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RESUMEN

In the present paper a description of a many channel nuclear reaction is
given on the basis of the formalism of boundary conditions introduced some years

ago by Moshinsky., It is supposed that the interaction between the particles takes
place at the pointofcontact.As a result of the interaction, they can form a com-
pound particle whick is the analogous of the composund nucleus in a nuclear re-
action, The pehavior of the wave function describing the relative motion of the
particles in the different channels, is dete rmined by a set of conditions they must
satisfy at the point of contact. In this formalism we bave also the possibility of

a direct interaction, i.e., reactions which proceed without the formation of a com-
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pound particle. We derive the general form of the S -Matrix, which includes both
the compound nucleus and the direct snteraction contributions. We give an inter -
pretation of the modulation of the reduced widths of the resonances associated
with the compound particles, modulation that was explained by the optical nuclear
model. Finally, we discuss the bebavior of the transfer cross section when the

reaction takes place through the direct interaction mechanism.

I. Introdouction

In the past few years, severol theories have been formulated to determine
the scattering matrix for nuclear reactions, starting from the formal solution of
the Hamiltonian associated with a system of nucleons!. Although this procedure
seems to be the most natural one, it would be possible to follow a different way,
starting not from the Homiltonian of the system, but from other general principles
of quantum mechanics. A possible form of realizing this idea is found in Moshins.
ky’'s description of nuclear reactions by means of boundary conditions?, which we
sholl consider here in some detail.

In order to set up the scheme underlying this description, it is convenient
first to consider briefly the physical situation we are faced with in a nuclear re-
action. We deal here with a system consisting of a definite number of nucleons,
originally grouped intwo separate particles. After o reaction has taken place
between these particles, we can find the system in one of a given number of
different final states. Every possible state of the system, initial or final, wich
we shall call a channel, is characterized by the interna quantum numbers of the
initial or final particles such as energy and spin. In the following analysis we
shall restrict ourselves to the case in which only two particles are present in the
final state. The mechanisms followed by the reaction are very complicated. A
pessible one is the formation of a compound nucleus, wich after certain time dis-
integrates , leading the system into one of the possible channels.

We idealize this situation as follows: we consider a system of two sepa-
rated point particles with definite mass and no spin or internal structure. After the

reaction tokes place, the system is found in one of the different possible channels,
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each one choracterized by the masses of the resultantipair of particles. The formation
of a compound particle is, in our scheme, the analogue: of the compound nucleus
formation for the actual process. Thus, we can find the system either in the form
of two separated particles, or in the form of a compound particle. We shalldesig-
nate each of these possibilities as o stage of the system. Further, we shall os-
sume free motion for the particles in every channel, the interaction taking place
only at the point of contact. The essential feature in the derivation of the scatter-
ing matrix associated with this problem is to demand that the total probability of
finding the system in any of its stages, no matter which, is independent of time.
This requirementlleads to o set of boundary conditions at the point of contact for
the wave functions of the particles relative motion in the different channels. The

elements of the scattering matrix con be expressed in terms of these boundary con-

ditions.

II¥ The Scattering Matrix

Let m, ,and m, , be the masses of the two particles in the channel o ond
¢p(;.; t) the wave function of their relative motion, where r denotes the vector

distance between the two particles and ¢ the time. For the compound particle 1,
we call M , its mass and l,b#(t) its wave function We assume that there are n. possible
channels, p=1,2, ..., n , and n, compound particles can be formed, u =1, 2, ..

2
.y #,. Thus the system can be found in 7 = ta, different stages.

2
Let us first consider the case in which the ditferent stages of the system

are not coupled. The wave function describing the relative motion of the parti-

cles in the channel o, in the centre-of-mass system, satisfies the time-dependent

Schrédinger equation for the free particle.

52 .. 909
--—2-—';-p6¢p+(mlp+m2p) pr-— ’5.3—32 ! (])

where m, denotes the reduced mass of the particles in the chonnel 2.  We hove

included in the Schrodinger equation the energy corresponding to the rest masses
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of the particles, since we are dealing with non-elastic processes too. We choose
our system of units in such o form that the velocity of light is equal to one.
Also, in the absence of coupling with other stages of the system, the wave

function of the compound particle u satisfies the equation

Pe.
MY, = s’b%& . 2)

If there is any coupling, equation (1) is no longer valid for r = 0, and (2)
is not valid at all. Instead, not only must ¢p satisfy appropriate boundary condi-
tion at r = 0, but (2) must be susbstituted by another equation, in such o way the
prohebility of finding the system in any of its stages,

P() =2 [drds e, + %lﬂ: b, (3)

is independent of time. The integral appearing in (3) extends over all points 7 .

Excluding the origin from this integration, and using (1), we obtain

2 dP()  _ ¢* w 0,
0 —‘—‘_" 71 - EL‘TO jd'r__‘[' qbp Or ¢P or ]fr'--ﬂ
'a *
+>3[¢ % B;p AR a‘f FMP) @

In what follows, we shall restrict ourselves to the case of zero relative

angular momentum.
If (4)is satisfied by the two sets of wave functions [¢p, tﬁ“] ond [# , ¢;],
p=1...,n ,u=1,...,n,, is also satisfied by a lirear combination of them.

This requirement leads us to the relation?
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m =
p p Or r=0

(5)

* ad;’ ‘gal,b w
! f
+ [y (% ‘ +u¢ )-(7‘_&: +Mul,b#)¢ =0

—

Defining the 2# = 2(n +n,) dimensional vector X

0 :
P: 21?‘52( r ¢) , x”+ ﬂ¢ ;
mp ar r = 0} ) S H
(6)
o
= _7
x#+p (r¢P)r=0 ' xu+u +p“Ta‘H'+Mu¢uf

5 (x* X'-x¥x'" . )=0 (7)

s =1 n +s5 S S ' m+s

The linear relations between the components of the vector defined by (6), which
satisfy the set of equations (7), are

n
x!l-l-s =s;=‘ Css' X,*, (8)

where || Cog’ || is a constant Hermitian matrix?2. With the help of (), we can

write these relations in full detail os

2782 Jr . _
P + E C d K ’ %a
m ( Or )r"-': 0 u P K l]b# (%a)

(r®), o 0= 2 Cpp

P

59



ay; 2t Br s
%’ CHP My ( Or )r=0 El le lﬁ#

These relations and the Schréodinger equation (1) determine completely the
behaviour of the system. In porticulor (9b) takes the place of (2) when thers is
coupling between the different stages of the system.

From (9a) and (9b) it is clear that C__: gives the coupling between the
stages s and s’ of the system. For this reason we shall refer to the matrix HCM:H
as the coupling matrix.

i+ should be noted that | |C, + || will be considered to be subdivided in the

form
Cop Coul
C ‘;Pr C ‘;"

where o, [ go from 1 to noand p, u' from1ton;.

We expect that, when there is no coupling between the different stages of
the system, the particles in the channe!l © move, even ot r = 0, as free particles,

and that (9b) reduces to (2). This leads us to set all C_

o and Cm_tequal to

zera.

Let us consider now the stationory state of the system with total energy E.
For this case, (9b) becomes

278 Ord:
- = ! ——L + Z‘ - ',
o= 2o TR s o

n order to obtain the elements of the scattering matrix, we must eliminate from
(%) the explicit appearonce of the wave functions of the compound particles. To

do this, consider the matrix

Co= 116G, - (1)
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which is an Hermitian motrix ond can allways be diagonalized by a similarity_trans-

formation with a unitary matrix .\i:

(u Cc,u"')m: = « B O 1. (]2)

i o

Here all E‘; are real. With the help of this relation, from (10) we obtain that.

« ] 212 Oor ¢
- " AN —— ! ! -—-£-
wp Euw‘ EI;- E El C'p ilpr ( Or )r= 0 (13)
where
. D o=t T
Cp=2, WUy Gp=1(Cp) - (14)

2782 b .
rd) .= Z [R'(B),, +C,p] : - (- ;?&-)mo. (15)
o
with
R' (E) = s Su (16)
o’ p E,~E

As the C ore energy independent, it follows from (12) and (14), that both C'
ond E, are olso independet of the total energy of the system, being totally detcr-

h.

mined by the intrinsic properties of the system. Beudu , the quantities R’ (E)

are the elements of a Hermitian matrix, since C'” we = Cou

If the reaction starts in the channel a, the wave function for the relative
motion of the particles in the channe! p, is given by

& _ " 3 ihp!r ¢ +ikpr) _l_

° 4mu a® an
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2m
Here 2 = / — 2 [E-(m,_+m_ )] is the wave number of the relative motion
P 52 lp 2p

of the two particles in the channel 0. The normalization of (17) is such that the

tlux associated with the ingoing-wave part of ¢ is equal to unity and the outgaing

, : 2
flux in channel o is ]Sap| :

From (17) and the boundary conditions (15), we obtain the following set of

equations for the elements of the scattering matrix:

pa
a8
/2 B2 &k 21k
:Z,{S ' _2_.__._£[R (,E') :+C :]\/W p}Sr.
ot P "p "o’

Introducing the matrices .4 , B and Cd, whose elements are

.&ppf = Spp" ’ Bpp' = \/2ﬂ52k /mp SPP ’ (Cd)pp PP , (18)

the scattering matrix may be written in the form

&""IB[R‘(E)""CJ]B
= IIBIR(E)rCgB 1)

It is to be noted that except for the terms that take into account the direct

reaction mechanism, our expression for the S-Matrix is very similar to that obtained

by the R-Matrix formalism of Wigner?!.

The transfer cross section from channel a into channel o can be expressed

as
T 2
Uap "'"'ki- |8Gp- Stl.pl . (20)
2 A
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In the scattering matrix (19), the contribufion to the cross section duve to
processes that lead to the formation of compound particles ‘is contained in R ' (E),
and the contribution of those that do not lead to the formation of a compound parti-
cle or as we shall call them, direct processes, is contained in C.

Finolly, we would like to obtain the Schr8dinger equation for the relative
motion of the particles in channel o valid for all values of r . In the stationary

case, from (1) we have
Do, +K2b, =0 , r=0, 1)

whose solution is given by (17). We can extend this equation to include also the

point of interaction by observing that

e:tihr

(A + &2) = 478 (r)

r

ond thus the interaction appears in the equation as a pseudo potential

(A + k;) ¢;P= ..47;(,-¢P) S(r) =~ if_{‘sa-_?_ Sa.ﬂ_ (

k5, + 5,

3 &,

5 ) & (r). (22)

The behaviour of the system in its stationary state is completely determined

by this equation.

III. The Coupling Matrix

We would like to analyse the physical meaning of the different elements of
the coupling matrix. For this purpose, we shall study in detail some simple situa-
tions.

a) Elastic scattering.
Let us consider the case in which the possible stages of the system are the

entrance channel a and n, composite particles. This situation corresponds physi-
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cally to elastic scattering through the formation of a compound nucleus. The ele-

ments Ca_p and Cpr (p#% a), are all zero.

The significance of the coupling constants CML becomes clearer if we sup-

pose first that there is no coupling between the different compound particles, i.e.,

C‘_mr = (0. Then, the amplitude of the outgoing in the entrance channel is given

by
E: ika(2w53/ma)R(E)m
o™ TR @ R -
where
2
R(E),,= 2 1Cau (24)
7 M#-E

The elastic-scattering cross-section o, , which can be calculated from (20),
shows, as a function of the energy of the incoming particles, a resonance structure:
to each compound particle there is associated a resonance; the position of its maxi-

mum value and its width are given, to a tirst approximation, by Mp‘und

2 2

m
a

of the maximum. Thus the square of the modulus of the coupling constant C_

=

a

) 2k, | Cﬂ-ﬁ;l 2, respectively, where &, is to be calculated at the energy

m
between the entrance channel a and the compound particles 1 is seen to be pro-

portional to the width of the resonance. We obtain a well-defined resonance
spectrum in the cross section if the width of each resonance is much smaller than
the distance to the two nearby resonances, a situation which we suppose to be
realized in the present discussion. For convenience, we define the square modu-
lus of this cdupling constant as the reduced width of the resonance, i.e.,
2 _ 2

[/ 2k, @n¥2/m) = |c, |* .

et us consider now what happens if, maintaining the values of the coupling

constants Ca“, we allow for some coupling between the stages of the different
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composite particles 1 : the constants C,,' are now different from zero.  After
diagonalizing the matrix Cc given by (11), we obtain for the amplitude of the out-
going wave in the entrance channel the same form as (23) but with R'(E)m, given
by (16), substituted for R(E)ﬂ The behaviour of the elastic-scattering cross-
section has changed in two points compared with the behaviour we had in the
former case. Firstly, there has been a shift from M, to Ep: in the position of the
maximum value of the resonance associated with the compound particle u , and,
secondly, the reduced width of the resonance has changed its vaiuve from |Caﬁ;|2
to ICL#I'*’. From (12) and (14), we can derive two general relations which must
be satisfied by the energy shifts and by change in the value of the reduced widths.

Setting . = 1’ in (12), summation over all u leads to
%(M#-—E#)=0 (25)

i.e., the sum of the shifts associated with each resonance must be equal to zero.

Further, since U is o unitary matrix, it follows from (14) that

! 2 . 5 -{2
% |Coul? = 2 eyl (26)

i.e., the sum of the reduced widths of all resonances is independent of the

strength of the coupling between the compound particles.

To illustrate these facts, let us consider a simple example in which the
entrance channel a is coupled to a single compound particle, say the particle =1,
and this in turn, is coupledtoa set of other particles =2, ..., n,, while there
is no coupling between these last particles. We have thus C, #0, C, , #0,

ap CM,,‘ =0for u, u' =2,... ' 1y In this case, the diagonalization of

the Cc matrix, given by (11), is straightforward. From the secular equation as-

sociated with this matrix, one obtains the position of the resonances, wich are

given by the » , roots of the equation
2
%2 I Clr l

i (27)
y = 2 MV—E“

(M, ~E ) =

65



Thot these roots are all different, can be seen directly from Fig. 1.
Fgd
¢V

/ Mk., i
i

|
l
|
oy ey My

y K=, (28)

since all Cop =0 exceptior un=1. The value of um is the tirst component of
the unit eigenvector of Cc associated with its u -th eigenvalue. A straightforward

calculation leads to

C 2
e, ' = __..1.__51_‘___._ (29)
” 2
1+ 3 _______116,.11
v =2 (MH-EP_)

To obtain a better insight into the expression (29), let us assume that both

ICW |2 = C2 and the distance D between two consecutive M  are independent of 1.
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We assume, further, that the number of compound particles, n, , is very great. So

we can set

IZ

” 2
Zz ICw 7C
V=2 M ..8 D

[ 4

cot [---:;—Jr-(ﬂ»l2 - &)1.

It is to be noted that the expression (30) is accurate only if & is in the vicinity of

M , since the right hand side of (30) does not take the edge effects properly into

account. With the help of the last expression, we can write the sum appearing in

the denominator of (29) in a closed form

2,2
gf _J-iﬁ—-=ﬂf H+cot’[—§-(M -E#)]l. (31)

This can be evaluated with the help of (27) and (30). The.expression for the re-
duced widths takes finally the form

2 | 2
e Ml (32)

*H Cm
2, 2 oy 2
(M -B)" +C7 (T+ () )

The reduced widths of the compound nucleus resonances in reactions with
neutrons show a behaviour similar to that we describe in the present example and
which has been accounted for by the optical model*. Our results, howe ver, are
formally identical to those found, forexample, in the analysis of the excitation of
collective modes of the nucleus by coupling of the incoming neutron with the nucle-
ar surface®+5, In the derivation of the behaviour of the reduced widths of the
compound nucleus resonances given by Bohr and Mottelson,® for instance, it is sup-
posed that incoming neutron and the target nucleus couple only ot the nuclear sur-
face and form a compound nucleus. Inside this surface, the neutron moves under
the action of a real square-we!l potential. If the strength of the coupling between
the initial state of the system - target nucleus and neutron moving under the influ-
ence of the square-well potential - and the compound nucleus has the same value

for all compound states, the reduced widths of the resonances associated with the
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compound nucleus show a behaviour equal to that given by (32), if we restrict our-
selves to the neighbourhood of the resonance of the neutron in the potential well,
that is, the single particle resonance. Comparing this result with ours, M de-
termines the position of the single-particle resonance and ICl n" gives its reduced
width, This is much larger then the reduced width |C;“|20f the compound nucle-
us resonances. Furthermore, C? is essentially the square modul us of the matrix
element of the surface coupling between the initial state of the system an the

compound nucleus.
if we interpret the fact of the modulation of the reduced widths of the compound

nucleus resonances in reactions with neutrons in the light of our formalism, the
compound states are formed and disintegrate through the formation of a single
particle state, which we have identified with the compound particle u =]
The compound states whose energy is near to the single-particle resonance
have a shorter mean life o larger reduced width -because the single-particle
can be easily realized ot this energy; as a result, the compound state can eosi-
ly disintegrate into the single-particle state and this, in turn, disintegrates into the

entrance channel.

b) Direct interactions.

Finally, we would like to consider another very simple example, in which
the reaction proceeds. from the entrance channel a into the reaction channel o
w ithout the formation of a compound particle, i.e., the reaction takes place through
a direct mechanism. The system can be found only in two stages, corresponding
to the entrance and the reaction channels, and the coupling matrix has only two
elements diff&reﬁt from zero, C__and Cpa. From (19), the amplitude of the out-

p
going wave in the reaction channel p is given by

2i sfAP B/ m mo) kk, C (33)

and the reaction cross -section takes the form
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_71 AMJEG_(EG:Q_;;Y'CG.PIZ (34)
¥ ki 1+ Aa.p \/Ea.(ea.+Qa.p) ‘Cap-[z)z

where A, =87 5%/ Vmm,, €,=8% k3 /2m_is the kinetic energy of the rela-
tive motion of the particles in the entrance channel and Qop= (m tm, ) '(m1p+”"zp)
is the Q-value of the reaction.

This cross section starts from zero at €a=~Q4, and rises as (ea+gap)m.

Since Cap is independent of the kinetic energy of the incoming particles, the cross

section reaches a single maximum and tends to zero as €2 for large values of the

kinetic energy.
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In Fig. 2 we show the bahaviour of the cross section (34) for a fixed Q-
valued and for several values of the coupling constant. These cross sections

behqve rather like those for the formation of a single excited state of the target
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nucleus by inelastic scattering of neutrons?. We do not look for agreement with
the experimental data, because in our formalism we have not taken into account
higher relative angular momenta nor the spin of the particles, elements which are
essential in this kind of analysis.

A time dependent description of this kind of process would probably show
that when the particles enter into contact, the reaction products appear in the
reaction channel without any delay. That this is true has been demonstrated for
the case Q = 0, otherwise the mathematical problem associated with this time -
dependent description has not yet been solved®, Thus there is a sharp distine-
tion between this type of process and that in which the reaction takes place
trough the formation of a compound particle, because in the latter case the parti-
cles appear in the reaction channel with some delay, which must be of the order

of magnitude of the mean life of the compound particle.

HI. Conclusions

In the present derivation of the scattering matrix, all the physics of the
problem is contained in the coupling matrix, whose elements give the strength of
the coupling between the different stages of the system. This matrix has two
important properties: it is Hermitian and it is energy independent. The first of
these properties makes the scattering matrix a unitary matrix, and the second per-
mits writing in an explicit form its energy dependence.

Furthermare, according to our scheme, any nuclear reaction can take place
through the compound-particle mechanism as well as through the direct one, the
former being the only one that gives a resonance behaviour to the cross sections.

Since the magnitudes of the coupling constants between any channel and
the compound particles are not determined by the formalism, we can identify the
resonances associated with these particles with the experimental compound-nucle-
us resonances or with the single-particle resonances, i.e., those associated with

the scattering by a potential well whose range is of the order of magnitude of the

nuclear radius.

Another very interesting result is the allowance for coupling between those *
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stages of the system that correspond to compound particles. In terms of this
coupling we were able to derive in a simple way the behaviour of the reduced widths
of the compound-nucleus resonances in the case of reactions with neutrons. It
would be also possible, by a proper choice of the coupling constants, to give an
analysis of the deuteron stripping reactions, which is currently done in terms of

the distorted -wave method.

The non-resonant or direct processes are probably also encountered in re-
ality, when in a reaction participates, not the whole system, but only a small
number of nucleons. Here there would be neither the formation of a compound
nucleus nor the scattering by the averaged nuclear potential, processes which
lead to resonances in the cross sections.

We believe that by taking properly into account the nuclear radius, the spin
for all particles and arbitrary angular momenta for the motion in the different chan-
nels, this formalism would be useful in.analyzing o great variety of experimental

data and in obtaining a better understanding of the mechanism though which a

nuclear reaction takes place.

We are very grateful to Prof. M. Moshinsky for several discussions.
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