theoretical studies [6] have demonstrated that keyvarious output parameters can be determined. Plasma equi-
plasma quantities, including the total plasma current, depentiorium is treated either by imposing a fixed boundary [19,23]
on the toroidal Mach number (the ratio of plasma velocity toor by adopting a free boundary approach [24]. While using a
sound speed). This suggests that, instead of traditional cofixed boundary is common practice in this field, it limits the
straints such as plasma current, safety factors, or pressuref@gdeling of certain dynamic effects. However, this choice
the magnetic axis, it may be possible to consider an alteris suitable for the study’s objective, which focuses on under-
native constraint that, to our knowledge, has not been previstanding the impact of flow on internal plasma parameters.
ously explored: the on-axis toroidal magnetic field (TMF). The computational domain uses the smooth D-shaped Miller
Using the toroidal magnetic field (TMF) as a constraint pro-parameterization [25,26], which provides a compact expres-
vides a clear and consistent method for selecting current presion for the flux surface contour. This parameterization is
files in numerical studies of steady-state plasma equilibriumalso capable to generate circular cross-section configurations
This is particularly relevant, as the toroidal magnetic fieldHowever, it relies on an asymptotic expansion that assumes
is often considered constant over time or within a given op2 Small inverse aspect ratio= a/ Ry, wheref, anda de-
erating regime, especially in static equilibrium calculations,"0te the major and minor radius of the torus, respectively. We
where dynamic variations are neglected. For example, the Jflave used typical plasma parameters for the JT-60SA (Japan
B0SA features eighteen D-coils designed to operate at 25.70rus-60 Super Advanced), listed in Table | [20], to validate
KA, producing a field of 2.25 T on the toroidal axis surround-Our code. . . .
ing the tokamak [22]. Since the problem involves the deter-  The article is _organgd as fQHOWS: Section 2 explains
mination of two free parameters, it is necessary to introduce H'€ procedure for introducing toroidal flow into the GS equa-
second constraint to fully define the equilibrium. To addresdion, based on the assumptions of Maschke and Perrin [6] and
this, an exact analytical solution is used as a reference. Thiyanov [8]. Section 3 describes the computational domain.
approach not only provides a consistent framework for selectS€ction 4 provides the exact analytical solution, along with
ing the additional constraint but also ensures that the numetl® boundary conditions. Section 5 outlines the numerical
ical equilibrium remains physically meaningful and closely Method encompass with the Finite Element Method (FEM)
aligned with known theoretical results. and an overview of the proposed computational framework.
Section 6 validates the algorithm, comparing the exact solu-
tion with the numerical equilibrium in a full-current induc-

merically calculating current density while satisfying two ' I io for th nall
specific constraints. The first constraint keeps the TMF at thdV€ Plasma scenario for the JT-60SA. Finally, Sec. 7 presents
_quantitative analysis of the effect of toroidal flow on key

magnetic axis at a constant value that corresponds to me& o
internal parameters of the equilibrium plasma. In the last sec-

tion, our conclusions and perspectives are presented.

This work presents a computational framework for nu-

TABLE |. Typical parameters of Tokamaks JT-60SA [20] and . L
ITER [21]. 2. Formulation of the general equilibrium

parameters JT-60SA ITER like The magnetohydrodynamic (MHD) equilibrium is a funda-
full I»  -shape inductive mental concept for confined nuclear fusion and tokamak
plasma equilibrium, in the presence of toroidal rotation. The

Plasma currente (MA) 250 4.60 set of fundamental equations of stationary MHD [6,11] pro-
Toroidal magnetic field3o (T) 2.25 2.28 vides a general description of plasma fluid under magnetic
Safety factorgos 3.00 3.20 induction, namely the conservation of mag} the conser-
Major radiusR, (m) 2.96 2.93 vation of momentuma), Gauss’s law3), Ampere’s law 4),
Minor radius a (m) 1.18 114 Ohm’s law 5) and the thermodynamics lawg/7,8),
Aspect ratioA 25 2.6 v . (p7) =0, 1)
Elongationk, / ks 1.87/1.72 1.81/1.70 _ I
Triangularitys. /dos 0.50/0.40  0.41/0.33 p (7 : V) Vv =JAB-VP, )
Shape f.actor (Spsp/(aBo)) 6.30 5.70 5.5 0, @)
Normalized Bete&Bn(MmT/MA) 3.1 2.8
. — - @ —
Electron densﬂ{;; . 0.56/0.77 0.81/1.11 uwoJ =V A B, 4)
(ne), ne(0) (10°"mM™7) ? AT A E) ~o, 5)
TemperaturéTe), 7c(0) (keV)  6.3/13.5 3.7/8
Plasma volume (/) 131 122
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=

v-VS=0, (6)
_ dP dF

= —A*tp = por? — + F— 12

P = pRT, 7 Y = por dz/}+ 0 (12)
P = A(S)p7, (8)

pr? =902, (13

where, P, m andT, are respectively, the mass, kinetic pres- " ly=est

sure and temperature of plasmi.is the magnetic induction, Where the derivative of> with respect tor is taken at con-

J is the current densityyo is the vacuum magnetic perme- Stant. We will present two solutions of EC1E) depending
ability. The mass specific gas const@htepresents the ratio N the choice the functionals ¢f. _

of gas constant and the gas molecular weight. The caloric 1Nhe equilibrium problem is quite challenging because
state equation in EG8J is due to the fact that internal energy the GGS equation involves several functionalg'/ohamely,

of the plasma considered as an ideal gas, is proportional onff/ (¥), T'(¥), w(¥), F'() and p(v). To further simplify the

to the temperature, whergis function of the entropy. The GS equation, additional assumptions are needed, and the
parametery represents the ratio of the two specific heats and3h_0'ce of these assumptions determines the nature of the so-

has a value 0$/3 for ideal monatomic gas. lution. . .
Since tokamaks have an axisymmetric geometry, itis con- 1 n€ firstsolution follows the assumption proposed by [8],

venient to formulate the plasma equilibrium problem in aWhere the term.?) does not explicitly depend on the posi-
cylindrical coordinate systentr, ¢, z), where (r, z) repre- tionr and is a functl_onal otb._Assumlng that the density is
sents the poloidal plane section apthe toroidal angle inthe  Constant on magnetic surfaces,, p = (i) andw = “_’W)'
symmetric direction withe',,, the unit vector. Considering thus in this case the integration of the E;:_E)(Ieads to:
only a plane section gt= constant, it easy to establish from = 9T
Ed. (3), that the total magnetic fieltf = VYAV p+F Vo, P(y,r) = P(W) + puw”—,
wherey = [, B. np drdz, is the poloidal flux function, R oy T2
F = rB. ¢, is the diamagnetic functior) is the plasma = P =P + (pw) 9 (14)

%)
domain andp is the poloidal outgoing normal vector. The  The prime denotes the derivative with respect to the
poloidal magnetic flux) can usefully describe the plasma poloidal flux function). P(1)) is the static pressure depend-
equilibrium configuration and has nested magnetic surface$ng only on the poloidal flux. This form clearly separates
The compounds of the magnetic field are deduced as followshe centrifugal contribution of plasma rotation from the total

pressure.
B, = _lgﬂ’ B, = 1%7 B, = E. (9) In this case, the Eq1@) lead to following form:
r oz T or T __
dpP rt d(pw?) dF
* _ 2

The toroidal magnetic field, namel§,,, is a key parameter —A = por & THo o + F@ (15)
in our algorithm, serving to properly adjust the equilibrium Although the resulting pressure expression is simpler,
parameters.

- ] ) ) o the computation of the particular solution to the previous
In axisymmetric flow, and assuming for simplicity that ppg gepends on the chosen velocity profile. As reported in
the flow velocity is purely in the toroidal direction,e. Ref. [8], a nonlinear profile based ¢pw?)’ was proposed.

Vo= e, it is possible from Eq.5), to establish that, This simplified expression of pressure introduces chal-
v, = rw(¥), with w is the toroidal rotation angular fre- |enges, given the nonlinearity of the profile, when seeking an
quency of the flux surface. analytical solution - a fundamental requirement for the de-

Derivation of Eq. 2) with respect to Eqsi), (7) and pre-  yelopment of our algorithm. Nonetheless, it does not pose
vious relation, leads to, difficulties in the numerical resolution process, where such

explicit forms can be readily implemented for the GSS equa-
3 29 29 * dF\ - i
popr w*Vr — uor“V P = (A Y+ Fd) Vv, (10)  tion.
v The second solution follows the assumption where, the
— ) . ] entropy is assumed to be constant at the magnetic surface, as
where, V is the grad operator in poloidal plane section andgjted in Refs. [6,18] also in Green and Karlson works [27],

the Laplacian-type symbdl* has the form, and the plasma temperature should depend on the flux func-
5 /19 92 tion, i.e. T' = T'(v). This last assumption implies that the
AF = p— () — . (11)  thermal conductivity of the plasma is greater along the mag-
Or \r or 022 netic lines than between them. Using the Ex), the inte-

gration of Eq. [L3) with the integration constant chosen at
r = Ry for convenience, leads to,

’ (r? — Rﬁ)). (16)

It is easy to establish from Ed10) that the pressure is
function of+ andr i.e, P = P(v,r). Expansion of Eq/X0)
with correlating its terms, leads to the following two separate P = P()) exp < il
relations, 2RT
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In the following development, we opted for the more gen-
eral solution|L6) of Eq. (13), which enables us to obtain the 4 |- Inner point
analytical expressions needed to effectively develop and vali- r7=Rg-a 7,
date our algorithm. Thus, our approach preserves the genere /
form to facilitate analytical development while ensuring nu-
merical tractability within the finite element framework.

General equilibrium equation with purely toroidal rota- ~ } !
tion, over a closed plasma domain is established by substitut- E
ing eq. (L6) into eq. (2), N0

/
2 I

v, dF G[dP  —(r*—R%) d [w?
A% =F— + por [617,/1+P2Rd1/1 T

i 7 Outer point
9 plasma 7 ro=Rgta
xexp | —(r*— R5) . 17
(07 - 1) an
. . . . 4 l Qvacuum ' - - Fvacuum
The toroidal Mach numbef/, is defined as the ratio of /\ PR r
. . L - plasma
the plasma toroidal velocity,,, to the sound speed;;, Limiter © =
1 6
M=12e CS(8P>2 L
Cs op S—cst yRT FIGURE 1. Computational plasma domain byilMer parametriza-
) tion and locations of the higher, inner and outer points in a typical
(W, 1) = VP, r) M P(p,r) = P Y (18) plasma boundary. These points are used to define the shaping pa-
Wi ) = p r’ )= v M2 rameters in Egs. (20) and (21): the major and minor radius, elon-

gation and triangularity.

According to Maschke and Perrin works [6], for positive
value of internal energyy/* < 2/(v — 1), henceM? < 3. 8, the triangularity and again the poloidal angle= [0, 2r].

The equilibrium problem is quite challenging because theThe Fig. 1 shows the points that determine the height and
GGS equation involves'(y), P(y), w(v) andT'(¥). Solv-  the major and minor radius on a typical plasma border. It is
ing the Eq. IL7) requires prior knowledge of these profiles. generally possible to solve problem in an open domain, by
To reduce the complexity, certain assumptions were madeetting an artificial computational boundary- located at a
the toroidal frequency and the temperaturg were consid-  finjte distance from the plasma border. A single or double

ered constant on each magnetic surface. null configuration can be achieved by following the strategy
As a result, the GGS equation accounting for toroidalproposed in Ref. [28].

flow is expressed in this way.

_A*w = /J’Olr']gaa
iP W2, F dF 4. Exact solution of the GGS equation
Jo :T@QXP ﬁ(r - Rj) +7r@’ (19)

) ) Typically, the profiles of plasma pressure and diamagnetic
where.J,, denotes the toroidal current source. Siic€loes  fnctions are chosen to ensure that the source term vanishes
not mclgde the Mach number, it can be consistently used as & he plasma boundary, thereby modeling the effect of a per-
constraint for any Mach number. fectly conducting wall, as in the case of Solovev:

3. Plasma computational domain 1P =Py (¥ — ), F2=2F (¢ —by), (22)

The computational domain is established by designating a
fixed boundary, chosen in our code as the outermost closatiherey, is the flux function at the plasma boundafy, and
flux surface. This boundary is parametrized usingllst's ~ Fo are free parameters which can be tuned to constrain the
formula [25,26] for Dshape plasmas, which is expressed agpecified equilibrium, this will be discussed further below.
follows, The exact solutiomgexac) Of the GGS given in Eq/1(9) is
. . the sum of vacuumf, ) and particulary{p) solutions. Zheng
7= Ro + acos (¢ + arcsin () sin (9)), (20)  andet al in Ref. [29] proposed a homogeneous solution
z = kasin (6), (21)  satisfying the equatior-A*v, = 0, with general arbitrary
polynomial degree, having up-down symmetry. By truncat-
whereR, anda represent the major and minor radius, respecing the series, the solution is then written for= 4 as fol-
tively, e = a/ Ry, the inverse aspect ratig, the elongation, lows,
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where ¢; are the constants computed from boundary con-
ditions and the basic functions agg = 1, ¥y = r2,
V3 = (r* —4r?z%) andyy = r?In(r) — z%. Note that, the
second term of Eq2Q) represents the particular solution and
satisfies the GS equation with flow. We have introduced in
Eq. (19), additional simplificationw? /RT = (Mg /R3) =
cst, with M, the Mach number at the major radius= Rj.

The equilibrium profiles are determined by imposing a
Dirichlet condition on the plasma boundary, setting=
¢ = 0. To enforce this constraint, key extremal points ONFigyre 2. Subdivision of computational plasma domain “mesh-
the boundary - the inner point/), the outer equatorial point ng”.
(ro), and the uppermost point,) - are selected, as illus-
trated in Fig. 1. Owing to the up-down symmetry and the  The PDE given in Eq/A9) is cast in its weak form (inte-
resulting redundancy, a Neumann condition is additionallygral) via the variational principle, withh andv the unknown
imposed to ensure a net zero magnetic flux [19]. poloidal function and test function, respectively afii the

surface element of plasma domain.
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¥ (Ro +a,0) = U, The boundaries are defined parametrically, and the
¢ (Ro — a,0) = v, mesh (with node connectivity) is generated automatically.
¥ (Ro — da, ka) = 1y, FreeFEM++ provides an adaptive mesh generator. We subdi-
1 dw 0 vided the computational domain with P3 (cubic, third-order)
rdr e —Ro—ba, elements (Fig. 2). For each element, the surface integrals
z=b=ra of the basis functions in Eq24) are computed, yielding

Using the boundary conditions, the Appendix A shows2 linear matrix system for the poloidal flux, ag) = B.
the mathematical derivations of the analytical expressions dffee FEM++ provides both direct and iterative linear solvers
the constantéci, i = m) for the exact solution ofthe GGS and in this simulation, a direct solver was used; if the cur-
equation with flow. The calculation ef is a linear algebraic ~ rent source depended nonlinearlyppan iterative approach
problem, involving four unknowns and it is trivial computa- Would be more adequate.
tionally. As we can see in Appendix A, all the constantare
found in terms of the geometrical paramet@g, a, ~,0) de- 5.2, Algorithm
scribing the plasma cross section, the Mach number and the

free parameter®, and F;, of current density. The code computes both the exact and FEM solutions of
Eqg. (19). To fix the two free parametef’, andFj [Eq. (23)],
: we impose: (i) the computed on-axis toroidal field nanid
5. Numerical method using the Eq.9), equals the measured valuBy( = 2.25T
5.1. Problem specification for JT-60SA chosen as the test), and (ii) the global error in

Hilbert space between exact and numerical solutions of GGS
Numerical solution is carried out using the FEM applied toequation solutions is minimized. For each Mach number,
a matrix system derived from the variational principle. TheP, and F,, are updated via two nested iterations: at each
numerical implementation employed FreeFEM++ [30], anstep, these parameters are adjusted so that the recalculated
open-source C++ environment for nonlinear partial differ-B,, equals the measuremeti,, and the relative error be-

ential equations (PDEh{tps://www.freetem.org/ tween successive iterates falls below a prescribed stopping
f++/ ). error, named Tol (held fixed to 0.08%). This error, defined in
. . 19 Hilbert space [30], serves both as the stopping criterion and
// Vi x Vv dS + // 7%} v dS as the metric for alignment of the two solutions.
Q QT or
Mg Jfo (Vexact— wFEM)QdQ :
= Pyr? exp (7 9 (r? — R ) + Fo| vdS. (24) Error = & . (25)
[ |t ew (Srg07 - #b) + 5 [Ty Vel
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6 A. DJELLOULI AND A. RACHIDA SENOUDI

In summary, the inner (minor) loop of our algorithm man- with care both within the plasma domain and along the closed
ages the global error between the analytical and numericalonstant-flux boundary.
solutions, while the outer (major) loop controls the value of  The algorithm performed the following steps:
the TMF. The input data consist of the toroidal magnetic flux
at magnetic-axis and the toroidal Mach number. On an InteALGoRITHM.
Core i7 processor, the computation completes within 8 min-

utes Inputdata: Ro, a, 0, kK, Mo, Bo andkmax:
Once the free parameters ensuring equilibrium have been maximal number of iterations.
| Output data: vexaci analytical flux surface,

determined, the solution is then consistently calculated, a
lowing the specification of many important physical quanti-
ties. These include, the total toroidal plasma currdg}, (

the ratio between the average particle pressure in the volume 1 Set:Py = 0., APy, = 0.001, AFp = 0.001
and the average poloidal magnetic field pressure along the > Initial values of free parameters.
plasma boundaryd), the toroidal betady), the normalized 2: fori=1 t0 kmax
beta (3y), the safety factor at 95% of the plasma surfagg)( 3: Fy 0.
and the plasma internal inductanég:( 4: Compute the constants,, cz, cs, c1)
for initial values of current free
Ip= //Q Jordrdz, (26) parameters (Appendix A).
(P) 5: Compute the exact solution of GSTR E@3).
Op = QMOE, (27) 6: Specify the source terph, and calculate
P the numerical solution of GSTR Ecl9).
(P) 7 ComputeError EQ. (25).
Pr= QHO?’ (28) 8: Tol — Error
s ; .
9: for k=1 t0 kmax
BN = 5TCLTL§O, (29) 10: Fy — Fy + AR,
By 11: Update the calculation @&, c2, cs, ca)
Qo5 = € ?{ dl, (30) (Appendix A).
Hole Jr 12: Update the calculation of exact solution E23)(
<2'ii> 13: Update the source terify, and calculate again
li = 0I2Ry’ (31) numerical solution of GSTR Eq18).
14: UpdateError in Eq. 25).
whereBj, is on-axis toroidal field andp is the poloidal mag- 15: if (BError < Tol) then:
netic field at the edge, the meaning of the symbols is 16: Tol — Error > Update the tolerance.
() = [f  rdrdz _ ., -dl i; (:)Ise _
=7 = - : reak > The tolerance is reached.
[J qrdrdz frp di 10: _
: end if
20: end for
Bp =2 (P) (P — [Jq P, r)rdrdz 21: Compute) atr = Ro.
P Ho [uolp}z’ Vp 22: ComputeB, from the diamagnetic function F,
ra atr = Ry > Using the Eq./9)
L g 20 Sl P(t/m“)rdrdz’ (32) 23 if (IB, — Bo| > 10~?) then:
[‘;‘-’2’; ]2 Vp 24: Py — Py + APy > Incrementation
of free parameter
whereV,, represents the total plasma volume (given in Ta- 25 else
ble I). T.he relatiqnship betwe_en the poloidal beta _factor and 26: break > Total toroidal magnetic
the toroidal velocity is determined through the previous equa- _ )
tion. As a complement to this work, we have provided in Ap- field achieved
pendix B, the mathematical development to explicitly derive 2r: end if
the relationship between the poloidal beta and the toroidal 28: end for
velocity. 29: Post-processing:compute the physical quantities
Note that the FEM evaluation of all surface and curvi- at the equilibrium Eqs/26:31).
linear integrals in the above expressions must be performed 30: End program.

veem: NUuMerical flux surface,
Error, Tol, Ip, Bp, Br, BN, qos, I; and w.
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TaBLE Il. Computed equilibrium parameters of JT-60SA full plasma current inductive, for several values of Mach number at major radius.

IT-60SA Experimental
values [20]
Mo 0.1 0.2 0.3 0.4 0.5
Ip(MA) 5.6285 5.5196 5.3623 5.1905 5.0134 55
Qo5 2.7762 2.8348 2.9184 3.0134 3.1201 ~3
li 0.7465 0.7445 0.7415 0.7375 0.7330 [0.8-1]
Br(%) 7.5690 7.0120 6.2541 5.4325 4.6213 6.5
Op 0.8996 0.8669 0.8168 0.7550 0.6859 0.81
On(m T/IMA) 3.5703 3.3728 3.0965 2.7787 2.4473 3.1
B,(T) 2.2498 2.2493 2.2490 2.2498 2.2493 2.25
Errorg, (%) 0.0089 0.0311 0.0444 0.0089 0.0311 -
M—0 M,=03 weak neutral beams used for the plasma heating as reported
-~ Wexact -~ Wexact in Ref. [24]

.. — YFEM 2t . —VFEM

The validation described above, shows that our algorithm
has successfully minimized the global relative error while
keeping the total toroidal field constant. We have confirmed
that our algorithm offers a unique equilibrium solution with
a good accuracy, consistent and in good agreement with the
experimental data. Furthermore, we have also checked that,
when the Mach number gets close to zero, our code can gen-
erate Solovev’s equilibrium without the toroidal rotation.

15 20 26 30 35 40 45 15 20 26 30 35 40 45 7. Results and interpretations
a) r(m) b) r(m)

FIGURE 3. Poloidal flux surface of JT-60SA plasma. The dashed In the following, we will examine the effect of toroidal flow

line represents the exact solution and the solid line corresponds t@n some physical profiles of the JT-60SA plasma at equilib-

numerical one, a) foMo — 0 and b)My = 0.3. rium. Authors in Refs. [5,31,32] have indicated that the ac-
tual Mach number in various reactor experiments should be

6. Tests and benchmarking ——M,=0.05

- —=M,=02
-=-M,=03

0.80 |
To validate our results and to confirm the accuracy of the al-
gorithm, we made a benchmark comparison between our an-:
alytical and numerical results, by using the spatial configura-
tion of the JT-60SA fulllp.

Figure 3 displays the flux contours farf, — 0 (static
case) andVf, = 0.3, where, the simulation data have been
taken from Table |. The comparison between the analyti-
cal and numerical solutions reveals a good agreement with
a stopping error of To= 10~3. The poloidal flux increases
monotonically towards the magnetic axis, reaching a maxi-
mum value.

Table Il displays the computational results of the equilib- 0.60 0 : q i .
rium parameters of the JT-60SA full plasma current at sev- 2.0 25 3.0 35 4.0
eral values ofM{, by using the programming code. Table I
shows that the Mach number value corresponding to the op-
erational parameters for JT-60SA, was found to be betweeRmicure 4. Radial profile of current density on the midplane, for
[0.2-0.3]. This result in a good agreement with the relativelyseveral values ol/y.

0.75}

070F 3

Current density (MA/m?)

0.65}
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FIGURE 5. Evolution of the plasma current of JT-60SA as function <P> (kPa)
of Mach number. 125 |
*\* 12~
within the range of0.1 — 0.5] for plasma stability. So, in or- K Ny &
der to stay aligned with conventional values, we have selected Ny 4 5
M, in the range 0f0.1 — 0.7]. 100 |- Ny —10%
. . . ~\ < o
Radial evolution of the current densitf;, calculated on *, a
the median plane, exhibits a nonlinear distribution with a - \* 4 é
minimum, positioned at = R, for a low Mach number as \*\ 4 -8 a
shown in Fig. 4. Wher/, increases, the value of the current 73 [ S =
density at the center decreases and its position can be slighth g e *o »n
adjusted to achieve force balance. In addition, the minimum i . *\* -6
position of J, moves to the outer edge and the curve becomes % 4 o < e
more symmetric. According to Ed19), J,, is proportional q <4
to the derivative ofP and the square aoF’, the result being 1 L 1 L 1 L L_14
that the plasma center has a lower current density due to higt 01 02 03 04 05 06 07
pressure and high toroidal function, resulting in reverse shear ) Mo

equ,"'b”um' The par_ametdﬂ) P'ays_ an |mp0rt_ant role in re- FIGURE 6. a) Effect of the toroidal rotation on maximum magnetic
ducing current density, especially in areas with a strong magn,x surface and its shift position and b) average pressure and shift

netic field. position of maximum pressure.
The total plasma current could be measured experi-

mentally either computed numerically from the current den-umn back to its initial position. Pustovitov’s work [13] has
sity J,, in the toroidal direction. As shown in Fig. 5, the most proved that rotational velocity has no significant effect on
notable M, effect is the drop in current from 5.63 to 4.71 the GS shift. By manipulating the parametef, we can

MA when M, goes from 0.1 to 0.7. This current evolution is reduce the contribution of the pressure terms and achieve
shown by the results presented in Table Il. Therefore, whethis result. The algorithm guarantees this operation. Simi-
there is some increase in toroidal rotation, control of the inidarly, the Fig. 6b) shows that a®/, increases, the value of
tial geometric profiles and the total toroidal field leads to a(P) decreases and reaches 111.71 kPAlgt= 0.2. We

decrease in plasma current. have compared this result by calculatiti) from the elec-
Maximum flux surface{max) and its shift position(A)  tron and ion energies, which we have found to(ig) =
are both displayed in Fig. 6a). The volume-averaged pressurd;) = 6.3 keV (see Table 1), with the data simulation

((P)) with the shift position ofPax are reported in Fig. 6b). p = nx2.5xm, n = 0.56x102°m=3, m = 1.67x1072" kg

It is evident that, in addition to the reduction of the magneticand R = 3305.96 J/(kg K). Equation [T) yields a value
surface function, there is no change in the position of theof 112.9 kPa with a relative error of 1%. Our code have
maximum poloidal flux, as seen in Fig. 6a). Toroidal rota-provided a good result even when the operating parameters
tion creates a centrifugal force, as described by the first terrwveren’t exactly atVM, = 0.2. The shift A increases non-

in Eg. 2). This outward pushing force is counteracted bylinearly with M, as predicted by Maschke and Perin’s theo-
a reduction in plasma pressure, which brings the plasma coketical work [6].
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FIGURE 7. Effect of toroidal rotation on physical quantities, a) internal induction, b) safety fagfor) toroidal beta and d) poloidal beta.

2
15 ¥ (Tm%) P (kPa) F (Tm) o (krad/s)
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FIGURE 8. Several equilibrium profiles upon radial position of JT-60SA plasma, a) poloidak/f(ux0), b) plasma pressurg(r,0), c)
toroidal functionF'(r, 0) and d) toroidal frequenay(r, 0), all computed in the-axis and forM, = 0.1, 0.2, 0.3 and 0.4.

The parameters as plasma internal induction, betas aridcreases the safety factgs; parameter, which can be at-
safety factors are also affected By,, as shown in Fig. 7. tributed to a reduction in the total plasma current.
The choice of current density terms resulted in paramagnetic
plasma withgp less than 1. Poloidal beta decreased slowly]c
from 0.89 to 0.54, as seen in Fig. 7d), guaranteeing hen
plasma stability, otherwise thermal pressure would cause t
plasma to grow and move in the vacuum chamber until con
finement was lost. The evolution @F is similar to that re-
ported in Ref. [33]. Furthermore, llgisonis in Ref. [34], re-
por_ted thaF tgroidal rotation causes an increase of the €A% roidal magnetic field3,, which was maintained constant
librium g limit, by 1.6 to 2.5 times compared to the static in the algorithm.
equilibrium. We have shown that this statement is incorrect
and that our results lign with those of Pustovitov [13]. In  Figure 8d) shows how the toroidal frequencyaries ra-

fact, the equilibrium beta limit for a rotating plasma should dially in the midplane. The toroidal velocity in tokamak ex-
be lower than that for a non-rotating plasma. periments is usually maximum at the center of the plasma

column. This is to be expected since the pressure is higher

In high-beta plasma, toroidal beta dominates the total betg‘ere' The toroidal velocity d_oe_s n(_)t vanish at the Ol.n.er
which is then equal tg#r. Indeed, plasmad is often ex- edge of the plasma boundary, indicating a gradual transition

pressed in terms gfy, an operational parameter indicating beyond the confined region. From the Fig. 8d), we found

how close the plasma is to reaching a non-equilibrium statég/[:_620'629 I;r\;’:ld/s andy, = 62-?)9 x 2.96 tf.: 1;30 kr%s, for
Similar variation of3r is reported in Fig. 7c) where we can "9 — ¥ € may compare by computingirom the en-

see thatdr decreases sharply from 7.83 to 4.78. In reality,ergyT = 13_.5 keV (central electron temejerature repo_rted in
the equilibrium must maintain fairly high beta values, and a-l-fibIe 1), which equates tﬁ_: 156.65 > 107 K. By_applymog
necessary and sufficient condition for achieving high beta igqs._ (7) and [18), we obtainw =~ 62.77 krad/s with 0.13%

to increase the pressure gradidarg.(decrease) or increase relative error.

P); paradoxically, this does not happen when toroidal rota-  Figure 9 is used for comparison with the results obtained
tion increases. No significant effect in the internal inductionusing the FLOW code by Guazzotto [15]. Among the data re-
is observed in Fig. 7a), and our calculations resultel of ported in that work, the authors provided the midplane profile
0.7 (70%) using Solov’ev equilibria. For this reasérgould  of v, (which is proportional taw) for an NSTX equilibrium.
potentially be used as a constraint parameter in the studye plot the corresponding profile for JT-60SA & = 0.2

in the presence of toroidal flow. Figure 7b) shows tidg (operational mode). Although the two devices differ and the

Additional equilibrium profiles are plotted in Fig. 8, as
unction of radial position and at-axis, namely, poloidal
Cfux, plasma pressure, toroidal function, and toroidal rota-
fon frequency at the center, all calculated for several values
of My. All profiles show maximum value near the plasma
center. The toroidal field function is not influenced iy

as indicated in Fig. 8c), since it is proportional to the total
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8. Conclusion

In this work, we developed a numerical approach based on
the finite element method to solve the Grad-Shafranov equa-
tion with toroidal flow. The implemented FEM algorithm,
provides the magnetic configuration of 2D toroidally sym-

* metric equilibria while maintaining the toroidal magnetic

15 20 25 30 35 40 45 05 06 07 08 09 field (TMF) constant along the R-axis and equal to the mea-

a) r(m) b)

By

sured value. The numerical results show a good agreement

FIGURE 9. Midplane profile of toroidal velocity abfo = 0.2 (0n  with the operating parameters, as validated against JT-60SA
left panel) and evolution of the toroidal velocity at center, upon experimental data. The proposed algorithm yields a recon-

poloidal beta (on right panel). Fitted curve of rotational velocity is:
v, = a+ b x exp(c x Bp)), with a = 448, b = —0.815 and

struction error of approximately 0.1% for the poloidal flux
function and less than 0.04% for the TMF. The effect of the

= 6.719. . . .
¢ toroidal Mach number was also studied using the same code,
s providing valuable insights into the control of plasma pres-
' Tordidal velodit sure, current, and rotation profiles. The most notable numer-
Y ical prediction is that the plasma currefi¢) decreases as the
or toroidal flow increases. Future improvements to the proposed
. algorithm could include the implementation of free boundary
E 08 conditions with coil effects, as well as a more precise treat-
= ment of magnetic field fluctuations.
é 06|
g oal Appendix A
02l Using new notations for the positions as followsy =
Ro+a, r = Ry — a, ryp, = Ry — da andb = ka,
00 1 1 1 1 1
0.60 0.65 0.70 0.75 0.80 0.85 0.90 P (7'07 ()) = 1y,
BP w(r170) - ¢b7
FIGURE 10. Relation between beta poloidal and toroidal velocity Y (TUp, b) = Yo, (A.la)
(through the Mach number) for= R, for JT-60SA plasma. 1dy -0
T AT lr=ry, ’
absolute values are not directly comparable, both profiles ex- z=b

hibit similar behavior - notably, a rightward axial shift rela-

tive to the magnetic axis.

We have also plot in Fig. 9, computed at R-axis, as

n (r0,0) =¥y —Yp (10,0),

function of poloidal beta. The evolution of the toroidal ve- Un (r1,0) = ¥y = p (r1,0),

locity is similar to that reported in Ref. [33]. Fitting the data = 4 Un (rup,b) = s — Yp (rup, b), (A.1b)
points makes it possible to establish a direct relationship be- 1dygn _ _1dyp

tween the toroidal velocity and the poloidal beta. The curve rodr r=rup, oo r:rzp’

is of form: v, = a + b x exp(c x Bp) with the coefficients

a =448, b = —0.815 andc = 6.719. This formula is useful  which it's can be written as linear system matrx = B,
from a theoretical and experimental point of view. with the matrixA and the vector unknown
Figure 10 clearly illustrates the dependence of the

toroidal velocity (through the Mach number) on the poloidal
beta, and this result is consistent with that obtained by Naka, _
mura [33]. The calculation was performed using the relation
derived in Appendix B, evaluated at the point of maximum

7% r‘é 7% In(ro)
r? 4 r?1n(1o)
’I"ZUP répf4r2Upb2 T%,p ln(rUp)fb2

2 4rgy,—8b° 21n(ryp)+1

, (A.2a)

O = = =

velocity,i.e., in the vicinity of Ry. Although plasma pressure . .
is described differently in our paper and in that of Nakamurac = (¢1 ¢2 ¢3 ¢4)” andB = (B1 By Bs Bi),
[33] and Ivanov [8], the predictions obtained regarding thewith,

Rev. Mex. Fis71061501



A COMPREHENSIVE ALGORITHM USING A FIXED TOROIDAL MAGNETIC FIELD FOR PLASMA EQUILIBRIUM WITH FLOW 11

R2 2 M2 M2
) 1+ S d - R3) — exp (3 (rd - R3)) |,

(A.2b)

2 YMG (2 2 VM (2 2 Fop2
'YM(?) {1 + 3R (o, — Bg) — exp 2R2 (rp = Ro))} + 0%,

2\ 2 2 2
By =ty — Po(5hi ) 1+ S (3 — R3) — exp (3 (rF - B3)]

The four unknown constants are analytically determined using the Cramer method, with the determinant of matrix A
expressed as follows:

det[A] = r? {4b2r% + (1"20 — rUp)ﬂ ln(r?) - r% {41)2?? + (r? - rUp)Q] ln(ré) + (r? — 7“20) —8b* — 2p2 (r? + 7“20)

(A.3)

(0 =) B — 1By + (B, — 1) 1n<r%p>} .

The constants of the exact solution of the GGS are found as:

c1 = | Barirg(rf —rg) + 861 (Bargy — Bur) + 0% (2(Barg — Bur) + Barirg (rf — 1)) + i, (Berd (15 — 185,)
2
r
+ Blr?(rlsz - 7’?)) + EI (2337'(2)(46)2 + 7'(2)) — 7"201"[2]]3(4B3 + By (4b* + 7’20)) + 7’4Up(231 + B47"20)) 1n(1"?)

2
+ %0(—233@(4192 +77) + rirty, X (4Bs + By(4b* +17)) — 1, (2B2 + Byr})) In(r)

+ = (2Bsrirg (r7 — 1) + Barirori, (rd — ri) + 2(Bard — Blr%)r?}p) In(r;,) | /det[Al, (A.4)

N | =

2
,
co = |8b* (By — Ba) + (By — B3)r + (B3 — Ba)r] + b°By(rg — r7) + (B2 — By)rf, + 5’(8%(}31 — By)

+

2
T
By(rg — 1) + 4(Bs — By + b*By)rg,) In(r7) + ?0(862(33 — By) + By(rfy, — 1)

1
+4(By — By — b*By)r,) In(r3) + §(2(B1 — B3)r] +2(Bs — Ba)rg, + Bu(ri — o),

+2(By — Ba)riyy) ln(rép)} /det[A], (A.5)
c3 = [(B1 — B3)(20% + 17,) + 17(Bs — B1) + 15 (B — Bs) + b2 By(r] — 1) + g(Q(B1 — Bs3)

+ Ba(rgy, —15)) In(r7) + %(2(33 — Bo) + Ba(r} —rf,)) In(r3) + %(2(327% — Birj)

(03 = 15)(2Ba - Burt,) )| /detlal (2.6)
cq = [27"?(33 = B1)(r] = 2rfy,) + 2r3(Ba — By)(r) — 2rfy,) + (17 = 1) (Ba(rirdy — vy, (r] +13) + iy, — 40°r7,)

+ 8b”Bg) 4 2(Ba — By)riy, + 8b*(Barg) — Blr’;’)} /det[A], (A7)
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Appendix B
The beta poloidal is defined as:
P
Bp = 2uo #ilj 5 (B.1)
§dl ]
The plasma perimeter is approximated as follows:
2
L:fdzzzm 12“ . (B.2)

We have seen from the results obtained previously that the plasma velocity is maximal-aeRy; therefore, we will
derivate the formulas in the vicinity d?y. Theses following expansions are carried out at Ry:

M? M¢
(r* = R%) = (r — Ro)(r + Ro) = 2Ro(r — Ro) = exp [ZRS (r? — Rg)} = exp [7R00 (r — RO)} . (B.3)
0
To simplify the expressions, let us set:= yMZ/Ry.
B.1 The average pressure calculation
2
(P\Vp = / /Q Prdrdz = i / /Q Potba exprgio (r — RO)}rdrdz. (B.4)

The pressure is given through in Et6f and Eq. 22). v, is the magnetic flux at R-axis. The limits of integration are
taken:r = Ry —a, Ry + a etz = —b,b:

M 1 flota 2b
L = /exp[’y 0 r] rdrdz = 2b [T - 2} exp(ar) (PYVp = — Pot),
Ry a o« Ro—a 1o
2 , 2 .
X [ (Ro sinh («wa) 4 a cosh (aa)) — —5 sinh (aa)} . (B.5)
« «

B.2 The plasma current calculation

2
Ip = S // rPyexp PMO (r— Ro)} + o drdz, (B.6)
Ho Ry r

M2 1 RO"FQ
I, = // exp TR0 rdrdy = 26| - — = exp(ar) , (B.7)

Ry a a? Ro—a
I = F, // drdz _ pobin (RO + “). (B.8)

T Ry—a
The plasma current after developement lead to:
1
polp = 2bP, [a2 cosh (aa) + (RO - 2>2$inh (aa)} + Fp2b1n <R0 + a)' (B.9)
« « « Ro—a
The final relation of poloidal beta expressed as follow:

2b Pyapa | 2 ( Ro sinh (aa) 4 acosh (aa) | — = sinh (aa)

2o P ’ ’ « (L) (B.10)
= 5 , )
2bP, {ZQCosh (aa) + (ff; - (;>2smh (oza)] + Fy2bln (goja)]
with
'YUP(RO)Q

=1 B.11
= RO (B.11)

This relation gives beta as a function of the toroidal velocity and clearly shows that if the velocity increases, then beta poloidal
decreases. The calculation is performed using Python programming.
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