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The Duffing oscillator is a well-established model with broad applications in physics, engineering, and biological systems. This study exam-
ines a system of three undamped, non-autonomous Duffing oscillators arranged in a unidirectionally coupled ring configuration. The model
enables the exploration of intricate dynamical behaviors, including multistability, synchronization, and the onset of chaos. Local energy con-
servation is analyzed through integrals of motion and phase-space examination, considering various coupling strengths and natural frequenc
parameters. By applying the Milne-Pinney equations, the study identifies three conserved quantities-each associated with an oscillator-whos
interdependence reflects the structural influence of the ring. The findings demonstrate how unidirectional coupling and non-autonomous forc-
ing facilitate energy exchanges within the system, revealing that local energy conservation is not merely a consequence of global symmetries
but rather emerges from the complex interplay of nonlinear interactions. This deeper perspective enhances the understanding of energ
dynamics in coupled oscillatory systems.
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1. Introduction they couple a Duffing oscillator and a Van der Pol oscillator
under different coupling schemes, successfully achieving the
The Duffing oscillator is a nonlinear dynamic system thatsynchronization of both oscillators. Finally, in 2023, Balara-
has been extensively studied since its introduction in 1918 bynanet al. [17] studied a tricoupled ring of Duffing oscilla-
Georg Duffing [1]. Over the years, it has found applicationstors, identifying 27 equilibrium points, from these diverse
across various fields, including physical systems [2-5], engidynamics, leading to different behaviors such as limit cycles
neering [6-10], and biological systems [11,12], among otherand chaotic spirals.
(see [13] and references therein). According to Noether’s theorem, published in 1918 by
Recently, its applications in coupled systems have gaineEmmy Noether [18], every symmetry of a physical system
relevance due to the rich dynamics that have allowed deepeworresponds to a conserved quantity. In other words, using
ing in the multi-stability analysis, synchronization, and emer-the integral of motion, it is possible to obtain information
gent chaotic behavior. In 2020, Barba-Fraetal. [14] stud-  about the system’s symmetries and even the solution’s sta-
ied the behavior of two unidirectionally and bidirectionally bility properties without calculating them explicitly [19-22].
coupled Duffing oscillators, observing a synchronization de{ntegrals of motion have potential applications in nonlinear
pendent on the coupling strength. Subsequently, these resuligstems (see [23,24] and references therein). Techniques for
were used to analyze a unidirectionally tricoupled ring, incorfinding integrals of motion are essentially based on algebraic
porating different forms of time-dependent damping. This al-arguments, Noether’s theorem, or methods based on transfor-
lowed the study of the multistability of the system, obtainingmation groups [25,26].
fixed-point stability and hyperchaos depending on the type The present work aims to analyze the behavior of a uni-
of damping used [15]. Furthermore, in 2022, Uriostegui-directional tricoupled ring using undamped Duffing oscilla-
Legorretaet al. [16] proposed a master-slave system in whichtors by varying the coupling strengths and natural oscillation
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parameters. The system dynamics are studied using space-
time surfaces, time series, and phase portraits, following a
similar approach to other investigations [27,28], where the
Lagrangian of the system, together with Noether’s theorem,
are used to analyze symmetry transformations, as well as en-
ergy conservation through the integral of motion. In Urenda-
Cazarest al. [27], a bidirectional tricoupled ring of Duffing
oscillators is studied, where the Lagrangian and the integral
of motion are employed to examine the behavior of the sys-
tem. Chaotic or multistable dynamics are observed depenq:— _ . . e
. L . . IGURE 1. Aring of three Duffing oscillators unidirectionally cou-
ing on the variation of the coupling parameters. For their partpled
Barba-Francet al. [28] use the integral of motion to analyze
a master-slave system of Duffing oscillators with nonlinearwhere§ is the coupling strength coefficient. Note that diffu-
coupling, identifying the presence of chaos and synchronizagje coupling is included.
tion as a function of the oscillation strength. This kind of cou- Now, to solve the equation syste®) {s implemented an
pled configuration may have future applications in the designyder reduction ofi; =y, for j = 1,2,3. As a result, the
and analysis of nonlinear signal transmission systems and egystem is transformed into a first-order equation system:
ergy transport in networked mechanical structures [29,30].
The paper is organized as follows: In Sec. 2 we explore
the existence of conserved quantities for the unidirectionally U1 = —Q)z1 — 06(t)x} — & (21 — x3) + T1(2),
coupled Duffing system. In Sec. 3 we present the numerical

-fl = Y1,

results obtained from integrating the system under different T2 = Y2, 3)
configurations of the natural frequency parameter. Three dis- ., — _O(#)2, — 5(t)23 — € (22 — 1) + T2 (2),
tinct cases were considered: constant frequency, sinusoidal
variation, and quadratic variation. The time evolution of the T3 = Ys,
solutions and local energy conservation are analyzed. Fi- .
ay Y i3 = —U(t)as — 6(t)al — & (v5 — wa) + T3 (t).

nally, these results illustrate how the dynamics of the system ~ 7° . ] ) )
changes under various conditions of the frequency parameter. Similarly to other work available in the literature [28], it

It has been observed that the unidirectional coupling introiS POSsible to propose a proper Lagrangian associated with
duces changes in the local energies of each node that depeffd- This Lagrangian is defined by

on the diffusive coupling. 1 2

L(zy,&1, 23, t) = im(t):icl — V (x1,23,1),
. 1 .9
2_ Model L(l‘g,l‘g,xl, t) - im(t)‘rQ -V ('r27$17t)a (4)
In order to demonstrate the existence of conserved quanti- L(x3,@3,22, t) = §m(f)5€§ — V (23, 22,1),
ties for the model of an unidirectionally coupled Duffing sys- where the potentid is given as
tem, specifically considering the undamped Duffing oscilla-
tor with an external force of modulation, first we use a single 1 2
: ; ’ = = Q
Duffing oscillator: Vi, zs,t) Qm(t) { [2#) + &) @
i+ Q(t)z + 6(t)2® = T(t) 1) o(t)
’ + 71314 -2 [Fl(t) + 1’3] I1 ¢,

wherej(t), Q(t) andI'(t) are parameters of the system.
Figure 1 shows a three unidirectionally coupled Duffing Viws,x1,t) = lm(t) Q) + €] 222
oscillator system using a directed graph, where the vertices Y 2
represent each oscillator and the edges represent their cou-
i t
pling f._ _ _ _ + &@4 —2[Ca(t) + x1] x2 ¢,
Taking Fig.1 and using Eq.) in each node, the full 2
second-order system result as follows
1
V(xs,xa,t) = —m(t Qt) + €] z52
1+ Q(t)x + 0()at + € (21 — x3) =T (1), (.22 2 U{[ el
To + Q(t)l’g + (5(t)$g + & (.’L‘Q — 3?1) = Fg(t), (2) 5(t)

- 4_
g+ Qt)zs + 6(t)a + € (w3 — 22) = Ta(t), t oy 2l x} ©
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Now, using the well-known Euler-Lagrange equationsthe corresponding node. In an analogous way, the local ener-

and considering the restriction = 0 one can rewrite the gies forQ, and@3 are obtained, which shows the usefulness
equation systeni). of the approach for coupled systems.
For the following steps of this methodology, we focus

only on a noderq, but apply the same steps for the rest of the Q1 = 1 (piry — px1)2 + @p2x14
nodesz, andxz due to a symmetry in the equations. In the 2 4
Lagrangian formulation of dynamical systems, the existence K (z,\°

; iac imnli ; i — L) P+ — [ =
of continuous symmetries implies the conservation of certain (s + T1(t)) p o1 o\ )

physical quantities, according to Noether’s theorem [18]. To

i i i i ith 2 1, . . ot
obtain an integral pf .the motion associated _W|th £2).dre Qs = = (pis — px2)2 4 Qp2x24
used arguments similar to those employed in Ref. [27]. We 2 4
consider an infinitesimal transformation of time and the co- ) K (52
ordinatez; of the type: — (§x1 + Ta(t)) p°22 + 5 (p) ,
t—t+e(xy,t), w1+ x1+en(e,t), 1 . . o(t
Qs = 5 (pis — p3)? + ST)P2$34
with ¢ small. This transformation induces the symmetry op- )
erator: K (x
; ~(emTaO) Py (2) a0
(@1,1) ot (@1,¢) 0z, The integrals of motionQ;, Q> and Q3 can be inter-

which represents an infinitesimal variation of the system. ~ Preted as energies because they are conserved quantities aris-

Applying Noether’s theorem requires analyzing how theing from the symmetries of the system, specifically time in-
LagrangianL (z1, 41, z3,t) changes under this transforma- variance, according to Noether’s theorem. These functions
tion. If a given transformation leaves the action integralremam constant throughout the evolution of the system and,
g — f[)t L(z1, 1, x3,t) dt invariant, then there exists a con- when expressed in terms of physical variables such as posi-

served quantity. This quantity takes the following form: tion and velocity, adopt a functional form compatible with ki-
netic, potential, or total energy. This similarity in their struc-

Q1 = (bir —1) OL(z1,31,23,t) ture and their time conservation are interpreted as energies in
! ! 01 classical dynamics.
— Lz, 1,3, ) + D1 (1), @) While this method allows for obtaining a motion integral

for (1), the primary focus here is on analyzing the fully cou-
Here, the functior; (¢) is derived from the total deriva- Ppled system. Furthermorg,is a solution to the following

tive added to the non-transformed Lagrangian. DifferentiatMilne-Pinney like equation [31,32]:

ing Eq. [7) with respect to time and setting the result to zero K

yields a necessary condition for the invariance. This invari- P+ Q) +Ep == (11)

ance is expressed by the condition:

AS)

. The functionp is, in fact, defined in terms of the original
+ (77 — z/mi:l) function + through the relation) = p? [31,32]. Addition-

8L($1,.T'}17.'1?3,t oL wl;jjlax37t)
G ) +1 (

ot O ally, condition 8) implies that the coefficientqt) andl'; (¢),
OL(x1,d1,23,1) ; . : I'2(t), andT'3(t) are not free and must satisfy some restric-
_— = L = T'1(?). . T -
X diry L@, d1,25.1) 10 @) ions given by next expressions:
In this context,b, 7 andT;(¢) are the total variations over 5(t) = (&)
time and are given by the following extended derivatives: - ps
. C
¢:%+ awd’:17 F1($3>t):%—f$37
. On  On . Co
_ 9 Ia(x,t) = —= — &xq,
=5t Bz, T 9 2(71,1) g §ry
r = . [3(x2,t) = —& — Exo.
1(t) 5% T 0z, ! 3(z2,t) 3 §x2

These expressions allow us to evaluate the complete vari- These coefficients mainly depend on the Milne-Pinney
ation of each term in the invariance equation. Fulfillment ofsolutions, but due to the above mentioned restrictions they
this condition guarantees the existence of a conserved quaalso depend on the coupling variable,15g I'; andT'3 be-
tity, which in this case is identified as the local ene€gyof  comes intd’;(x3,t), I'a(z1,t) andls(xzo, t).
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FIGURE 2. A 3D representation of local conservation of the eneggyfor a) z1(¢), b) z2(t) and c)x3(¢) in function of coupling strength
(¢) and time ¢) for Q = 2.

0.8 200

3. Numerical results ture and consistency of the theoretical framework em-
ployed. The observed invariance further supports the analyti-
In order to solve the Eq3}, the values of the constant coeffi- cal formulation and numerical implementation of the model,
cients areC; = 1 related to the nonlinear termij; = 0.025  demonstrating that local energy conservation is preserved re-
related to the external modulation constant parameter, alsgardless of coupling perturbations within the specified pa-
K = 1 associated with the energy conservation in E&€).( rameter regime.
The coupling strength parameter is varied in the rafige In Fig.3, a combined 3D (column I) and 2D (column 1)
[0,1] and p is the solution for Milne-Pinney. Three differ- representation illustrates the temporal behavior of the solu-
ent cases of natural frequency of oscillation parameter aréon to Eq. (3) for the state variablas (¢), x2(t), andx3(t)
considered; Case X2 = 2, Case 2:Q (¢) = 0.0025sin(t)  as functions of the coupling streng¢h under the condition
and Case 3 (t) = 0.0025t2. The initial conditions are Q = 2. The 3D plots (left column) reveal the modulated os-
T13=1/V2,29 = —1/v2,andy; 23 = 0. cillatory structure of each variable over time and varying cou-
pling, while the 2D plots (right column) allow for a clearer
visualization of the frequency and phase synchronization ef-
fects induced by changeségn
i i ) i . Figured complements this analysis by presenting the evo-
Figure2 presents a three-dimensional visualization of the 10y 00 "of the local maxima of each state variable with respect
cal energy quantity); corresponding to the state variables y, . he amplitude of oscillations indicates that the peak val-
w1(t), x2(t), andxs(t), shown in subfigures a), b), and €), o5 remain bounded and nearly invariant across the range of
respectively. The plots display the dependenc@pbnthe . hjing strengths considered. These results suggest that the
coupling strengtlg and timet, under the condition of a fixed g itom maintains a periodic and robust oscillatory regime de-
natural frequency = 2. The emergence of flat, constant sur- g e \ariations in the interaction parameter, which is critical

faces across all subfigures |nd|c_ates the mvgrl_amég:mf/lth for interpreting the underlying dynamics and their potential
respect to both temporal evolution and variationg.inThis applications

behaworhgoQIf_lrrrl:s thehlocall;:onservatl?nhof Znergy_wnlhln the " Figure’s illustrates the time series (column I) and phase
system, highlighting the robustness of the dynamica Strucbortraits (column 11) ofz4(¢t) for varying values of the cou-

pling paramete. As ¢ increases from 0.1 to 1.0, a no-

3.1. Case 1: Constant frequency) = 2

I 11 ticeable trend can be observed in both the amplitude and the
! phase space trajectories. At lower valueg @banels a) and
\ b)], the system exhibits high-amplitude oscillations with rel-
“:jj : atively broad phase portraits, indicating strong periodic be-
havior and limited damping. Ag approaches intermediate
n; | ><:€ 11[IIHIIII!IHHHE%lliHH!im!|Hm;nunn\unmm;mmnumnnnu‘uunnununn(
: os S _05F |
e 0 x 0
k 150 46 ,<€ 1HHH[HHHHIHli[Il||I|1I1[I!I[III|iI1I1[I[I\IIIIII]III;III||1||||1:I|1||||;||x|m||||m|u|;
g _05F A
1 \ » 0 Il Il Il 1
’ wn.4 \ [ ><€ 1“HHIHHHHIHi‘HHiiH]|1HHHiHl‘HHIIIl\|IHlIHII;lIIIll||IIIIIIIIIlll‘llmlnlllullmf
) T =, ’ .o * % 0.2 0.4 0.6 0.8 1
'3

FIGURE 3. A (1) 3D and (Il) 2D representation of temporal behav-
ior of (3) for a) z1(t), b) x2(¢) and c)z3(¢) in function of coupling FIGURE 4. Local maximum forz, (t), z2(t) andzs(t) in function
strength §) for Q = 2. of coupling strengthq) Q2 = 2.
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FIGURE 5. (I) Time series and (lI) phase portrait of (¢) fora)¢ = 0.1, b) ¢ = 0.3,¢) ¢ = 0.5,d)§ = 0.5,e)¢§ = 0.7,f) £ = 0.9 and
&=1.0forQ2 =2.
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FIGURE 6. A 3D representation of local conservation of the eneggyfor a) 1 (¢), b) z2(t) and c)x3(¢) in function of coupling strength
(&) and time ¢) for Q(t) = 0.0025 sin(¢).

values [panels c¢) and d)], the amplitude becomes more staeduced oscillatory energy. These observations suggest that
bilized, and the phase portraits maintain a more consistentcreasing leads to a gradual transition from strong period-
elliptical shape, suggesting a balance between coupling andity towards more damped oscillatory dynamics, reflecting
damping effects. At higheg¢ values [panels e) and f)], the the critical role of coupling strength in the system’s behavior.
amplitude of oscillations decreases slightly, and the phase

portraits become tighter, indicating enhanced damping an@d.2. Case 2: Sinusoidal frequenc{2 = 0.0025 sin(t)

Figurel6 displays the three-dimensional behavior of the local
energy functions); associated with the state variablgst),
xo(t), andx3(t), as depicted in subfigures a), b), and c), re-
spectively. The analysis is carried out under the condition of
atime-dependent frequendy(¢) = 0.0025sin(¢). Despite
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e 0 £ 8 T3 00000110000 665 68 455 v v e
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FIGURE 7. A (I) 3D and (ll) 2D representation of temporal behav- ¢
ior of (3) for @)z (¢), b) z2(t) and c)zs(t) in function of coupling FIGURE 8. Local maximum forz, (t), z2(t) andzs(t) in function
strength §) for Q(t) = 0.0025 sin(t). of coupling strengthg) 2(t) = 0.0025 sin(t).
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FIGURE 9. (I) Time series and (lI) phase portrait of (¢) fora)¢ = 0.1, b){ = 0.3,¢){ = 0.5,d)§ = 0.5,e)¢ = 0.7,f) £ = 0.9 and
€ =1.0for Q(t) = 0.0025sin(t).
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FIGURE 10. A 3D representation of local conservation of the enefgyfor a) =1 (¢), b) z2(¢) and c)z3(t) in function of coupling strength
(¢) and time ¢) for Q(t) = 0.0025¢>.

the introduction of temporal variability in the system'’s fre-
guency, the resulting surfaces remain perfectly flat across
both timet and coupling strength, indicating strict conser- s
vation of the local energy quantiti€g;. This result strongly
supports the robustness of the local conservation property un-
der non-autonomous conditions and reinforces the internala)
consistency of the dynamical framework. The invariance of
Q; in this non-stationary regime suggests that the formula- 0 ; I
tion preserves key structural symmetries responsible for the \\ w8 os| LU AARR ;H
conservation laws. .+ N L | .mm “L“LM. fm
Figure7 displays both three-dimensional (column Iy and D) ¢ © ¢ = = * ° e -
two-dimensional (column Il) representations of the time evo-
lution of 41 (¢), x2(t), andz5(t) as functions of the coupling =
strengtht. Compared to the autonomous case, the oscillatory
patterns become more irregular and exhibit amplitude modu- i $ I
lations due to the sinusoidal variation in frequency, suggest- ¢) « *~* » " ‘ 1o s 200
ing sensitivity to the non-autonomous perturbation. FIGURE11. A(l) 3D and (1) 2D representation of temporal behav-
Figure8 shows the local maxima of the state variables as,, o (3) for a)z1 (¢), b) 22 (t) and c)zs(¢) in function of coupling
a function of¢, revealing sharp discontinuities and irregular syrength ¢) for Q(t) = 0.0025¢2.
structures. These abrupt changes in peak amplitude reflect
transitions under a transition at the coupling threshold, wherenonic motion to more complex, flattened, or elliptical loops
the time evolution and phase space stabilize at a frequenas¢ increases. This deformation of orbits suggests a shift in
phenomenon induced by the periodicity¢hft). the system’s dominant frequencies or the onset of nonlinear
Figure9 presents the time series (column I) and phaseeffects, despite the conservation of local energy. Together,
portraits (column II) ofx, (¢) for different values of. The these results emphasize the rich and sensitive dynamical re-
phase space trajectories reveal a transition from nearly hasponse introduced by non-autonomous forcing, highlighting
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. conservation persists even in the presence of accelerated forc-
S L ] ing. Despite this conservation, the system displays increas-
ingly complex behavior.

Figure 11 illustrates the temporal evolution of(¢),
xo(t), and z3(t), showing a progressive densification of
the oscillatory patterns with time. Initially, the trajecto-
ries present lower frequency oscillations, but as the system

L |

é’ 0; N | evolves, an i_ntensification of the temp_oral variability is pb-
37 gl I e T AT served, manifested by steeper slopes in the curves. This be-
0 L 0.4 L L 1 havior suggests the presence of high-frequency components

£ in the system dynamics, originating from the quadratic influ-

FIGURE 12. Local maximum forz1 (t), x=(t) andxs(t) in func- ence ofQ2(¢), which introduces a temporal variation in the
tion of coupling strengthg) Q(t) = 0.0025¢. structure of the interaction compared with the other cases.

Furthermore, the coupling strengthntervenes by modulat-
ing the amplitude and stability of these oscillations, suggest-
ing a transition towards a more complex behavioral regime.

The analysis of local maxima presented in Fig. 12 shows
a sharp increase in the number and irregularity of peaks as
& varies, indicating enhanced sensitivity to coupling under
quadratic modulation.

Figure 13 shows the time series and phase portraits of
x1(t) for different values of¢. As ¢ increases, the phase
trajectories gradually deform from smooth closed orbits to
more compressed and irregular loops. The corresponding
time series reflect a progression toward richer and more in-
tricate waveforms, highlighting the influence of both strong
coupling and nonlinearly increasing frequency on the global
structure of the solution. These observations collectively
0.4 demonstrate that quadratic modulation of the driving fre-
quency significantly enhances the dynamical complexity of
the coupled Duffing oscillators.

In summary, numerical simulations demonstrate that al-
though local energy conservatiap; is strictly preserved
04 in all tested cases, the system’s qualitative dynamics are
strongly influenced by the external driving frequency’s pro-
file Q(¢) and the coupling parametér When the frequency
shifts from a constant value to sinusoidal and quadratic vari-
ations, the system progresses from simple harmonic motion
to more intricate, high-frequency oscillations, accompanied
by significant shifts in amplitude behavior and phase-space
trajectories. These results highlight the complex relationship
between coupling effects and external forcing in determining
the spatiotemporal evolution of coupled Duffing oscillators,
providing key insights into nonlinear energy transfer mecha-
nisms in conservative systems.
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FIGURE 13. () Time series and (IlI) phase portrait of (¢) for a)
£€=01,b)¢=03,¢c)¢=05d)¢ =05 e)¢ = 0.7 andf) .
€=0.9¢=1.0for Qt) = 0.0025¢. 4. Conclusion

the necessity of time-varying analysis in systems with moduJ his work shows that the analysis of a system of three non-

lated parameters. autonomous, forced, undamped, and unidirectionally linked
Duffing oscillators provides valuable insights into local en-
3.3. Case 3: Quadratic frequency = 0.0025t2 ergy conservation in nonlinear dynamical systems. By ap-

plying the Milne-Pinney equations, solutions to the sys-
In Fig. 10, the local energg); is shown to remain constant tem were derived, enabling a thorough examination of its
across time and coupling strength confirming that local time-dependent behavior and revealing the specific scenarios

Rev. Mex. Fis71060702



8

I. A. ALVARADO-L OPEZ AND F. J. CARMONA-MORENO, E. URENDA-ZARES AND J. J. BARBA-FRANCO

where energy is locally conserved at certain points in the trisimply a global phenomenon, but can manifest itself in local-

coupled ring structure. These findings are particularly signifized regions under specific structural and association condi-
icant as they highlight how one-way coupling, in the presencéions, which could inform future research on energy transfer

of non-autonomous terms, can lead to diverse dynamical bend control strategies for nonlinear systems.

haviors, affecting the local energy distributions at each node

depending on the diffusive coupling. Unlike linear systems orp
conventional models, these oscillators exhibit intricate inter-
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