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Departamento de Mateḿaticas, Centro Universitario de Ciencias Exactas e Ingenierı́as, Universidad de Guadalajara,
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e-mail: ernesto.urenda@academicos.udg.mx

J. J. Barba-Franco

Departamento de Ciencias Básicas, Tecnológico Nacional de Ḿexico,
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The Duffing oscillator is a well-established model with broad applications in physics, engineering, and biological systems. This study exam-
ines a system of three undamped, non-autonomous Duffing oscillators arranged in a unidirectionally coupled ring configuration. The model
enables the exploration of intricate dynamical behaviors, including multistability, synchronization, and the onset of chaos. Local energy con-
servation is analyzed through integrals of motion and phase-space examination, considering various coupling strengths and natural frequency
parameters. By applying the Milne-Pinney equations, the study identifies three conserved quantities-each associated with an oscillator-whose
interdependence reflects the structural influence of the ring. The findings demonstrate how unidirectional coupling and non-autonomous forc-
ing facilitate energy exchanges within the system, revealing that local energy conservation is not merely a consequence of global symmetries
but rather emerges from the complex interplay of nonlinear interactions. This deeper perspective enhances the understanding of energy
dynamics in coupled oscillatory systems.
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1. Introduction

The Duffing oscillator is a nonlinear dynamic system that
has been extensively studied since its introduction in 1918 by
Georg Duffing [1]. Over the years, it has found applications
across various fields, including physical systems [2-5], engi-
neering [6-10], and biological systems [11,12], among others
(see [13] and references therein).

Recently, its applications in coupled systems have gained
relevance due to the rich dynamics that have allowed deepen-
ing in the multi-stability analysis, synchronization, and emer-
gent chaotic behavior. In 2020, Barba-Francoet al. [14] stud-
ied the behavior of two unidirectionally and bidirectionally
coupled Duffing oscillators, observing a synchronization de-
pendent on the coupling strength. Subsequently, these results
were used to analyze a unidirectionally tricoupled ring, incor-
porating different forms of time-dependent damping. This al-
lowed the study of the multistability of the system, obtaining
fixed-point stability and hyperchaos depending on the type
of damping used [15]. Furthermore, in 2022, Uriostegui-
Legorretaet al. [16] proposed a master-slave system in which

they couple a Duffing oscillator and a Van der Pol oscillator
under different coupling schemes, successfully achieving the
synchronization of both oscillators. Finally, in 2023, Balara-
manet al. [17] studied a tricoupled ring of Duffing oscilla-
tors, identifying 27 equilibrium points, from these diverse
dynamics, leading to different behaviors such as limit cycles
and chaotic spirals.

According to Noether’s theorem, published in 1918 by
Emmy Noether [18], every symmetry of a physical system
corresponds to a conserved quantity. In other words, using
the integral of motion, it is possible to obtain information
about the system’s symmetries and even the solution’s sta-
bility properties without calculating them explicitly [19-22].
Integrals of motion have potential applications in nonlinear
systems (see [23,24] and references therein). Techniques for
finding integrals of motion are essentially based on algebraic
arguments, Noether’s theorem, or methods based on transfor-
mation groups [25,26].

The present work aims to analyze the behavior of a uni-
directional tricoupled ring using undamped Duffing oscilla-
tors by varying the coupling strengths and natural oscillation
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parameters. The system dynamics are studied using space-
time surfaces, time series, and phase portraits, following a
similar approach to other investigations [27,28], where the
Lagrangian of the system, together with Noether’s theorem,
are used to analyze symmetry transformations, as well as en-
ergy conservation through the integral of motion. In Urenda-
Cázareset al. [27], a bidirectional tricoupled ring of Duffing
oscillators is studied, where the Lagrangian and the integral
of motion are employed to examine the behavior of the sys-
tem. Chaotic or multistable dynamics are observed depend-
ing on the variation of the coupling parameters. For their part,
Barba-Francoet al. [28] use the integral of motion to analyze
a master-slave system of Duffing oscillators with nonlinear
coupling, identifying the presence of chaos and synchroniza-
tion as a function of the oscillation strength. This kind of cou-
pled configuration may have future applications in the design
and analysis of nonlinear signal transmission systems and en-
ergy transport in networked mechanical structures [29,30].

The paper is organized as follows: In Sec. 2 we explore
the existence of conserved quantities for the unidirectionally
coupled Duffing system. In Sec. 3 we present the numerical
results obtained from integrating the system under different
configurations of the natural frequency parameter. Three dis-
tinct cases were considered: constant frequency, sinusoidal
variation, and quadratic variation. The time evolution of the
solutions and local energy conservation are analyzed. Fi-
nally, these results illustrate how the dynamics of the system
changes under various conditions of the frequency parameter.
It has been observed that the unidirectional coupling intro-
duces changes in the local energies of each node that depend
on the diffusive coupling.

2. Model

In order to demonstrate the existence of conserved quanti-
ties for the model of an unidirectionally coupled Duffing sys-
tem, specifically considering the undamped Duffing oscilla-
tor with an external force of modulation, first we use a single
Duffing oscillator:

ẍ + Ω(t)x + δ(t)x3 = Γ(t), (1)

whereδ(t), Ω(t) andΓ(t) are parameters of the system.
Figure 1 shows a three unidirectionally coupled Duffing

oscillator system using a directed graph, where the vertices
represent each oscillator and the edges represent their cou-
pling ξ.

Taking Fig. 1 and using Eq. (1) in each node, the full
second-order system result as follows

ẍ1 + Ω(t)x1 + δ(t)x3
1 + ξ (x1 − x3) = Γ1(t),

ẍ2 + Ω(t)x2 + δ(t)x3
2 + ξ (x2 − x1) = Γ2(t),

ẍ3 + Ω(t)x3 + δ(t)x3
3 + ξ (x3 − x2) = Γ3(t),

(2)

FIGURE 1. A ring of three Duffing oscillators unidirectionally cou-
pled.

whereξ is the coupling strength coefficient. Note that diffu-
sive coupling is included.

Now, to solve the equation system (2) is implemented an
order reduction oḟxj = yj for j = 1, 2, 3. As a result, the
system is transformed into a first-order equation system:

ẋ1 = y1,

ẏ1 = −Ω(t)x1 − δ(t)x3
1 − ξ (x1 − x3) + Γ1(t),

ẋ2 = y2,

ẏ2 = −Ω(t)x2 − δ(t)x3
2 − ξ (x2 − x1) + Γ2(t),

ẋ3 = y3,

ẏ3 = −Ω(t)x3 − δ(t)x3
3 − ξ (x3 − x2) + Γ3(t).

(3)

Similarly to other work available in the literature [28], it
is possible to propose a proper Lagrangian associated with
(2). This Lagrangian is defined by

L(x1, ẋ1, x3, t) =
1
2
m(t)ẋ2

1 − V (x1, x3, t),

L(x2, ẋ2, x1, t) =
1
2
m(t)ẋ2

2 − V (x2, x1, t),

L(x3, ẋ3, x2, t) =
1
2
m(t)ẋ2

3 − V (x3, x2, t),

(4)

where the potentialV is given as

V (x1, x3, t) =
1
2
m(t)

{
[Ω(t) + ξ] x1

2

+
δ(t)
2

x1
4 − 2 [Γ1(t) + x3] x1

}
,

V (x2, x1, t) =
1
2
m(t)

{
[Ω(t) + ξ] x2

2

+
δ(t)
2

x2
4 − 2 [Γ2(t) + x1] x2

}
,

V (x3, x2, t) =
1
2
m(t)

{
[Ω(t) + ξ] x3

2

+
δ(t)
2

x3
4 − 2 [Γ3(t) + x2] x3

}
. (5)
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Now, using the well-known Euler-Lagrange equations
and considering the restrictionα = 0 one can rewrite the
equation system (2).

For the following steps of this methodology, we focus
only on a nodex1, but apply the same steps for the rest of the
nodesx2 andx3 due to a symmetry in the equations. In the
Lagrangian formulation of dynamical systems, the existence
of continuous symmetries implies the conservation of certain
physical quantities, according to Noether’s theorem [18]. To
obtain an integral of the motion associated with Eq. (2) are
used arguments similar to those employed in Ref. [27]. We
consider an infinitesimal transformation of time and the co-
ordinatex1 of the type:

t 7→ t + εψ(x1, t), x1 7→ x1 + εη(x1, t),

with ε small. This transformation induces the symmetry op-
erator:

X = ψ(x1, t)
∂

∂t
+ η(x1, t)

∂

∂x1
, (6)

which represents an infinitesimal variation of the system.
Applying Noether’s theorem requires analyzing how the

LagrangianL(x1, ẋ1, x3, t) changes under this transforma-
tion. If a given transformation leaves the action integral
S =

∫ t

0
L(x1, ẋ1, x3, t) dt invariant, then there exists a con-

served quantity. This quantity takes the following form:

Q1 = (ψẋ1 − η)
∂L(x1, ẋ1, x3, t)

∂ẋ1

− ψL(x1, ẋ1, x3, t) + Γ1(t). (7)

Here, the functionΓ1(t) is derived from the total deriva-
tive added to the non-transformed Lagrangian. Differentiat-
ing Eq. (7) with respect to time and setting the result to zero
yields a necessary condition for the invariance. This invari-
ance is expressed by the condition:

ψ
∂L(x1, ẋ1, x3, t)

∂t
+ η

∂L(x1, ẋ1, x3, t)
∂x1

+
(
η̇ − ψ̇ẋ1

)

× ∂L(x1, ẋ1, x3, t)
∂ẋ1

+ ψ̇L(x1, ẋ1, x3, t) = Γ̇1(t). (8)

In this context,ψ̇, η̇ and Γ̇1(t) are the total variations over
time and are given by the following extended derivatives:

ψ̇ =
∂ψ

∂t
+

∂ψ

∂x1
ẋ1,

η̇ =
∂η

∂t
+

∂η

∂x1
ẋ1, (9)

Γ̇1(t) =
∂Γ1(t)

∂t
+

∂Γ1(t)
∂x1

ẋ1.

These expressions allow us to evaluate the complete vari-
ation of each term in the invariance equation. Fulfillment of
this condition guarantees the existence of a conserved quan-
tity, which in this case is identified as the local energyQ1 of

the corresponding node. In an analogous way, the local ener-
gies forQ2 andQ3 are obtained, which shows the usefulness
of the approach for coupled systems.

Q1 =
1
2

(ρẋ1 − ρ̇x1)
2 +

δ(t)
4

ρ2x1
4

− (ξx3 + Γ1(t)) ρ2x1 +
K

2

(
x1

ρ

)2

,

Q2 =
1
2

(ρẋ2 − ρ̇x2)
2 +

δ(t)
4

ρ2x2
4

− (ξx1 + Γ2(t)) ρ2x2 +
K

2

(
x2

ρ

)2

,

Q3 =
1
2

(ρẋ3 − ρ̇x3)
2 +

δ(t)
4

ρ2x3
4

− (ξx2 + Γ3(t)) ρ2x3 +
K

2

(
x3

ρ

)2

. (10)

The integrals of motionQ1, Q2 and Q3 can be inter-
preted as energies because they are conserved quantities aris-
ing from the symmetries of the system, specifically time in-
variance, according to Noether’s theorem. These functions
remain constant throughout the evolution of the system and,
when expressed in terms of physical variables such as posi-
tion and velocity, adopt a functional form compatible with ki-
netic, potential, or total energy. This similarity in their struc-
ture and their time conservation are interpreted as energies in
classical dynamics.

While this method allows for obtaining a motion integral
for (1), the primary focus here is on analyzing the fully cou-
pled system. Furthermore,ρ is a solution to the following
Milne-Pinney like equation [31,32]:

ρ̈ + (Ω(t) + ξ) ρ =
K

ρ3
. (11)

The functionρ is, in fact, defined in terms of the original
function ψ through the relationψ = ρ2 [31,32]. Addition-
ally, condition (8) implies that the coefficientsδ(t) andΓ1(t),
Γ2(t), andΓ3(t) are not free and must satisfy some restric-
tions given by next expressions:

δ(t) =
C1

ρ6
,

Γ1(x3, t) =
C2

ρ3
− ξx3,

Γ2(x1, t) =
C2

ρ3
− ξx1,

Γ3(x2, t) =
C2

ρ3
− ξx2.

(12)

These coefficients mainly depend on the Milne-Pinney
solutions, but due to the above mentioned restrictions they
also depend on the coupling variable, soΓ1, Γ2 andΓ3 be-
comes intoΓ1(x3, t), Γ2(x1, t) andΓ3(x2, t).
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FIGURE 2. A 3D representation of local conservation of the energyQj for a) x1(t), b) x2(t) and c)x3(t) in function of coupling strength
(ξ) and time (t) for Ω = 2.

3. Numerical results

In order to solve the Eq. (3), the values of the constant coeffi-
cients areC1 = 1 related to the nonlinear term,C2 = 0.025
related to the external modulation constant parameter, also
K = 1 associated with the energy conservation in Eqs. (10).
The coupling strength parameter is varied in the rangeξ ∈
[0, 1] andρ is the solution for Milne-Pinney. Three differ-
ent cases of natural frequency of oscillation parameter are
considered; Case 1:Ω = 2, Case 2:Ω(t) = 0.0025 sin(t)
and Case 3:Ω(t) = 0.0025t2. The initial conditions are
x1,3 = 1/

√
2, x2 = −1/

√
2, andy1,2,3 = 0.

3.1. Case 1: Constant frequencyΩ = 2

Figure2 presents a three-dimensional visualization of the lo-
cal energy quantityQj corresponding to the state variables
x1(t), x2(t), andx3(t), shown in subfigures a), b), and c),
respectively. The plots display the dependence ofQj on the
coupling strengthξ and timet, under the condition of a fixed
natural frequencyΩ = 2. The emergence of flat, constant sur-
faces across all subfigures indicates the invariance ofQj with
respect to both temporal evolution and variations inξ. This
behavior confirms the local conservation of energy within the
system, highlighting the robustness of the dynamical struc-

FIGURE 3. A (I) 3D and (II) 2D representation of temporal behav-
ior of (3) for a)x1(t), b)x2(t) and c)x3(t) in function of coupling
strength (ξ) for Ω = 2.

ture and consistency of the theoretical framework em-
ployed. The observed invariance further supports the analyti-
cal formulation and numerical implementation of the model,
demonstrating that local energy conservation is preserved re-
gardless of coupling perturbations within the specified pa-
rameter regime.

In Fig. 3, a combined 3D (column I) and 2D (column II)
representation illustrates the temporal behavior of the solu-
tion to Eq. (3) for the state variablesx1(t), x2(t), andx3(t)
as functions of the coupling strengthξ, under the condition
Ω = 2. The 3D plots (left column) reveal the modulated os-
cillatory structure of each variable over time and varying cou-
pling, while the 2D plots (right column) allow for a clearer
visualization of the frequency and phase synchronization ef-
fects induced by changes inξ.

Figure4 complements this analysis by presenting the evo-
lution of the local maxima of each state variable with respect
to ξ.The amplitude of oscillations indicates that the peak val-
ues remain bounded and nearly invariant across the range of
coupling strengths considered. These results suggest that the
system maintains a periodic and robust oscillatory regime de-
spite variations in the interaction parameter, which is critical
for interpreting the underlying dynamics and their potential
applications.

Figure5 illustrates the time series (column I) and phase
portraits (column II) ofx1(t) for varying values of the cou-
pling parameterξ. As ξ increases from 0.1 to 1.0, a no-
ticeable trend can be observed in both the amplitude and the
phase space trajectories. At lower values ofξ [panels a) and
b)], the system exhibits high-amplitude oscillations with rel-
atively broad phase portraits, indicating strong periodic be-
havior and limited damping. Asξ approaches intermediate

FIGURE 4. Local maximum forx1(t), x2(t) andx3(t) in function
of coupling strength (ξ) Ω = 2.

Rev. Mex. Fis.71060702
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FIGURE 5. (I) Time series and (II) phase portrait ofx1(t) for a) ξ = 0.1, b) ξ = 0.3, c) ξ = 0.5, d) ξ = 0.5, e) ξ = 0.7, f) ξ = 0.9 and
ξ = 1.0 for Ω = 2.

FIGURE 6. A 3D representation of local conservation of the energyQj for a) x1(t), b) x2(t) and c)x3(t) in function of coupling strength
(ξ) and time (t) for Ω(t) = 0.0025 sin(t).

values [panels c) and d)], the amplitude becomes more sta-
bilized, and the phase portraits maintain a more consistent
elliptical shape, suggesting a balance between coupling and
damping effects. At higherξ values [panels e) and f)], the
amplitude of oscillations decreases slightly, and the phase
portraits become tighter, indicating enhanced damping and

FIGURE 7. A (I) 3D and (II) 2D representation of temporal behav-
ior of (3) for a)x1(t), b)x2(t) and c)x3(t) in function of coupling
strength (ξ) for Ω(t) = 0.0025 sin(t).

reduced oscillatory energy. These observations suggest that
increasingξ leads to a gradual transition from strong period-
icity towards more damped oscillatory dynamics, reflecting
the critical role of coupling strength in the system’s behavior.

3.2. Case 2: Sinusoidal frequencyΩ = 0.0025 sin(t)

Figure6 displays the three-dimensional behavior of the local
energy functionsQj associated with the state variablesx1(t),
x2(t), andx3(t), as depicted in subfigures a), b), and c), re-
spectively. The analysis is carried out under the condition of
a time-dependent frequencyΩ(t) = 0.0025 sin(t). Despite

FIGURE 8. Local maximum forx1(t), x2(t) andx3(t) in function
of coupling strength (ξ) Ω(t) = 0.0025 sin(t).

Rev. Mex. Fis.71060702
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FIGURE 9. (I) Time series and (II) phase portrait ofx1(t) for a) ξ = 0.1, b) ξ = 0.3, c) ξ = 0.5, d) ξ = 0.5, e) ξ = 0.7, f) ξ = 0.9 and
ξ = 1.0 for Ω(t) = 0.0025 sin(t).

FIGURE 10. A 3D representation of local conservation of the energyQj for a)x1(t), b) x2(t) and c)x3(t) in function of coupling strength
(ξ) and time (t) for Ω(t) = 0.0025t2.

the introduction of temporal variability in the system’s fre-
quency, the resulting surfaces remain perfectly flat across
both timet and coupling strengthξ, indicating strict conser-
vation of the local energy quantitiesQj . This result strongly
supports the robustness of the local conservation property un-
der non-autonomous conditions and reinforces the internal
consistency of the dynamical framework. The invariance of
Qj in this non-stationary regime suggests that the formula-
tion preserves key structural symmetries responsible for the
conservation laws.

Figure7 displays both three-dimensional (column I) and
two-dimensional (column II) representations of the time evo-
lution of x1(t), x2(t), andx3(t) as functions of the coupling
strengthξ. Compared to the autonomous case, the oscillatory
patterns become more irregular and exhibit amplitude modu-
lations due to the sinusoidal variation in frequency, suggest-
ing sensitivity to the non-autonomous perturbation.

Figure8 shows the local maxima of the state variables as
a function ofξ, revealing sharp discontinuities and irregular
structures. These abrupt changes in peak amplitude reflect
transitions under a transition at the coupling threshold, where
the time evolution and phase space stabilize at a frequency
phenomenon induced by the periodicity inΩ(t).

Figure 9 presents the time series (column I) and phase
portraits (column II) ofx1(t) for different values ofξ. The
phase space trajectories reveal a transition from nearly har-

FIGURE 11. A (I) 3D and (II) 2D representation of temporal behav-
ior of (3) for a)x1(t), b)x2(t) and c)x3(t) in function of coupling
strength (ξ) for Ω(t) = 0.0025t2.

monic motion to more complex, flattened, or elliptical loops
asξ increases. This deformation of orbits suggests a shift in
the system’s dominant frequencies or the onset of nonlinear
effects, despite the conservation of local energy. Together,
these results emphasize the rich and sensitive dynamical re-
sponse introduced by non-autonomous forcing, highlighting

Rev. Mex. Fis.71060702
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FIGURE 12. Local maximum forx1(t), x2(t) andx3(t) in func-
tion of coupling strength (ξ) Ω(t) = 0.0025t2.

FIGURE 13. (I) Time series and (II) phase portrait ofx1(t) for a)
ξ = 0.1, b) ξ = 0.3, c) ξ = 0.5, d) ξ = 0.5, e) ξ = 0.7, and f)
ξ = 0.9 ξ = 1.0 for Ω(t) = 0.0025t2.

the necessity of time-varying analysis in systems with modu-
lated parameters.

3.3. Case 3: Quadratic frequencyΩ = 0.0025t2

In Fig. 10, the local energyQj is shown to remain constant
across time and coupling strengthξ, confirming that local

conservation persists even in the presence of accelerated forc-
ing. Despite this conservation, the system displays increas-
ingly complex behavior.

Figure 11 illustrates the temporal evolution ofx1(t),
x2(t), and x3(t), showing a progressive densification of
the oscillatory patterns with time. Initially, the trajecto-
ries present lower frequency oscillations, but as the system
evolves, an intensification of the temporal variability is ob-
served, manifested by steeper slopes in the curves. This be-
havior suggests the presence of high-frequency components
in the system dynamics, originating from the quadratic influ-
ence ofΩ(t), which introduces a temporal variation in the
structure of the interaction compared with the other cases.
Furthermore, the coupling strengthξ intervenes by modulat-
ing the amplitude and stability of these oscillations, suggest-
ing a transition towards a more complex behavioral regime.

The analysis of local maxima presented in Fig. 12 shows
a sharp increase in the number and irregularity of peaks as
ξ varies, indicating enhanced sensitivity to coupling under
quadratic modulation.

Figure 13 shows the time series and phase portraits of
x1(t) for different values ofξ. As ξ increases, the phase
trajectories gradually deform from smooth closed orbits to
more compressed and irregular loops. The corresponding
time series reflect a progression toward richer and more in-
tricate waveforms, highlighting the influence of both strong
coupling and nonlinearly increasing frequency on the global
structure of the solution. These observations collectively
demonstrate that quadratic modulation of the driving fre-
quency significantly enhances the dynamical complexity of
the coupled Duffing oscillators.

In summary, numerical simulations demonstrate that al-
though local energy conservationQj is strictly preserved
in all tested cases, the system’s qualitative dynamics are
strongly influenced by the external driving frequency’s pro-
file Ω(t) and the coupling parameterξ. When the frequency
shifts from a constant value to sinusoidal and quadratic vari-
ations, the system progresses from simple harmonic motion
to more intricate, high-frequency oscillations, accompanied
by significant shifts in amplitude behavior and phase-space
trajectories. These results highlight the complex relationship
between coupling effects and external forcing in determining
the spatiotemporal evolution of coupled Duffing oscillators,
providing key insights into nonlinear energy transfer mecha-
nisms in conservative systems.

4. Conclusion

This work shows that the analysis of a system of three non-
autonomous, forced, undamped, and unidirectionally linked
Duffing oscillators provides valuable insights into local en-
ergy conservation in nonlinear dynamical systems. By ap-
plying the Milne-Pinney equations, solutions to the sys-
tem were derived, enabling a thorough examination of its
time-dependent behavior and revealing the specific scenarios

Rev. Mex. Fis.71060702
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where energy is locally conserved at certain points in the tri-
coupled ring structure. These findings are particularly signif-
icant as they highlight how one-way coupling, in the presence
of non-autonomous terms, can lead to diverse dynamical be-
haviors, affecting the local energy distributions at each node
depending on the diffusive coupling. Unlike linear systems or
conventional models, these oscillators exhibit intricate inter-
actions, underscoring the crucial role of local energy conser-
vation in understanding complex nonlinear dynamics. This
work extends the theoretical framework for coupled dynami-
cal systems by demonstrating that energy conservation is not

simply a global phenomenon, but can manifest itself in local-
ized regions under specific structural and association condi-
tions, which could inform future research on energy transfer
and control strategies for nonlinear systems.
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