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Multiplicative calculus in optical fiber analysis: an alternative frame perspective
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This work uses the techniques of a non-Newtonian calculus (or multiplicative calculus) in the 3D Riemannian manifold to investigate the
geometric features of linearly polarized light waves along optical fibers using the alternative moving frame. The evolution of a linearly
polarized light wave is linked to a geometric phase since the optical fiber is thought to be a one-dimensional object embedded in a 3D
Riemannian manifold. Thus, we produce a novel kind of multiplicative derivative geometric phase model. Furthermore, we present magnetic
curves that are produced by the electric fieldE, defined by the electromagnetic curve. Then we define the Rytov curve, which consists of the
combination of the space curve and the electromagnetic curve. In conclusion, we gave examples that match the theory and visualized them
using the MATLAB program and analyzed the results using multiplicative calculus, which allows us to interpret the results proportionally.
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1. Introduction

Calculus, one of the most fundamental and practical mathe-
matics tools, enables solving complex problems encountered
in science, engineering, economics, and many other fields
through differential and integral calculus methods. The in-
dependent studies conducted by I. Newton and G. W. Leibniz
in the 17th century marked a significant milestone in the de-
velopment of calculus. Newton used calculus to formulate
the laws of motion and the theory of universal gravitation;
Leibniz significantly contributed to this field by developing
modern integral and derivative notation. M. Grossman and R.
Katz gave the multiplicative calculus that emerged as an alter-
native to traditional additive calculus and treated the rates of
change multiplicatively rather than additively [1]. Although
operations are performed additively in classical derivative
and integral calculus, these operations are expressed in multi-
plicative terms in multiplicative calculus. Especially in fields
such as finance, engineering, and physics, multiplicative rates
of change can provide more accurate results. For example,
the growth of an investment with compound interest can be
modeled more accurately using multiplicative derivatives and
integrals. This approach is more efficient, especially in sys-
tems that work logarithmically, and provides a practical and
new perspective on problems. In addition, Bashirov et al.
gave basic definitions and theorems about multiplicative cal-
culus [2]. We see the application of multiplicative calcu-
lus to geometry in Georgiev’s books [3, 4]. In these books,
she developed the basic concepts of differential and ana-
lytic geometry using multiplicative calculus. Moreover, non-
Newtonian calculus, while offering novel insights into phe-
nomena characterized by proportional growth or exponential

behavior, presents certain limitations when applied to real-
world fluid dynamics problems. For instance, Maet al. [5]
introduced a framework based on multiplicative Euclidean
space to analyze non-Newtonian wavefronts, demonstrating
theoretical potential; however, its practical implementation
remains constrained due to strict function positivity and dif-
ferentiability requirements. In contrast, classical analysis re-
mains more adaptable to diverse physical systems. Wilson
and Thomas [6] provided foundational insights into turbu-
lent flow behavior in non-Newtonian fluids using conven-
tional differential methods, a versatility echoed in subsequent
empirical and computational studies. Liet al. [7], for exam-
ple, effectively employed classical rheological tools, such as
the Marsh funnel and CFD modeling, to distinguish between
Newtonian and non-Newtonian flow behaviors under vary-
ing field conditions. Similarly, Rashidiet al. [8] leveraged
the homotopy analysis method within classical frameworks to
capture complex thermal and velocity fields in wedge-driven
flows. Even finite element methods, as applied by Böhme
and Rubart [9], have shown sustained efficacy in classical
contexts where the multiplicative approach might falter due
to numerical instability or limited boundary condition com-
patibility. Consequently, while multiplicative calculus intro-
duces a fresh perspective, classical analysis remains domi-
nant due to its broader applicability, computational robust-
ness, and deeper integration into engineering practices.

Electromagnetic curves are mathematical structures that
describe the interactions of electromagnetic waves and mag-
netic fields. These curves are essential in advanced tech-
nologies, especially in the propagation of electromagnetic
waves, optical fibers, telecommunications, and wireless com-
munications. This concept of electromagnetic theory and
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differential geometry offers us many applications in physics
and engineering. Since it is a current topic, it has at-
tracted the attention of many mathematicians and physi-
cists. Studies have been carried out using different spaces
and frames with respect to electromagnetic curves in optical
fibers [10, 11, 13, 15, 15–17, 26]. Moreover, it is used in the
expression of the Rytov curve that describes phase perturba-
tions and diffraction effects on the wavefront. Moreover, the
curve is particularly used in the Rytov approximation (Ry-
tov method), which analyzes wave propagation in turbulent
media.

This study aims to examine electromagnetic curves in
optical fibers with multiplicative calculus using an alterna-
tive moving frame. Hence, the study is organized as fol-
lows. Section 1 is an introduction providing an overview
of the research objectives and scope. Section 2 presents
foundational background information on the theory of non-
Newtonian analysis and its relevance to the study. Section 3
explores the geometric phase of the polarization plane of a
light wave propagating through an optical fiber within the
{e1, e2, e3} framework, incorporating the concept of multi-
plicative derivatives. Section 4 is about the electromagnetic
(EM) trajectories that utilize the polarization plane of a light
wave in an optical fiber and emphasizes the role of multi-
plicative derivatives. Section 5 illustrates practical examples
and visualizations using the Matlab program to demonstrate
the application of multiplicative derivatives in this context. In
Section 6, the study is summarized. Moreover, the aspects of
the results that differ from the literature are interpreted.

2. Preliminaries

In this section, some fundamental definitions and theorems
are represented for the multiplicative space obtained by
choosing the exponential function of the generator(exp).
The generator functionα is chosen as the(exp) function.
Then the multiplicative Frenet frame of the multiplicative
curve γ is given. The foundational material will be based
on the books by S. Georgiev; see [3,18]:

α : R→ R+,

p → α(p) = ep

and

α−1 : R+ → R,

q → α−1(q) = log q.

The exponential function defines a mapping fromR to R+,
assigning each real input a strictly positive output. Hence,
the real number set in the multiplicative space is defined as
below:

R? = {exp(p) : p ∈ R} = R+.

Likewise, we define positive and negative multiplicative
numbers as follows:

R+
? = {exp(p) : p ∈ R+} = (1,∞),

and

R−? = {exp(p) : p ∈ R−} = (0, 1).

Table demonstrates the basic operations in the multiplicative
space using the functionexp. ∀p, q ∈ R?, q 6= 1.

Multiplicative Exponential Equivalent

Operation Form Form

p +∗ q elog p+log q pq

p−∗ q elog p−log q p
q

p ·∗ q elog p log q plog q

p/∗q elog p/ log q p
1

log q

The field(R?, +?,−?) gives a multiplicative structure as
given by the table. Every element of the spaceR? is called
a multiplicative number and is denoted byp? ∈ R?, where
p? = exp(p) for somep ∈ R. To simplify notation, we
shall refer to multiplicative numbers asp ∈ R? instead of
p? throughout the research. In this framework, the identity
element for multiplicative addition is0? = 1, while for mul-
tiplicative multiplication it is1? = e.

We now proceed to discuss several useful operations
within the multiplicative space. Absolute value multiplica-
tion defines multiplicative space. Absolute value in Newto-
nian space is defined additively, reflecting the additive nature
of distance. Since distance represents a multiplicative change
in space, its absolute value is defined as follows:

|p|? =

{
p, p ≥ 0?

−?p, p < 0?,

where−?p = 1/p. In the multiplicative space, we have

pk∗ = p.?p.?...p = e(log p)k

for p ∈ R? andk ∈ R. Furthermore, we have

p
1
2∗ = e(log p)

1
2 = ?

√
p.

Forp, q ∈ R?, the following formulas are denoted:

(p +? q)2? = p2? +? e2.?p.?q +? q2? ,

p2? −? q2? = (p−? q).?(p +? q).

The vector definition inn− dimensional multiplicative space
Rn

? is represented by

Rn
? = {(x1, x2, ..., xn) : xi ∈ R?, i ∈ 1, 2, ..., n}.

Rn? represents a vector space overR?, equipped with the
following pair of operations:

u +? v = (u1 +? v1, u2 +? v2, ..., un +? vn)

= (u1v1, u2v2, ..., unvn),
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and

a ·? v = (a ·? u1, a ·? u2, ..., a ·? un)

= (u1v1, u2v2, ..., unvn)

= (elog a log u1 , elog a log u2 , ..., elog a log un)

= elog a log u,

whereu, v ∈ Rn
? . Let u andv be arbitrary multiplicative vec-

tors in the multiplicative vector spaceRn
? . The corresponding

multiplicative inner product is defined as follows:

〈u, v〉? = e〈log u,log v〉.

Furthermore, if the multiplicative vectorsu andv are orthog-
onal, the following relation holds:

〈u, v〉? = 0?.

The multiplicative norm associated with the vectoru is de-
fined as follows:

||u||? = e〈log u,log u〉 1
2 .

The multiplicative cross product has typical algebraic and ge-
ometrical characteristics. Letu andv be two unit multiplica-
tive vectors in the multiplicative vector space. Letθ denote
the multiplicative angle between the multiplicative unit vec-
tors, defined as follows:

θ = arccos?(e〈log u,log v〉).

The multiplicative cosine of the multiplicative angle between
two multiplicative unit vectors is

cos? θ = 〈u, v〉?.
For θ ∈ R?, the definitions of multiplicative trigonometric
functions are given as follows:

sin? θ = esin log θ, cos? θ = ecos log θ,

tan? θ = etan log θ, cot? θ = ecot log θ.

Let f be a function defined on the multiplicative spaceR?,
wherex belongs to an intervalI ⊂ R?. The multiplicative
derivative of the functionf is defined as follows:

f?(x) = lim
h→0?

(f(x +? h)−? f(x))/∗h

= lim
h→1

(
f(xh)
f(x)

)
1

log h = lim
h→1

e
log f(xh)

f(x)
log h .

Applying L’Hospital’s rule in this context, we obtain

f?(x) = e
xf
′
(x)

f(x) .

Moreover, iff is both multiplicatively differentiable and con-
tinuous, it is called a∗-differentiable (multiplicative differen-
tiable) function. It also satisfies the multiplicative derivative
of Leibniz and the chain rule.

The multiplicative integral serves as the inverse operation
of the multiplicative derivative. The functionf(x) has its in-
definite multiplicative integral defined as follows:

∫

?

f(x) ·? d?x = e
∫ 1

x log f(x)dx, x ∈ R?.

A curveγ inR3
?, which is in a multiplicative parametriza-

tion of class Ck
? (k ≥ 1?), is defined as a multiplica-

tive vector-valued functionγ : I ⊂ R?, where γ(s) =
(γ1(s), γ2(s), γ3(s)). The multiplicative curveγ(s) is reg-
ular if and only if ||γ(s)||? 6= 0?. Moreover, if the velocity
vector ofγ(s) equals1?, thenγ(s) is called a multiplicative
unit speed curve. Givens0 ∈ I, the multiplicative arc length
corresponding to the multiplicatively regular curveγ(s) can
be expressed as:

h(s) =
∫ s

?s0

||γ(s)||? ·? d?s. (1)

The multiplicative Frenet trihedron ofγ(s) is denoted by

t(s) = γ?(s), n(s) =
γ??(s)

||γ??(s)||? ,

b(s) = t(s)×? n(s), (2)

wheret(s), n(s) and b(s) are called multiplicative tangent,
multiplicative principal normal, and multiplicative binormal
vectors, respectively. Also, the multiplicative curvature and
multiplicative torsion are given by

κ(s) = ||γ??(s)||?,
τ(s) = 〈n(s), b(s)〉?.

Moreover, the multiplicative Frenet formulae ofγ are repre-
sented by

t?(s) = κ(s) ·? n(s),

n(s) = −?κ(s) ·? t(s) +? τ(s) ·? b(s),

b?(s) = −?τ(s) ·? n(s).

Let γ(s) be a unit speed curve in the Euclidean 3-space, and

e1(s) =
t
′
(s)

‖t′(s)‖ , e2(s) =
n
′
(s)

‖n′(s)‖
and

e3(s) =
τ(s)t(s) + κ(s)b(s)√

κ2(s) + τ2(s)

be the unit principal normal vector, the derivative of the prin-
cipal normal vector, and the Darboux vector, respectively.
Then{e1(s), e2(s), e3(s)} is the alternative moving frame of
the curveγ(s). Derivatives of the alternative moving frame
can be written as




e
′
1(s)

e
′
2(s)

e
′
3(s)


 =




0 α(s) 0
−α(s) 0 β(s)

0 −β(s) 0







e1(s)
e2(s)
e3(s)


 , (3)

Rev. Mex. Fis.72011301



4 A. ALTINKAYA AND E. KARACA

whereα(s) =
√

κ2(s) + τ2(s), β(s) = σ · α(s) and

σ =
κ2(s)

(κ2(s) + τ2(s))3/2
·
( τ

κ

)′

are curvatures of the curveγ(s) with respect to alternative
moving frame.

3. Linearly polarized light wave in optical
fiber in a geometric phase with a multiplica-
tive alternative moving frame

In this section, an optical fiber is examined through a
space curve considering the multiplicative alternative mov-
ing frame.
Definition 1. Let γ(s) be a unit speed multiplicative curve,
and e1(s) = t?(s)

/
?
||t?(s)||?, e2(s) = e1(s)

/
?
‖e1(s)‖?

and e3(s) = (τ ·? t +? κ ·? b)
/

?
?
√

κ2? +? τ2? be the
unit principal normal vector, the multiplicative derivative of
the principal normal vector, and the Darboux vector, respec-
tively. Then{e1(s), e2(s), e3(s)} is the alternative moving
frame of the curveγ(s). Derivatives of the alternative mov-
ing frame are given as follows:

e1(s) = α(s) ·? e2(s), (4)

e2(s) = −?α(s) ·? e1(s) +? β(s) ·? e3(s), (5)

e3(s) = −?β(s) ·? e2(s), (6)

whereα(s) = ?
√

κ2? +? τ 2? , β(s) = σ ·? α(s) and σ =
κ

2? /
?
(κ

2? +? τ
2? )

3
2 ∗ ·?

(
τ
/

?
κ
)?

are curvatures of the curve
γ with respect to alternative moving frame.

Assume thatγ is a space curve in a multiplicative alterna-
tive moving frame. We demonstrate the relationship between
a geometric phase and the evolution of a linearly polarized
light wave, as the optical fiber is a one-dimensional object
embedded in the 3D Riemann manifold. The electric field
E(s), on the other hand, defines the direction of the linearly
polarized light wave’s state. Thus, the multiplicative alterna-
tive moving frame along an optical fiber can be used to write
the direction ofE(s) as follows:

E?(s) = µ1.?e1(s) +? µ2.?e2(s) +? µ3.?e3(s), (7)

whereµi(i = 1, 2, 3) denote differentiable functions. Three
different situations are examined in the following analysis of
the polarized light’s state direction.

Case 1.Let the electric fieldE(s) lie on a plane orthog-
onal toe1(s). Hence, we have

〈E(s), e1(s)〉? = 0?. (8)

Considering the multiplicative derivative of Eq. (8), we ob-
tain

〈E?(s), e1(s)〉? +? 〈E(s), e1(s)〉? = 0?.

So, we have

〈µ1.?e1(s) +? µ2.?e2(s) +? µ3.?e3(s), e1(s)〉? = 0?.

If all the necessary arrangements are done, the first coefficient
is calculated as

µ1 = −?α(s) ·? 〈E(s), e2(s)〉?. (9)

We state that〈E(s), E(s)〉? is constant if we assume that
there is no mechanical loss in the optical fiber as a result of
absorption. Next, if we calculate the multiplicative derivative
of this align, we obtain

〈E?(s), E(s)〉? = 0?.

After some algebraic calculations, we acquire

µ2 ·? 〈E(s), e2(s)〉? = −?µ3 ·? 〈E(s), e3(s)〉?.

Since〈E(s), e2(s)〉? 6= 0? and〈E(s), e3(s)〉? 6= 0?, µ2 and
µ3 are represented by

µ2 = µ.?〈E(s), e3(s)〉?,
µ3 = −?µ.?〈E(s), e2(s)〉?. (10)

All the coefficients are written in Eq. (7), we obtain

E?(s) = −?α(s).?〈E(s), e2(s)〉? ·? e1(s)

+? µ ·? 〈E(s), e3(s)〉? ·? e2(s)

−? µ ·? 〈E(s), e2(s)〉? ·? e3(s),

and then

E?(s) = −?α(s).?〈E(s), e2(s)〉?.?e1(s)

+? µ.?(〈E(s), e3(s)〉?.?e2(s)

−? 〈E(s), e2(s)〉?.?e3(s)).

Hence, we write

E?(s) = −?α(s) ·? 〈E(s), e2(s)〉? ·? e1(s)

+? µ ·? (E(s)×? e1(s)). (11)

The second term on the right side of the align above provides
rotation around then. Assuming thatn is transmitted in par-
allel, we observe that

E?(s) = −?α(s) ·? 〈E(s), e2(s)〉? ·? e1(s) ·? e1(s). (12)

Moreover, the polarization vector is given by

E(s) = 〈E(s), e2(s)〉? ·? e2(s)

+? 〈E(s), e3(s)〉? ·? e3(s). (13)
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The multiplicative derivative of Eq. (13) is obtained by

E?(s) = (−?α(s) ·? 〈E(s), e2(s)〉?) ·? e1(s)

+? ((〈E(s), e2(s)〉?)?

−? β(s) ·? 〈E(s), e3(s)〉?) ·? e2(s)

+?(〈E(s), e3(s)〉?+?β(s) ·? 〈E(s), e2(s)〉?) ·? e3(s).

So, we have
[
(〈E(s), e2(s)〉?)?

(〈E(s), e3(s)〉?)?

]
=

[
0? β(s)

β(s) 0?

]
.?

[ 〈E(s), e2(s)〉?
〈E(s), e3(s)〉?.

]

Since〈E(s), E(s)〉? is constant, the following align can be
represented by

E(s) = sin? θ(s) ·? e2(s) +? cos? θ(s) ·? e3(s). (14)

Taking the multiplicative derivative of Eq. (14), we get

E?(s) = −?α(s) ·? 〈E(s), e2(s)〉? ·? e1(s)

+? (θ?(s).?〈E(s), e3(s)〉?
−? β(s) ·? 〈E(s), e3(s)〉?).?e2(s)

+? (〈E(s), e2(s)〉? ·? β(s)

−? θ?(s) ·? 〈E(s), e3(s)〉?) ·? e3(s),

and then

E?(s) = −?α(s) ·? 〈E(s), e2(s)〉? ·? e1(s)

+? (θ?(s)−? β(s)) ·? (E(s)×? e1(s)).

Under conditions exhibiting optical activity, the field rotates
to the left if the fiber does not favor it. Therefore, it is appro-
priate to assume that the coefficient of the second term on the
right side of the align above equals zero as

θ?(s)−? β(s) = 0?.

Integrating the above align, we obtain that

θ?(s) =
∫

?

β(s).?d?s.

Thus, for the condition〈E(s), e1(s)〉? = 0?, we obtain the
Ee1− Rytov curve. Moreover, the curves corresponding to
the polarization vector and the optical polarization vector are
traced, respectively:

Ee1(s)(s) = γ(s) +? E(s), (15)

and

E(s) = sin?

(∫

?

β(s).?d?s

)
.?e2(s)

+? cos?

(∫

?

β(s).?d?s

)
.?e3(s). (16)

Case 2.Let the electric fieldE(s) lie on a plane orthog-
onal toe2(s) in the second particular case. Presumably, we
write

〈E(s), e2(s)〉? = 0?. (17)

Taking the multiplicative derivative of Eq. (17), we acquire

〈E?(s), e2(s)〉? +? 〈E(s), e2(s)〉? = 0?.

So, we have

〈µ1.?e1(s) +? µ2.?e2(s) +? µ3.?e3(s), e2(s)〉? = 0?.

After some calculations, the second coefficient is computed
by

µ2 = α(s).?〈E(s), e1(s)〉? −? β(s).?〈E(s), e3(s)〉?. (18)

Since〈E(s), E(s)〉? is constant and the relevant calculations
have been carried out, we obtain

µ1.?〈E(s), e1(s)〉? = −?µ3.?〈E(s), e3(s)〉?
and thenµ2 andµ3 are expressed by

µ1 = µ.?〈E(s), e3(s)〉?,
µ3 = −?µ.?〈E(s), e1(s)〉?. (19)

All the coefficients are written in Eq. (7), we have

E?(s) = µ.?〈E(s), e3(s)〉?.?e1(s) +? (α(s).?〈E(s), e1(s)〉?
−? β(s).?〈E(s), e3(s)〉?).?e2(s)

−? µ.?〈E(s), e1(s)〉?.?e3(s).

Therefore, we write

E?(s) = (α(s).?〈E(s), t(s)〉? (20)

−? β(s).?〈E(s), b(s)〉?).?e1(s) (21)

−? µ.?(E(s)×? e1(s)). (22)

Rotation arounde2(s) is represented by the second part of the
align above, just like in the first case. Assuming thate2(s) is
carried in parallel, we can write it as

E?(s) = α(s).?〈E(s), e1(s)〉?
−? β(s).?〈E(s), e3(s)〉?).?e2(s). (23)

Additionally, the polarization vector is defined by

E(s) = 〈E(s), e1(s)〉?.?e1(s)

+? 〈E(s), e3(s)〉?.?e3(s). (24)

The multiplicative derivative of Eq. (24) is acquired by

E?(s) = (〈E(s), e1(s)〉?)?.?e1(s) +? (α(s).?〈E(s), e1(s)〉?
−? β(s).?〈E(s), e3(s)〉?).?e2(s)

+? (〈E(s), e3(s)〉?)?.?e3(s).
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Therefore, the following matrix representation can be written
as follows:

[
(〈E(s), e1(s)〉?)?

(〈E(s), e3(s)〉?)?

]
=

[
0? 0?

0? 0?

]
.?

[ 〈E(s), e1(s)〉?
〈E(s), e3(s)〉?.

]

The polarization vector is written in terms of spherical coor-
dinates as follows:

E(s) = cos? θ(s).?e1(s) +? sin? θ(s).?e3(s). (25)

Taking the multiplicative derivative of Eq. (25), we obtain

E?(s) = (α(s).?〈E(s), e1(s)〉?
−? β(s).?〈E(s), e3(s)〉?).?e2(s)

+? θ?(s).?(E(s)×? e1(s)).

We haveθ?(s) = 0? from the above align. The parallel
transport is thus moved alonge2(s) by E. Thus, in the sec-
ond scenario, we can state that the optical fiber isEe2−
Rytov curve. e2(s) determines a change in the direction
of the polarized light state. Therefore, using the conditions
〈E(s), e2(s)〉? = 0?, we obtain theEe2− Rytov curve and
polarization vector in the optical as

Ee2(s) = γ(s) +? E(s), (26)

and then

E(s) = cos? θ.?e1(s) +? sin? θ.?e3(s),

θ = constant. (27)

Case 3. Assume that the electric fieldE(s) lies on a plane
orthogonal toe3(s). Therefore, we have

〈E(s), e3(s)〉? = 0?. (28)

Taking the multiplicative derivative of Eq. (28), we have

〈E?(s), e3(s)〉? +? 〈E(s), e3(s)〉? = 0?.

Hence, we have

〈µ1.?e1(s) +? µ2.?e2(s) +? µ3.?e3(s), e3(s)〉? = 0?.

Exploiting the multiplicative Frenet frame, the third coeffi-
cient is computed by

µ3 = β(s).?〈E(s), e2(s)〉?. (29)

Since〈E(s), E(s)〉? is constant, we obtain

〈E?(s), E(s)〉? = 0?.

After some algebraic calculations, we acquire

µ1 ·? 〈E(s), e1(s)〉? = −?µ2 ·? 〈E(s), e2(s)〉?.

Since〈E(s), e1(s)〉? 6= 0? and〈E(s), e2(s)〉? 6= 0?, µ1 and
µ2 are, respectively,

µ1 = µ ·? 〈E(s), e2(s)〉?,
µ2 = −?µ ·? 〈E(s), e1(s)〉?. (30)

All the coefficients are written in Eq. (7), we acquire

E?(s) = β(s).?〈E(s), e2(s)〉? ·? e3(s)

+? µ ·? (E(s)×? e3(s)).

and then

E?(s) = β(s) ·? 〈E(s), e2(s)〉? ·? e3(s),

wheree3(s) is parallel transported, and the second term on
the right side of the above align provides a rotation around
e3(s). Furthermore, the polarization vector is given by

E(s) = 〈E(s), e1(s)〉? ·? e1(s)

+? 〈E(s), e2(s)〉? ·? e2(s). (31)

The multiplicative derivative of Eq. (31) is computed by

E?(s) = ((〈E(s), e1(s)〉?)?

−? α(s)〈E(s), e2(s)〉?) ·? e1(s)

+? (α(s) ·? 〈E(s), e1(s)〉?
+? (〈E(s), e2(s)〉?)?) ·? e2(s)

+? (β(s) ·? 〈E(s), e2(s)〉?) ·? e3(s).

The matrix representation is given by[
(〈E(s), e1(s)〉?)?

(〈E(s), e2(s)〉?)?

]
=

[
0? κ(s)

−?κ(s) 0?

]
.?

[ 〈E(s), e1(s)〉?
〈E(s), e2(s)〉?.

]

Also, the polarization vector is given as follows:

E(s) = cos? θ(s).?e1(s) +? sin? θ(s) ·? e2(s). (32)

Taking the multiplicative derivative of Eq. (32), we obtain

E?(s) = −?β(s) ·? 〈E(s), e2(s)〉? ·? e3(s)

−? (α(s) +? θ?(s)) ·? (E(s)×? e3(s)).

Since it denotes an optical fiber, we haveα(s)+?θ?(s) = 0?.
Integrating this align, we obtain the following:

θ(s) = −?

∫

?

α(s).?d?s.

Therefore, for the condition〈E(s), e3(s)〉? = 0?, we obtain
the Ee3− Rytov curve. Hence, the Rytov curve represents
the traced curve of the polarization vector and the optical po-
larization vector, respectively.

Ee3(s) = γ(s) +? E(s), (33)

and

E(s) = cos?(
∫

?

α(s).?d?s).?e1(s)

−? sin?(
∫

?

α(s).?d?s).?e2(s). (34)
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4. Multiplicative calculus of electromagnetic
curves on the optical fiber along the polar-
ization plane

In this section, we examine the electromagnetic curves on the
optical fiber according to the orthogonality situations of the
alternative moving frame.

As a charged particle interacts with an electromagnetic
field, it creates a force known as the Lorentz force. This
Lorentz force caused by the electromagnetic field affects the
motion of the particle, which follows a path along the op-
tical fiber. The paths followed by this charged particle are
called electromagnetic curves [25]. LetF be an optical fiber
defined by the curveγ in 3D Riemannian space. Then, the
electromagnetic curve with respect to the multiplicative cal-
culus holds the following relation:

Φ(E) = V ×? E, (35)

whereV is a Killing magnetic vector field. This section an-
alyzes the orthogonality ofE with the elements of the alter-
nating frame{e1, e2, e3}.

4.1. Electromagnetic curves on the optical fiber for the
caseE ⊥ e1

From Sec. 3, if〈E(s), e1(s)〉? = 0?, we find the align ofE?

as follows:

E?(s) = −f ·? 〈E?(s), e2(s)〉? ·? e1(s) (36)

+? µ〈E(s), e3(s)〉? ·? e2(s) (37)

−? µ ·? 〈E(s), e2(s)〉? ·? e3(s). (38)

According to the Lorentz force align, we know that

〈Φ(E(s)), e1(s)〉? = −〈Φ(e1(s)), E(s)〉? , (39)

〈Φ(E(s)), e2(s)〉? = −〈Φ(e2(s)), E(s)〉? , (40)

〈Φ(E(s)), e3(s)〉? = −〈Φ(e3(s)), E(s)〉? . (41)

Using theΦ(s) on multiplicative Frenet frame, we get

Φ(e1(s)) = α(s) ·? e2(s) , (42)

Φ(e2(s)) = α(s) ·? e1(s)−? µ ·? e3(s) , (43)

Φ(e3(s)) = µ ·? e2(s) . (44)

If we write the Killing vector field according to the multi-
plicative Frenet frame, we obtain

V = a1 ·? e1(s) +? a2 ·? e2(s) +? a3 ·? e3(s). (45)

And also, we know that

Φ(e1(s)) = V ×? e1(s) , (46)

Φ(e2(s)) = V ×? e2(s) , (47)

Φ(e3(s)) = V ×? e3(s) . (48)

Thus, we have

V (s) = −?µ ·? e1(s) +? α(s) ·? e3(s). (49)

Since we considern as perpendicular toE, the Lorentz force
aligns are obtained according to the multiplicative Frenet
frame as follows:

Φ(e1(s)) = α(s) ·? e2(s) , (50)

Φ(e2(s)) = −?α(s) ·? e1(s) , (51)

Φ(e3(s)) = 0? (52)

and

V (s) = α(s) ·? e3(s). (53)

4.2. Electromagnetic curves on the optical fiber for the
caseE ⊥ e2

For the case〈E(s), e2(s)〉? = 0?, we have

E?(s) = µ ·? 〈E(s), e3(s)〉? ·? e1(s) (54)

+? (κ ·? 〈E(s), e1(s)〉? (55)

−? β(s) ·? 〈E(s), e3(s)〉?) ·? e2(s) (56)

−? µ ·? 〈E(s), e1(s)〉?e3(s). (57)

From the Lorentz force, we get

Φ(e1(s)) = α(s) ·? e2(s)−? µ ·? e3(s) , (58)

Φ(e2(s)) = −?α(s) ·? e1(s) +? β(s) ·? e3(s) , (59)

Φ(e3(s)) = µ ·? e1(s)−? β(s) ·? e2(s) . (60)

We can compute the magnetic vector field according to the
multiplicative Frenet frame as

V (s)=β(s) ·? e1(s) +? µ ·? e2(s) +? α(s) ·? e3(s). (61)

Since e2(s) is perpendicular toE(s), we can write the
Lorentz force aligns as follows:

Φ(e1(s)) = α(s) ·? e2(s) , (62)

Φ(e2(s)) = −?α(s) ·? e1(s) +? β(s) ·? e3(s) , (63)

Φ(e3(s)) = −?β(s) ·? e2(s) (64)

and

V (s) = α(s) ·? e3(s). (65)
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4.3. Electromagnetic curves on the optical fiber for the
caseE ⊥ e3

Assume that〈E(s), e3(s)〉? = 0?. From Section 3, we know
that

E?(s) = µ ·? 〈E(s), e2(s)〉? ·? e1(s) (66)

+? −?β(s) ·? 〈E(s), e1(s)〉? ·? e2(s) (67)

−? 〈E(s), e2(s)〉?e3(s). (68)

Using theΦ on the multiplicative Frenet frame, we obtain

Φ(e1(s)) = −?µ ·? e2(s) , (69)

Φ(e2(s)) = µ ·? e1(s) +? β(s) ·? e3(s) , (70)

Φ(e3(s)) = −?µ ·? e2(s) . (71)

Thus, we have

V (s) = β(s) ·? e1(s)−? µ ·? e3(s). (72)

Sincee3(s) is perpendicular to the polarization vectorE(s),
we get the Lorentz force as

Φ(e1(s)) = 0? , (73)

Φ(e2(s)) = g ·? e3(s) , (74)

Φ(e3(s)) = −?β(s) ·? e2(s) (75)

and

V (s) = β(s) ·? e1(s). (76)

5. Example

In this section, we give some illustrative examples to verify
the results. Moreover, in Example 5.1, we discuss the dif-
ference between multiplicative E-Rytov curves and E-Rytov
curves for multiplicative helix curve and the general helix
curve with some figures.

Example 5.1Let γ(s) = ((e4/?e
5) ·? sin? s, (e4/?e

5) ·?
cos? s, (e3/?e

5) ·? es) be a multiplicative helix curve. Then,
the multiplicative alternative moving apparatus ofγ(s) is
given as

e1(s) = γ??(s)
/

?
‖γ??(s)‖? = (− ? sin? s,− ? cos? s, 0?),

e2(s) = e1(s)
/

?
‖e1(s)‖? = (− ? cos? s, sin? s, 0?),

e3(s)=(τ · ? t+?κ · ? b)
/

?
?
√

κ2?+?τ2?=(0?, 0?, −?1?),

α(s) = ?
√

κ2? +? τ 2? = 1?,

β(s) = σ ·? α(s) = 0?.

In the graphs below, we have examined the E-Rytov curve
according to the three cases, which are examined in Sec. 3.
In these cases, we draw the curvesEe1 , Ee2 , andEe3 , as well
as the electric field E on the sphere in Fig. 1-3, respectively.

FIGURE 1. Ee1 - Rytov curve and the electric fieldE for
〈E, e1〉∗ = 0∗, respectively.

FIGURE 2. Ee2 - Rytov curve and the electric fieldE for
〈E, e2〉∗ = 0∗, respectively.

FIGURE 3. Ee3 - Rytov curve and the electric fieldE for
〈E, e3〉∗ = 0∗, respectively.

Let us reconsider the example in the classical analysis:
Assume thatγ(s) = [(4/5) sin s, (4/5) cos s, (3/5)s) is the
helix curve. Then the alternative moving operators ofγ(s)
are computed by

e1(s) = (− sin s,− cos s, 0),

e2(s) = (− cos s, sin s, 0),

e3(s) = (0, 0,−1),

α(s) = 1,

β(s) = 0.

In the following figures, we show the E-Rytov curves in terms
of three cases. Additionally, we present the electric fields on
the sphere, respectively.

The study [26] is about the characterization of electro-
magnetic curves with the help of the alternative frame by
means of the classical derivative. Now let’s give Example 5.1
in Ref. [26] using multiplicative calculus and compare it with
the results in classical derivation.
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FIGURE 4. Ee1 - Rytov curve and the electric fieldE for 〈E, e1〉 =

0 , (θ = π/2) respectively.

FIGURE 5. Ee2 - Rytov curve and the electric fieldE for 〈E, e2〉 =

0, (θ = π/2) respectively.

FIGURE 6. Ee3 - Rytov curve and the electric fieldE for 〈E, e3〉 =

0, (θ = π/2) respectively.

Example 5.2 Let γ(s) = ((e3/?e
4) ·? sin? s −?

(e/?e
12) ·? sin? s,−?(e3/?e

4) ·? cos? s +? (e/?e
12) ·?

cos? 3s, (e
√

3/?e
2) ·? sin? s) be a unit speed curve. Then we

have the Frenet apparatus ofγ(s) to the alternative moving
frame:

e1(s) = γ??(s)
/

?
‖γ??(s)‖?

= ((e
√

3/?e
2) · ? cos? 2s,

(e
√

3/?e
2) · ? sin? 2s,−?(e/?e

2)),

e2(s) = e1(s)
/

?
‖e1(s)‖? = (−? sin? 2s, cos? 2s, 0?),

e3(s) = (τ · ? t +? κ · ? b)
/

?
?
√

κ2? +? τ2?

= ((e/?e
2) · ? cos? 2s, (e/?e

2) · ? sin? 2s, (e
√

3/?e
2)),

α(s) = ?
√

κ2? +? τ 2? = e
√

3,

β(s) = σ ·? α(s) = −?1?.

In the figures below, we present the E-Rytov curves for three
different cases. Specifically, the electric fields are shown on
the sphere in Figs. 7 to 9, respectively:

FIGURE 7. Ee1 - Rytov curve and the electric fieldE for 〈E, e1〉 =

0 , respectively.

FIGURE 8. Ee2 - Rytov curve and the electric fieldE for 〈E, e2〉 =

0, respectively.

FIGURE 9. Ee3 - Rytov curve and the electric fieldE for 〈E, e3〉 =

0, respectively.
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6. Conclusion

The relationship between multiplicative and classical (ad-
ditive) derivatives is elegantly captured by the expression
f?(x) = exf

′
(x)/f(x), wheref?(x) denotes the multiplica-

tive derivative andf
′
(x) the classical derivative. This for-

mula highlights how the multiplicative derivative encodes rel-
ative (percentage-like) changes in a function, in contrast to
the absolute rate of change measured by the classical deriva-
tive. A key advantage of the multiplicative derivative lies
in its natural applicability to problems involving exponen-
tial growth, scaling behaviors, or multiplicative processes,
as seen in fields such as economics, biology, and informa-
tion theory. It allows for more intuitive modeling in systems
where changes are better understood in proportional rather
than additive terms. However, a notable drawback is that it
requires the function to be strictly positive and differentiable,
limiting its applicability compared to the more broadly de-
fined classical derivative. The comparison between multi-
plicative helix and general helix is given for E-Rytov curves
in Example 5.1. Geometrically, the multiplicative derivative
can be interpreted as a proportion.

Electromagnetic waves consist of electric and magnetic
fields that oscillate perpendicular to each other and propa-
gate synchronously. The paths of these waves can be bent or
curved due to different environmental conditions and bound-
ary effects. In addition, they are applied in different areas

such as optics, fiber systems, radio waves, communication,
astronomy, medical imaging, etc. Moreover, it is used in
the definition of the Rytov curve, where phase perturbations
and diffraction effects on the wavefront are described by the
curve. The wavefront is distorted by diffraction and scatter-
ing when waves travel over a randomly changing medium,
such as the atmosphere. The small-scale diffraction effects
of optical and electromagnetic waves are examined using the
Rytov approximation. Furthermore, there are several signif-
icant application areas, such as optics, laser beams, radio
waves, acoustic waves, etc. Considering these fundamental
application areas, in this paper, we reinterpreted these curves
using an alternative moving frame in non-Newtonian analy-
sis. Unlike studies in the literature, these curves were ex-
pressed by exponential functions using non-Newtonian anal-
ysis techniques. Therefore, the results helped to understand
the growth, scaling, and ratio-based systems for these curves.
Moreover, we gave an example and visualized their images
using the MATLAB program in multiplicative calculus.
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