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RESUMEN

The three-chamnel reactions for D(A,Z), with A 4, bave been formulated
by using the resonating group method, The potential used is a two-body central
interaction with exchange dependence and Gaussian shape. The wave funcitions for
the ground state of the nucled are also Gaussian (double Gaussian for deuterons
and single Gaussian for the other nuclei), the parameters being determined by a
variational method to fit the binding energies.

Coupled inte gro-differential equations have been derived jor each value of

the total spin and angular momentum of the corresponding system. General formu-

lae are given for the different terms of these equations.

[ INTRODUCTION

A general form of a collective model was developed in a fundamental paper

by J.A. Wheeler in 1937.
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In this theory, any state of a nucleus is regarded as a superposition of all
possible kinds of nucleon clusters, continually broken and re-formed in new ways,
the interchange of neutrons and protons between the groups being largely responsi-
ble for the intergroup forces. Such a state is called by Wheeler a ‘‘resonating group

]

structure’’. To make the calculation feasible, no more than two clusters are consi-

dered, and the intergroup separation variable 7 (joining the centers of mass of the
two clusters) is the main one of the problem, the scattering function being F(7). After
an exchange of nucleons between the clusters, ? becomes 7. It can then be shown

that for any type of interaction we get an equation of the form

(45 V' +E,.) F() =ul) F() +[KEFVEFE) T (1)

r

Because of the principle of conservation of energy, K(?,_?') is symmetric in
rand 7.

The three-nucleon problem (n-d scattering) was tackled first by Buckingham
ond Massey in ]94]2, using a central potential of exponential shape and the Massey
and Mohr wave function® for the ground state of the deuteron.

Since then, and also in this paper, Gaussian have been preferred both for the
potential shape and for the nuclear wave function because the analysis is easier
and can be carried out further. But even when the Gaussian shape is used, the solu-
tion of eq. (1) still requires the help of a powerful computer to tabulate the kernels
and to solve eq. (1) using finite-difference approximations4. Both programs have
been written for the Ferranti Mercury digital computer by Dr. Philip G. Burke, and
are now available ot London University Computer Unit®.

The work presented here is half way between the fundamental Wheeler paper
on resonating group structure and Burke's programs for tabulating kernels and solv-
ving the equations.

The reactions involved in the following scheme are considered here.

D(A,Z) = D(A,Z) D(A,Z) » n(A+1,Z +1) D(A,Z) —p(A +1,Z)
n(A+1,Z+1) »D(A,Z) n(A+1,Z+1)~=n(A+1,Z+1) n(A+1,Z+1) = p(A +1,2)
p(A+1,Z) - D(A,Z) pA+1,Z) » n(AH1,Z+1)  p(A+1,Z) = p(A+]1,Z)
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This is written in abbreviated form as

AA AB AC

B3A BB BC

CA CB CC

For A =2 we have the full three-channel d-d reactionﬁ; for A =3 we hove
the two-channel d-¢reactions’ or d-He? reactions; for A = 4 we have the single-
channel.d-He' elastic scattering.

The minor of AA of the type N(A,Z)(N being a nucleon, either a neutron, n
or proton, p), and most of the possible coses have already been published. Then-¢
case of course, has been extensively studied: the Gaussian formulation with centra!
forces of interest in connection with this paper has been carried out separately for
n-ds;*n-Hes and u-Tg, N-He‘,m ond finally the two-channel n-Hea case !

In each of the obove papers is a formation corresponding to the reaction stu-
died; all the formulations published {or to be published) can be found herein, so that
Wheeler’s model appears with full effect namely, covering a very large quantity of
experimental data with only three parameters: V, (potential depth), Py = l/v/;
(range of the nuclear forces), and the type of exchange. However, one must keep
in mind that the formulation is only the minor part of these problems, the far greater
one being to get out numerical results, and in that respect the machine programs are
much more valuable.

The limitation A 4 is due to the symmeiry property of the ground-stote nu-
clear wave functions, namely factorization of spin and space part with invariance of
the space part under any permutation of the nucleons inside the nucleus. This im-
portant property allows for a relabeling of the nucleons, which considerably simpli-
fies the qnalysis.

Among the possible types of functions consistent with that property, Gaussian
functions hav been preferred. WNe take, for the potential shape, V() =Vae"“'2;for

the deuteron wave function,

Ha+1,4+2) =¢(p) = L [exp (-ap?) +cexp(-Bo)] |
D
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and for any other nuclei,

$(A,Z) =H(1,2,...A) - L exp [~ (N/2) =(if) )

Ng

As we have A < 4, we can denote protons by even numbers and neutrons by
odd numbers. Also we assume 1 and A + 1 to be of the same nature, as well as
2 and A T2,

From the form of (A,Z) it is obvious that AC can be deduced from AB, and
similarly BB and CC from BC, by appropriate changes of A.

Finally, owing to the symmetry property of the scattering matrix, we have
BA = (AB)*, ¢cA =(AC)?, ¢B = (BC)?, ond we need to consider only the three

terms

AA, AB, BC.

In the minor of AA, the nucleus involved contains A + 1 nucleons; when
dealing with it, to simplify the formulae, we write only A, so that we have at once
the formulae ready for the two channels N(4,Z). The inethod is detailed in that
case, and only tables are given for AA and AB and for BC.

Chapter 1l of this paper defines the central two-body interaction used in the
formulation, and deals with the space-part wave function of the nuclei (A4,Z).
Chapter III gives the wave function, written according to the resonating-group-struc-
ture method, and the corresponding equations that the wave function must satisfy.
Chapter IV is a brief review of the method for getting the cross sections; this topic
is dealt with in detail in other pupersu' e

In UCRL 9674 are given some details of the algebra involved in the calcula-

tions.

II. The Two-Body Potential and the Nuclear Wave Functions

1.- The Exchange-Dependent Two-Body Potential

The potential used is a central two-body potential with Gaussian shape and
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exchonge dependence. It can be written equally well in two forms, and the con-
nection between these forms is reviewed here.

The interaction between two nucleons can be written (using the same shape

for all exchange potentials) as

EZ

U (rﬁ) — (wwfj+m‘“ij+bef+bef) V(rf}') + EI-}- el
:

ol

where € =1 if £ and § are protons, and zero otherwise,

__|-4 w—

Wif is an identity operator, and M. By Hy; are the usual Majorana, 3artlett, and
Heisenberg operators exchanging spoce, spin, and spin-and-space co-ordinates of
particles 5 and j such that IBM J= Wy = .

According to the Pauli principle, the total wave function must be totally
antisymmetric in space, spin, and isotopic spin so that, since ' = -,]2-(1 + ‘3": : ‘};‘)

is the operator exchanging the isotopic spin, we have H'B My = - . Conse-

b

quently we have H' = - i, and Hij =--%—(1 t 7. ‘?';:). As Bij='%'“ +5£ - Ei),we

deduce My = ——}(] + c}: . 5';.) (1 + %: : '}-';). Either from their very definition or

from the above expressions, we deduce the following multiplication table:

The constants w, m, b, and b detarmine the relative importance of each type

of exchonge; they are chosen according to the different theories of nuclear forces,
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and it is hoped that the comparison of the final results with the experimental data

lead to a reasonable choice.

Let us write V(r, i) = Vo f( ,u,,r‘.f), where V, and u give the depth and the

range of this well, and

"(Jij = I?s qbz (f,'i) Yz’m(E,C}s) G's(ii)

is a wave function for the two nucleons ¢ and j. ]
28 +1 V(- 1)

Then V(rﬁ) acting on \,bﬁ will give an effective potential AT

such that

28 + 1 (---l)z

AT PRTEE T O R T CL M Y Y

We take w +m +b +b = 1, so that V, is the depth of the well of the deuteron
. 3
in the “$ state. Also,

wtrm=5b~h = x

is the ratio of the 1S to 35 interaction.

The value of x is usually taken to be 0.6.*

We have

1 + x 3V+1V

3 1
| - x V-V
b+ h = ane = p,
2 2¢%v) ¢

Using the previous definitions of Wiio My By and H;; we can write the

nuclear interaction.



As M‘.f had no effect on even states, we have, for the states of even parity only,

b - - 7, . T
[w+m+-2—-+—;—+ (i;—b) g-i . a-f] V("ij) = [ ] --% g'l'%g (O"- . O'j)]V(fﬁ).

The potential for states of odd parity is suggested by meson theory:

(a) Ordinary forces or neutral meson theory:

= V i.e., m=b=90,w=12(1 +x), b=1/2(1 ~ x).

Vodd even'’
(b) Exchange forces or charged-meson theory:

l
Vogg =(=1) V o e, w=b=o, m=1/200+x), 5 =1/2(1-x).

eve

(¢) Symmetric forcesor M H W B:

—y -3 et — . 3
Vodd == 1/3(7; . 7) (G) + G yyans i@ V. 4q=-1/3 V,ven

or

m=2b=(1/3) (1+3x), bh=2w=(1/3) {1 - 3x).

-t el s —

(because here Ty - Tj goes as 0, . 0, and 5'; 0= + 1 for triplet states and

— e

0y 0; == 3 for singlet states).

(d) Serber empirical forces:

Vodd =0 w=m=(1/4) (1 +x), b=5=(1/4) (1 - x).

(e) Biel's force, a mixture of Serber and symmetrical exchange (which has
given good results for the binding energy of the first 4n nuclei and the a-a

scattering) :

Vaiel =(173) Vo +(2/3) Vggrperw = b=5/18, b=(5/18) - (x/2),
m=5/18 + x/2
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That the deuteron has a quadrupole moment implies that the nuclear force

is not merely a central one.

However, so that preliminary results may be obtained in a reasonable time,
this work does not include a tensor force or a spin-orbit coupling. Using the
central force not only saves labor but also allows us to consider the total spin s
of the system and the angular momentum / as good quantum numbers: thus it is
possible to solve, for each value of /, the system of equations obtained for each
value of s. The phases and the cross sections are deduced according to the classi-
cal method of partial waves.

At low energy, the results are rather insensitive to the shape of the well,
as we have seen from the Blatt and Jackson formula.

The potential shape used in this work is Gaussian,

-l
Vo flp,r) = Vo ¢ wr,

this form being the one which allows us to perform most of the algebra. The value
of u(u =0.2669 102° cm™?) is that derived by Breit, Hoisington, and Share!s
from analysis of low-energy proton-proton scattering, and has been used in previ-
ous four- and five-nucleon calculations (see Bransden review paper!%). Assuming
that the nuclear forces are charge-independent, this range can be used indifferently
for p-p, n-n, or n-p interaction. The corresponding range Ry = VvV u =1.936 10 em
is larger than normal and in that respect can account, to a certain extent, for the
effect of the neglected non-central forces.

The corresponding value of the depth Vy (that is, Vo = - 46.8 MeV) was
interpolated from the results obtained by Burke!7 for the determination of the well

depth required to give the observed binding energy of the deuteron for a Gaussian

well using 1 =0.2 (0.1) 0.6.

2.- Trial Functions and the Variational Principle
With the interaction V(’ij) defined previously, and T being the appropriate

kinetic energy operator, the Hamiltonian will be
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=T+ 2 V(r’-’.).

all pairs

The wave function U to choose for the different nuclei in their ground states (1,
T, iie®, He') should be the exact solution of the Schrodinger equation,

(4 - E) y=0,

E being the corresponding binding energy.
As is well known, it is not possible, using 3aussion potential, to solve
these equations and express the eigenfunctions in an analytical form- To allow

for an analytical evaluation of most of the integrals, a trial function is chosen for
the spoce part.

As the total wove function must be totally antisymmetric, and as the product
of the spin and isotopic spin parts can be antisy.nmetrized for any number of nucle-
ons up to four, it is possible to take a space part completely symmetric with respect
to permutation of the nucleons. Among this class of function, the Gaussian form

has been chosen.

Jeauteron: P = (1/N,) [exp (-ar’y+cexp (- B ],

T, de3, Ile*: b =1/Nexp[-(A/2) Z (i)

where N is the corresponding normalizing factor.
Iriting 'b = ¢ o, ond with A being any of the parameters o, 5,¢c, A, we

have

E(A) =

the integral sign involving the appropriate sums over the spin variables.
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Then, according to the variational method, the parameters of the trial

functions given above are determined so that

SE(N) = S2E s, =
M Fan ST

Z

whatever the 5 A, may be. This gives a system of simultaneous equations and

therefore the values of ?\f.

The corresponding mean value E so obtained is an upper limit for the

min
binding-energy E and verifies the equation

f',b*'(H-Emin) yd T=0.

This integral equation satisfied by the nuclear wave function is used later on to simpli-
fy the equations of the scattering problem.

The Gaussian form is
$= 1N exp[~(\2) 3 (4)°1,
17

where (ij) is any two-by-two combination of the (1, 2, ... A) nucleons. Using

the elementary relation of the moment of inertigq,

2 2 .
S m,MA; = (Zm) MG" + Zm, G4,
’ z

i 2 !

G being the center of gravity, we get

A-1
2 A(A -
i< p=1 A-p+1 P
with | .
- ;;4-1 +7p+2 + 74
"p=1p" A-p
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The normalizing factor is easily deduced:

N°= ]I
AA{4 - p)

, AV [7m(a-p+1) |32
p=1

where [ means the product of all terms obtained by using successively
?=];2;--- -4'"]'

The kinetic energy is given by

¥

— 3
For each R, we get the contribution ) A A, and as we have (A - 1)

different vectors R pr WO get

2 3
— — AA(A-=-1]).
iy ( )

(P |K.E| P) =

2
The nuclear potential shape being V(r) =V, e wdf) , we get

z( - 'I 2 2 A }h 1/2
$1vel gy = 2220 22 (22
2 v\ 2
And finally the binding energy is
2 3/2 2 1/2
. Al4-1) AN z(z-1) 2" AN
BE(A,Z) = p E AA(A - 1) + 5 (m + w) VO(A)HQ;J.) + ; W (T)

205



By making A = 2, 3, 4 one can get oll the formulae needed for deuterons,

tritons, Hes, and He'.

Yable |

Summary of Chapter II. Parameters used in the trial wave functions

and corresponding calculated and experimental binding energies.

Nucleus A E._: E gxp
(MeV) (MeV)
d a=0.0299 ¥ 10%%cn-? - 2.133 - 2.226
£=0.186 X 1028 cm™?
c =273
! 0.15715 - 6.744 - 8.3
Hes 0.15400 - 5.975 -~ 7.55
He' 0.15780 ~27.315 - 28.2

] -
The potential range R = “\/':: = 1.936 X 10 em ( from 1 =0.2669 X lOzﬁca'nuz)
m

and depth Vo = - 46.8 eV chosen can account for the binding energies of all the
light nuclei we intend to deal with in our scottering problems . This is very
important when dealing with coupled equations of a complete (elastic and nonelastic)

system which has to be described with consistent parameters.

The values of the physical constants (b, e, etc.) used in the calculotion

are those given by DuMond and Cohen.!®

I1. Total Wave Function ond Coupled Eguotions

A resonating-group wave function of correct symmetry may be written as
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(441, 442,1,2, ... 4) =

P

=(1-» ne 1,37 ) (1= Py = Payg gm o)

A+1,1°

P(A+1,4+2) $(1,2, ... 40 g (1+1,4+2;1,2, ... A) F(A+1,4+2; ... 4)

H(1-P

A+'|,'|"'PA+],3"'--) $(4+2,1,2,3... 4)

O (A+1;4+42,1,2,3,...4) Gg(4+1; 4+2,1, 2, ... 4)]
H(1 =Py y g 2=Pyygg=---) (441,123, ... 4)

g . (A+1,1,2,3, ... 4) 71,(A+2,4+1, 1,2, ... 4)1 .

S
function corresponding to the total spin § of the system of 1+ 2 nucleons. As

is well known, even though all spin orientations are contained in the usual bean,

s

t{ere Pﬁ are exchange operators of 1eisenberg type; o is the spin

we may take only one definite spin orientation m_ for the spin function
because different values of m lead to incoherent contributions.  In fact, we have

taken m, = § and dropped the superscript; F, G, H, are the scattering functions

(to be replaced by plane wave in Born approximation), which we are going to de-

termine by the partial-wave method, as described in Mott and tAassey.?

The general way of deriving the coupled equations through the variational
principle is given in Wheeler's fundamental paper, and the application to the case

of A =2 is given in detail in Burke and Laskar®
The variational method leads to an integration over internal variables, and

the appropriate differential volume elements are:

d71 =d(A+1,A+2) dR dR,....dR, - .

AT =d(Ry . Vo dR, dR, ... dR, . ,

207



where we define

. amly .
E = _r1+r2+...+rA
A+2 A+2

A
or A+1 orA+t]

The basic intergroup separation variables are

— — s —
—b fA+l+fA+2 rl+-?';+...+fA

VS e e e e A T tor AA, AB, AC;

- - r tr. ¥ .. tE
A+2,1 1 72 _A tor the other elaments.

The exchange operators Py replace this set of ¥ by a set of 7', and

special care must be given to AA, AB, AC terms because of the occurrence of

two types of exchanges.

First type of exchange:

—p —p — —p b -
AAf’=r1+fA+2- rA+.|+r2+r3+...rA
—_—rr . a2 3 4
2 A
—p -t —p —p
o3 _rA+2+r1+r2. +rA
ABr'=T4¢4 )" m5mm—m———— e
A+ ]
Second type of exchange:
—- w—p ~b =
o T YT, Tas1 T Tav2 Tr3Te .ty
—— _-———————-—-——_—_________
2 A
- +r +r+t... 7
—ry - rA+2 TA + 1 rq -I:fA
e -“-—-_'_"—""—'-——ﬂ-—---———-_--_________
r r
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As already mentioned, 8C belongs to the type N (A, Z), and on that basis

we have a single type of exchange:

e —f
-—!,

ro=r, - )

(A+1)(A+2)
Consider now all the ———————— interactions (n-p). They fall into

2

ditferent classes which can be listed and indicated as follows (where appearance

of the same symbol indicates that the expressions are the same; the dagger is the

classical adjoint symbol):

AA AB BC
First type Second type First type  Second type o

Type of exchange of exchange of exchange of exchange
(4 -1, A) v v v v v
“; f) X X v X x
(A+1,4) xt v 0 V xt
(A+2, 4 vV V V .
(1, A+ 1) 0 v 0 0 0
(1, A+2) m) v Y 0
(A+1, A+2) ] x 0 )
(1, ) P
(2, f) P
(A+1, /) b1
(A +2, 7) bt

The BC tern is dealt with in detail in UCRL 9674. |In this table i =2, 3 ... 4
except in (AA|I) and BC where i = 2 only;

i=3,...A

209



Nithin a given column (4.4, first type of exchange, for instance), all

kernels corresponding to the same symbol are the same; for instance the

u—@—:—g) kernels
2

nor proton is A+1, A+2, or 1), are all the same.

interactions of the type (A - 1, A) (in which neither neutron

Within a given column, (AA, first type of exchange for instance) the dagger

signs correspond to the adjoint of the one without dagger; for instance
[AAlL| 4+, A+20 = [44]1]1, 4+ 21t

The notation [ AA |I|np] speaks for itself: it means the kernel corre-
sponding to the interaction np, in 44, first type of exchange.

The correspondence between kernels shown above is self-evident as soon
as the interaction (np) is expressed in terms of the variables v, 7, R, --- Rq_q
and allows for tremendous simplification in the formulation.

The following notations will be used:

C=E in(D)+E 1 (A, Z) +Eg=E  (A+) Z) +E, =E_, (A+1,Z+1) +E,
2
L2 = “d n, or p
- 22 Ed. n, orp !

where E ; is the kinetic energy of the corresponding particle in the center-

#, OF D
-of-mass frame, and

1 | 1 _ A+?2
Md M(D) M(A,Z) 2AM

So that & = & (k).
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Also, 1l is the kernel arising from the product of the initial-state wave
function on the one hand and the final-state wave function after exchange on the

other hand.

For each value of the total spin § of (A +2) nucleons we get a system of

the type:
AA AB AC F
BA BB BC G{=0
CA CB CC H

Some relations between the spin-dependent coefficients can easily be ob-
tained by using the .nultiplication table given in the definition of the potential.

For instance, we have, before any direct term,
ww *t umtBb+ih,
and before the corresponding kernel,

wwtwmttbh+Bh.

Also

(AA|I| A+2,2)) = (0'w+ u'm+ B b+t b)[AA|1]A+2,2]

(AAJH| A+T, D) =(u'wtw'm+e'b+8 b)) [A4|H]|A+1,1]

These spin-dependet coefficients are analyzed in a more detailed manner
in UCRL 9574. The equation for the scattering of D - He' = (56) (1234) exists

only for total spin § =1 and is given as an exemple:
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35 { d¥ I+

8M dr? r2

+ k? } fz(f) — {2 %62_1_ (Bw - 2m +4b—4b) Vls}fx(f)

- J. - g n+qlea, (s, + (1116+1]56))

+6(w +m) (1]12+1]52) + (1(34)) +(2w - 8m + 4b - 4B) (1] 15)
+(6w - 4m +2b - 6b) (1126) } /,(+") ar’

+ j:'{r- SN 20| 62), +2(H|12) + (1] 34)

+ (4w - 6m +6b ~ 2b) (I1]15)

“ (4w +4m - 26 - 2b) (I 13+1[53) } £, (+") '

IV. Solutions of the Equations and Calculation of Cross Sections

When we are left with the variables 7 and 7' (after integrating over the

other variables) the integration over the angular variables is carried out as usual.

F(F) = S </ () P, (cos 6)
] r

— 20+ 1]
rrrr) = IZ

K( ,Kz(fr f’)Pg(ﬂ-i-

4 7rr
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P +1 — ——y — =
ond consequently K(r,r') =27mre’ |  K(r,r') Py(i) dp, where K(r, r ")
-1
is any of the kernels and F any scattering function, & is the angie of scattering

. (7,7
in the center-of-mass frame, and g = ——='
rr
The systems then obtained for each value of § are easily deduced from
the previous one with f(r) instead of F(r), and K;(r,r') instead of K(r,7'),

and are, of course, valid for the corresponding ! value only. They are of the

form
2 ] a aaq a w a RPN, !
(L, - Al L+ 27, %0 = U0 10+ LR ) 1) d
(v, 1)

t ]

2 ® a2, . 3 ,
Ky ler') £ 6 a4 SR, ') 1 )
0

where a =1, 2, 3 is the channel index.
Using finite-difference approximations, Egs. (IV. 1) ore represented as o
: . . . a
set of linear simultaneous equations, the unknown being the values of f, "(r) over
the range of r required* For the three-channel case, for instance, it is necessary

to find three independent solutions such that

L0 = — 14, Fe) + 8, 6t

V7,

for a=1, 2, 3 (three channels),

i =1, 2, 3 (three independent solutions},

a a _
where F, (r), G, (r) are the regular and irregular wave function 20 for the

corresponding chonnel a.

Then the reactance matrix is

-1
R=31 ’
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and the scattering matrix is

1 +iR
S =
] - iR

S
The scattering amplitude £, (8) corresponding te the total spin § can
be written

S

f.r. (8) = - ! l(2l+]) P, (cos &) [Sara- Safa_ll;

21k

a

and the corresponding differential cross section is

o S(6) = |fi5(9)].

a & ) "

Then the differential cross section is the appropriate weighted sum

|
- 525+ 1) ay 5(6),
2T+ n) @r oy & et

70 ol6)
where I and I, are the spin of the colliding particles and s the spin of the whole
system, (211 +1) (21, + 1) being the total number of spin states (2s t 1) the

number of states with spin s.2®

VI. Conclusions

To appreciate the true value of Yheeler's method, it is usetful to quote

Blatt and Neisskopf.?

It is usetul to divide the target nuclei into three categories

A - Light nuclei 1< AL 25
B - Intermediate
nuclei 254K 80
£AL

C - Heavynuclei 80 240
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The light nuclei (group A) must be treated individually. It is almost linpos-
sible to apply any general rules describing nuclear reactions in that group. The as-
sumptions made in the preceding chapter about the interior of the nucleus are not
applicable to group A, since there are too few nucleons in these nuclei for a well-
defined interior region. All nucleons are at the “surface” of the nucleus.

Two cases that are beyond the scope of this paper have also been treated,
namely the elastic scaftering of six nucleons (¢ - # reactions) by Bransdeb and

: : . 23
Hamiitor: and of eight nucleons (a - a reactions) by Butcher and icNamen

and Schmid and Wildermuth?*

In each case, numerical results have been obtained and compared with
experimental r:l::t:::li,:25 the relative merits of different types of forces have been
investigated and conclusions have been drawn.

The main point of this conclusion is that the resonating-group structure’
con well explain all the experimental results obtained on the few-nucleon
scattering experiments. As pointed out by Bransden,” it is a means of corre-
lating data with just a few parameters, namely the range and depth of the po-
tential and the exchange type of force. Although in particular cases one type
of force can fit better than another one, it is remarkable that the Serber type fits
all cases reasonably well.

The central two-body potential with central forces can be criticized, but
the inclusion of a noncentral force and particulary of a tensor force makes the
problem enormously complicated.

Also the Gaussian shape adopted for the nuclear wave function can be
criticized as being too rapidly cut off, but it is possible to apply the same gene-
ral method to any other type of wave function, and particularly the Irving 1‘5”:\&-‘,,26
to build up general formulae for kernels and direct terms in terms of the numbers
of nucleons A involved in the target nucleus.

Finally, it is also suggested that the work be extended to cases A > 4 by
using wave functions of the appropriate symmetry, and to the cases (4’ Z')(4,7)
by using the general form of the wave function, both for the incident and the

target nuclei, to include, for instance £ - ¢t and o - a reactions.
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