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Multiplicative calculus in optical fiber analysis: an alternative frame perspective
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This work uses the techniques of a non-Newtonian calculus (or multiplicative calculus) in the 3D Riemannian manifold to investigate the
geometric features of linearly polarized light waves along optical fibers using the alternative moving frame. The evolution of a linearly
polarized light wave is linked to a geometric phase since the optical fiber is thought to be a one-dimensional object embedded in a 3D
Riemannian manifold. Thus, we produce a novel kind of multiplicative derivative geometric phase model. Furthermore, we present magnetic
curves that are produced by the electric fielddefined by the electromagnetic curve. Then we define the Rytov curve, which consists of the
combination of the space curve and the electromagnetic curve. In conclusion, we gave examples that match the theory and visualized then
using the MATLAB program and analyzed the results using multiplicative calculus, which allows us to interpret the results proportionally.
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1. Introduction behavior, presents certain limitations when applied to real-
world fluid dynamics problems. For instance, Miaal. [5]

Calculus, one of the most fundamental and practica] mathéntroduced a framework based on multiplicative Euclidean
matics tools, enables solving complex problems encounteregPace to analyze non-Newtonian wavefronts, demonstrating
in science, engineering, economics, and many other ﬁe|dghe0retical potential; however, its practical implementation
through differential and integral calculus methods. The in-fémains constrained due to strict function positivity and dif-
dependent studies conducted by I. Newton and G. W. Leibniferentiability requirements. In contrast, classical analysis re-
in the 17th century marked a significant milestone in the demains more adaptable to diverse physical systems. Wilson
velopment of calculus. Newton used calculus to formulateand Thomas [6] provided foundational insights into turbu-
the laws of motion and the theory of universal gravitation;lent flow behavior in non-Newtonian fluids using conven-
Leibniz significantly contributed to this field by developing tional differential methods, a versatility echoed in subsequent
modern integral and derivative notation. M. Grossman and Rempirical and computational studies. étial [7], for exam-
Katz gave the multiplicative calculus that emerged as an alteiPl€, effectively employed classical rheological tools, such as
native to traditional additive calculus and treated the rates ofhe Marsh funnel and CFD modeling, to distinguish between
change multiplicatively rather than additively [1]. Although Newtonian and non-Newtonian flow behaviors under vary-
operations are performed additively in classical derivativeng field conditions. Similarly, Rashidt al. [8] leveraged
and integral calculus, these operations are expressed in multle homotopy analysis method within classical frameworks to
plicative terms in multiplicative calculus. Especially in fields capture complex thermal and velocity fields in wedge-driven
such as finance, engineering, and physics, multiplicative rateffows. Even finite element methods, as applied BhBe

of change can provide more accurate results. For exampl@nd Rubart [9], have shown sustained efficacy in classical
the growth of an investment with compound interest can b&ontexts where the multiplicative approach might falter due
modeled more accurately using multiplicative derivatives ando numerical instability or limited boundary condition com-
integrals. This approach is more efficient, especially in syspPatibility. Consequently, while multiplicative calculus intro-
tems that work logarithmically, and provides a practical andduces a fresh perspective, classical analysis remains domi-
new perspective on problems. In addition, Bashirov et alnant due to its broader applicability, computational robust-
gave basic definitions and theorems about multiplicative caln€ss, and deeper integration into engineering practices.
culus [2]. We see the application of multiplicative calcu-  Electromagnetic curves are mathematical structures that
lus to geometry in Georgiev’'s books [3, 4]. In these booksdescribe the interactions of electromagnetic waves and mag-
she developed the basic concepts of differential and anasetic fields. These curves are essential in advanced tech-
lytic geometry using multiplicative calculus. Moreover, non- nologies, especially in the propagation of electromagnetic
Newtonian calculus, while offering novel insights into phe- waves, optical fibers, telecommunications, and wireless com-
nomena characterized by proportional growth or exponentiainunications. This concept of electromagnetic theory and
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differential geometry offers us many applications in physicsLikewise, we define positive and negative multiplicative
and engineering. Since it is a current topic, it has atnumbers as follows:

tracted the attention of many mathematicians and physi-

cists. Studies have been carried out using different spaces R = {exp(p) : p € RT} = (1,00),
and frames with respect to electromagnetic curves in opticadnd
fibers [10, 11,13, 15,15-17, 26]. Moreover, it is used in the
expression of the Rytov curve that describes phase perturba- R, ={exp(p): pe R} = (0,1).

tions and diffraction effects on the wavefront. Moreover, theTaple demonstrates the basic operations in the multiplicative
curve is particularly used in the Rytov approximation (Ry-space using the functiafxp. Vp, g € R,,q # 1.
tov method), which analyzes wave propagation in turbulent

media Multiplicative Exponential Equivalent
This study aims to examine electromagnetic curves in Operation Form Form

optical fibers with multiplicative calculus using an alterna- D+ q elogrtlogq pq

tive moving frame. Hence, the study is organized as fol- =g glosp—logq 2

lows. Section 1 is an introduction providing an overview P Glogploga plfgq

of the research objectives and scope. Section 2 presents
foundational background information on the theory of non- p/-q ©
Newtonian analysis and its relevance to the study. Section 3

explores the geometric phase of the polarization plane of a The field(R., +., —.) gives a multiplicative structure as
light wave propagating through an optical fiber within the given by the table. Every element of the sp&ceis called

{e1, e2, e3} framework, incorporating the concept of multi- @ multiplicative number and is denoted py € Rx, where
plicative derivatives. Section 4 is about the electromagneti@* = exp(p) for somep € R. To simplify notation, we
(EM) trajectories that utilize the polarization plane of a light shall refer to multiplicative numbers as € R, instead of
wave in an optical fiber and emphasizes the role of multi» throughout the research. In this framework, the identity
plicative derivatives. Section 5 illustrates practical exampleglement for multiplicative addition i, = 1, while for mul-

and visualizations using the Matlab program to demonstratéplicative multiplication itisl, = e.

the application of multiplicative derivatives in this context. In ~ We now proceed to discuss several useful operations
Section 6, the study is summarized. Moreover, the aspects #fithin the multiplicative space. Absolute value multiplica-

the results that differ from the literature are interpreted. ~ tion defines multiplicative space. Absolute value in Newto-
nian space is defined additively, reflecting the additive nature

of distance. Since distance represents a multiplicative change

1
logp/loggq ploed

2. Preliminaries in space, its absolute value is defined as follows:
In this section, some fundamental definitions and theorems pls = D, p =0,
are represented for the multiplicative space obtained by —p, P <0

choosing the exponential function of the generdietp).

The generator functiom is chosen as théexp) function. where—.p = 1/p. Inthe multiplicative space, we have

Then the multiplicative Frenet frame of the multiplicative P = pposp = clogp)”
curve~ is given. The foundational material will be based
on the books by S. Georgiev; see [3, 18]: for p € R, andk € R. Furthermore, we have
a:R—RF Pt = el =5/,
p— alp) = e Forp, g € R,, the following formulas are denoted:
(P ++ 0> =D ++ € upaqg +4 07,
and 2 2
P =@ = (P s Q)P ++ @)
1. pt o . . L
a1 RT =R, The vector definition im— dimensional multiplicative space

g — a"Y(q) =logq. R” is represented by

) . ] ) R} = {(z1, 22, ..y n) 1 € Ry, € 1,2, ...,n}.
The exponential function defines a mapping fri&mo R+, _ _
assigning each real input a strictly positive output. HenceR"x represents a vector space oW, equipped with the
the real number set in the multiplicative space is defined a#llowing pair of operations:
below: U+ V= (ul F V1, U2 F5 V2, oeny Uy F5 Un)

R, = {exp(p) : p € R} = R*. = (U101, U2V, ..., UpVp ),
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and
AV = (0% UL, Qs Uy ey A5 Up)
= (U101, U2V, ..., UpVp)
— (elosalosu glogalogua clogalogun)
_ elogalogu’
whereu, v € R7. Letu andv be arbitrary multiplicative vec-

tors in the multiplicative vector spa@’. The corresponding

multiplicative inner product is defined as follows:
<U, ’U>* _ e(loguJogv)'

Furthermore, if the multiplicative vectotsandv are orthog-
onal, the following relation holds:

(u, v)y = 04.

The multiplicative norm associated with the vectors de-
fined as follows:

||’LL||* — e(logu,logm% )

The multiplicative cross product has typical algebraic and ge-

ometrical characteristics. Latandv be two unit multiplica-
tive vectors in the multiplicative vector space. lGetlenote

the multiplicative angle between the multiplicative unit vec-

tors, defined as follows:

0 = arccos, (e{l°8 w108 v)),

The multiplicative cosine of the multiplicative angle between

two multiplicative unit vectors is
cosy, 0 = (u,v)y.

For 6 € R,, the definitions of multiplicative trigopnometric
functions are given as follows:

sin log 6
)

sin, 0 = e cos, O = o810l

tan log 6 cot log 6
s .

tan, 0 = e cot, 0 =e

Let f be a function defined on the multiplicative spare,
wherex belongs to an interval C Rx. The multiplicative
derivative of the functiory is defined as follows:

f*(@) = Jim (F(z -+ h) = F(@))/oh
f(l'h) ﬁ = 1i 101%1%
=i )T T e ™

Applying L'Hospital’s rule in this context, we obtain

!’
f*(g)) = ei}c(m(? .

Moreover, if f is both multiplicatively differentiable and con-
tinuous, itis called a-differentiable (multiplicative differen-

tiable) function. It also satisfies the multiplicative derivative

of Leibniz and the chain rule.

The multiplicative integral serves as the inverse operation
of the multiplicative derivative. The functiofix) has its in-
definite multiplicative integral defined as follows:

/f(x) wdyx =el wloaf@dr o R

A curve~ in R?, which is in a multiplicative parametriza-
tion of classCF(k > 1,), is defined as a multiplica-
tive vector-valued functiony : I C R,, wherev(s) =
(71(8),72(8),v3(s)). The multiplicative curvey(s) is reg-
ular if and only if ||y(s)||« # 0. Moreover, if the velocity
vector ofy(s) equalsl,, theny(s) is called a multiplicative
unit speed curve. Givesy € I, the multiplicative arc length
corresponding to the multiplicatively regular curyés) can
be expressed as:

- .

The multiplicative Frenet trihedron af(s) is denoted by

_ ()
Iy ()l

[y ()]l s ducs. )

t(s) =7"(s), n(s)

b(s) = t(s) x« n(s), (2)

wherei(s),n(s) andb(s) are called multiplicative tangent,
multiplicative principal normal, and multiplicative binormal
vectors, respectively. Also, the multiplicative curvature and
multiplicative torsion are given by

k(s) = [ ()l
(n(s),0(5))+-

Moreover, the multiplicative Frenet formulae pfare repre-
sented by

7(s) =

n(s) = —4k(8) « t(8) +x 7(5) -« b(s),
b*(s) = —47(8) -x n(s).

Letv(s) be a unit speed curve in the Euclidean 3-space, and

/

_ ) g ()
A= rEr 2= e
and
r(s)t(s) + A(s)b(s)
es(s) =

r2(s) +72(s)

be the unit principal normal vector, the derivative of the prin-
cipal normal vector, and the Darboux vector, respectively.
Then{e;(s), ea(s), e3(s)} is the alternative moving frame of
the curvey(s). Derivatives of the alternative moving frame
can be written as

’

6/1(8) 0 a(s) 0 e1(s)
es(s) —a(s) 0 B(s)| fes) |, (3)
e;’(s) 0 *ﬂ(s) 0 63(3)
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4 A. ALTINKAYA AND E. KARACA

wherea(s) = \/k2(s) + 72(s), B(s a(s) and So, we have
o= w*(s) . (Z) (H1x€1(8) +u p12.4€2(8) +4 p3.4€3(8), €1(8))x = Os.
(R2(s) + 722\
If all the necessary arrangements are done, the first coefficient

are curvatures of the curvg(s) with respect to alternative s calculated as
moving frame.

p1 = —x0u(s) ~« (E(s), €2(s))x- 9)

s ]!.‘tl)nez.irly p0|arlze.d “r?ht Wf.i\lfle n lo.ptll_cal We state that E(s), E(s)), is constant if we assume that
Iberin a geometric phase with a multiplica- there is no mechanical loss in the optical fiber as a result of

tive alternative moving frame absorption. Next, if we calculate the multiplicative derivative

. . . , . . of this align, we obtain
In this section, an optical fiber is examined through a g

space curve considering the multiplicative alternative mov- (E*(s), E(s)), = 0,.

ing frame.

Def|n|t|0n 1. Lety(s) be a unit speed multlpl|cat|ve curve, After some algebraic calculations, we acquire
andei(s) = t*(s)/ [1t*(s)||«, e2(s (s)/ llew(s)]l

and e3(s ) = (T vt +4 K« )/* n2* +, 7% be the [ (E(3), e2(8))s = —utis - (E(3), e5(3))+.

unit principal normal vector, the multiplicative derivative of

the principal normal vector, and the Darboux vector, respec-Since(E(s), e2(s))x # 0, and(E(s), e3(s))« # 04, o and
tively. Then{ei(s),e2(s),es(s)} is the alternative moving 13 are represented by

frame of the curve/(s). Derivatives of the alternative mov-

ing frame are given as follows: to = s (E(s), e3(8))x,
e1(s) = a(s) - ea(s), 4) p3 = —uptx (E(5), €2(5)) - (10)
e2(s) = —.a(s) x e1(8) +x B(s) -« e3(s), (5)  Allthe coefficients are written in Eq7), we obtain
o9 = 0 eas), © B*(5) = —20(s) +{E(5), 2(5)) + e1(5)

wherea = *\//@ +, T ﬁ =0 a(s)ando = Fo %

K "/ K +* ik, (r/ ) are curvatures of the curve

~ with respect to alternative moving frame. T Hs
Assume that is a space curve in a multiplicative alterna-

E(s),e3(5))x % €2(s)

tive moving frame. We demonstrate the relationship betweer‘ri1 nd then

a geometric phase and the evolution of a linearly polarized E*(s) — — E

light wave, as the optical fiber is a one-dimensional object () #(8)-+ (B (s), €2(5))x-ve1(5)
embedded in the 3D Riemann manifold. The electric field +i s ((E(8), €3(8)) x-x€2(8)
E(s), on the other hand, defines the direction of the linearly B

polarized light wave’s state. Thus, the multiplicative alterna- —x (B(s), e2(5))x-xe3(5))-

tive moving frame along an optical fiber can be used to wrlteH
ence, we write
the direction ofE(s) as follows:

E™(s) = —xa(s) ~« (E(s), e2(8))x -« €1(s)

+u tbw (E(5) Xk €1(5)). 11
wherep; (i = 1,2,3) denote differentiable functions. Three s (B(8) X e1(s)) a1
different situations are examined in the following analysis ofthe second term on the right side of the align above provides

the polarized light's state direction. rotation around the. Assuming that: is transmitted in par-
Case 1.Let the electric fieldZ(s) lie on a plane orthog-  gjlel, we observe that

onal toe; (s). Hence, we have

E*(s) = p1.xe1(8) ++ pr2.4€2(8) ++ pi3.4e3(s), (7)

E*(s) = —sa(s) -« (E(s), e2(s))x « e1(s) -« ea(s). (12)

(E(s),e1(s))x = Ox. ®)
. o L Moreover, the polarization vector is given by
Considering the multiplicative derivative of E@®)( we ob-
@ B(s) = (E(s), ea(s)) -« ea(s)
(E7(s),e1(5))x +x (E(s), €1(s))x = O +x (E(s),€3(8))x -« es(s)- (13)
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The multiplicative derivative of Eq1@) is obtained by
(—xu(s) - (E(s), e2(8))x) s €1(s)
++ (((E(s), €2(s))x)"
=« B(5) « (E(5),e3(s5))«) x €2(s)
+((E(s), €3(5))x++B(5) -« (E(s5), €2(s))+) « €3(s).
So, we have
=Lty 5] [E:]
* » €3 **

[(( (5),€2(5))4)
s)), is constant, the following align can be

E*(s)

((E(s), e3(5)))"

Since(E(s), E(
represented by
E(s) = sin, 0(s) x €2(8) 44 cos, 0(s) - ez(s).  (14)

Taking the multiplicative derivative of Eq14), we get

E*(s) = —xa(s) -« (E(s), e2(8))« -« e1(s)
+ (07(5)- (E(s), e3(s))«
— B(s) -« (E(5), e3(s))x)-x€2(5)
+u ((E(s), €2(5))x -« B(s)
=« 07(s) -« (E(s), e3(s))x) -« es(s),
and then

E*(s) = —sa(s) -« (E(s), e2(s))x « e1(s)
+4 (07(s) =« B(5)) -« (E(s) X« e1(s))-

Case 2.Let the electric fieldZ(s) lie on a plane orthog-
onal toes(s) in the second particular case. Presumably, we
write

(E(s), ex(s))x = 0.
Taking the multiplicative derivative of Eq17), we acquire

(E*(s),€2(5))x 4+ (E(s), e2(5))« = Os.

So, we have

(17)

(8))% = Os.

After some calculations, the second coefficient is computed
by

pa = a(s).(E(s), €1(5))x =« B(s)+(E(s), e3(s))x-

Since(E(s), E(s))« is constant and the relevant calculations
have been carried out, we obtain

p1x(E(s), €1(8))e = —upiz«(E(s), e3(s))
and theryu; andyg are expressed by
H1 = M~*<E(S)7 63(5)>*7

—sbor(E(5), 1(8))-
All the coefficients are written in Eq./f, we have
E*(5) = to{E(5), €3(8))xxen (5) +4 (0(8)-2(E(5), e1(5))-

o B(5) (B (5), €3(5))2) xe2(s)

o er{E(s), €1(8))nnes(8):

(p1-+€1(8) ++ p2.w€2(8) +4 pz.«€3(8), €2

(18)

pg = (19)

Under conditions exhibiting optical activity, the field rotates 1 nerefore, we write

to the left if the fiber does not favor it. Therefore, it is appro-
priate to assume that the coefficient of the second term on the

right side of the align above equals zero as
0*(s) —« B(s) =

Integrating the above align, we obtain that

s):/*ﬁ(s) dys

Thus, for the conditionE(s), e1(s))» = 0., we obtain the
E.,

— Rytov curve. Moreover, the curves corresponding to

*(8) = () (E(s), () (20)
—« B(8)-+(E(5),b(8))4).«€1(8) (21)
—x s (E(8) X4 €1(8)). (22)

Rotation around- (s) is represented by the second part of the
align above, just like in the first case. Assuming thgts) is
carried in parallel, we can write it as

E*(s) = a(s)-«(E(s), e1(s))«

the polarization vector and the optical polarization vector arendditionally, the polarization vector is defined by

traced, respectively:

Ee,(s)(s) =(s) ++ E(s), (15)
and

) = sin, (/ﬂ x *S) «e2(s)

+, COS, (/* B(s) *d*s) «e3(8). (16)

— B(8)+{E(5),e3(5))x)-x2(8). (23)
E(s) = (E(s),e1(s))xxe1(5)
+i (E(5),e3(8))x-x€3(8). (24)

The multiplicative derivative of Eqi24) is acquired by
((E(s), e1(8))x)"xe1(8) +x (a(s)+(E(5), €1(8))«
—« B(5)+(E(s), €3(5))«)-x€2(5)

T« ((E(s), €3(5))«) " <e3(s)-

E*(s)
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Therefore, the following matrix representation can be writtenSince(E(s), e1(s)), # 0, and(E(s), ea(s))x # 0y, u1 and

as follows: 1o are, respectively,
{(<E<s>7e1(s)>*)*] _ {0* 0*} [(E(s),el(s»*} 1 = i« (E(s), e2(s))x,
((E(s)es(s)))] — [0x 0u] ™ [(E(5), e3(s))x

p2 = =t x (E(s), €1(8))+. (30)
The polarization vector is written in terms of spherical coor- Al the coefficients are written in Eq7), we acquire

dinates as follows: E*(5) = B(s)-x (B(s), a(5)) -» e3(5)

E(S) = COS4« 0(5).*61(5) +x sin* 0(8).*63(8). (25) +, [y (E(S) X4 63(5)).
Taking the multiplicative derivative of Eq2E), we obtain and then
N E*(s) = B(s) -« (E(5),e2(8))« -« €3(8),
E*(5) = (a(s)-{E(s), e1(5))s (8) = fle) -+ (Bls), eals)h -« eslo)
wherees(s) is parallel transported, and the second term on
—x B(8)+(E(s), 5(5))+)-we2(5) the right side of the above align provides a rotation around
1, 9*(5).*(E(s) X, e1(s)). es(s). Furthermore, the polarization vector is given by

, E(s) = (E(s), e1(s))x -« €1(s)
We havef*(s) = 0, from the above align. The parallel
transport is thus moved along(s) by E. Thus, in the sec- +4 (E(8),e2(8))s % €2(s). (31)
ond scenario, we can state that the optical fibeEis—
Rytov curve. es(s) determines a change in the direction
of the polarized light state. Therefore, using the conditions E*(s) = (((E(s), e1(8))+)"
E(s),ea(s))» = 04, we obtain theF,,— Rytov curve and
éolgr)izati(021>vector in the optical as —x ) E(s), €2(5))) -+ €1(5)

The multiplicative derivative of Eql3Q) is computed by

B9 £ e o6 o (a(5) -« (B(s), e1(s))
SRR o (B(s), €2(5)))") - €a(s)
and then o (B(5) -+ (B(5), e2(5))) - €s(s)-
E(s) = co8, 0.,e1(8) +x sin, 0..e3(s), The matrix representation is given by
= constant. 27) {(<E(5)761(5)>*)*]:[ 0 K(S)] [<E(5)781(5)>*]
(E(s),e(5))2)*] = |=unils) 0, | ™ [(E(s), ea(s))-

Case 3. Assume that the electric erlE(s) lies on a plane AISO, the po'arization vector is given as follows:

orthogonal tees(s). Therefore, we have )
E(s) = cos, 0(s).xe1(s) +4 sin, 0(s) -4 ea(s). (32)

(E(s), e3(8))x = Ox. (28)  Taking the multiplicative derivative of E¢3P), we obtain
Taking the multiplicative derivative of E¢28), we have E*(s) = —B(5) « (E(5), €2(8))x "« €3(s)
(B*(5),ea()s +o (B(s), es(s)). = O.. e (A F O (Bls) 2o ()
Since it denotes an optical fiber, we hav@) +.6*(s) = 0,.
Hence, we have Integrating this align, we obtain the following:
(11-5€1(8) ++ p2.xe2(8) +5 pz.x€3(8),e3(s))x = O4. 0(s) = —» / a(8).xdys.
Exploiting the multiplicative Frenet frame, the third coeffi- Therefore, for the conditioQE(s), e3(s))« = 04, we obtain
cient is computed by the E.,— Rytov curve. Hence, the Rytov curve represents
the traced curve of the polarization vector and the optical po-
w3 = B(8).+(E(s), e2(8))x- (29) larization vector, respectively.
Since(E(s), E(s)), is constant, we obtain Eey(s) = 7(s) ++ E(s), (33)
(B (), B(s) e
E*(s), E(s)) = 04.
E(s) = COS*(/ a(8).xdy8).xe1(8)
After some algebraic calculations, we acquire *
T x i * -*d* % . 34
- (B() e1(8))e = —attz -« (E(s), ea(s).. s [ alo)des)ae) (34
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4. Multiplicative calculus of electromagnetic  Thus, we have
curves on the optical fiber along the polar-
ization plane V(s) = —spx 1(s) +x a(s) -« €3(s). (49)

In this section, we examine the electromagnetic curves on thgjce we consider as perpendicular t&, the Lorentz force

optical fiber according to the orthogonality situations of thealigns are obtained according to the multiplicative Frenet

alternative moving frame. frame as follows:
As a charged particle interacts with an electromagnetic
field, it creates a force known as the Lorentz force. This

Lorentz force caused by the electromagnetic field affects the ®le1(s) = als) -« e2(s) (50)
motion of the particle, which follows a path along the op- D(ea(s)) = —wa(s) -« er(s), (51)
tical fiber. The paths followed by this charged particle are
called electromagnetic curves [25]. LEtbe an optical fiber ®(es(s)) = 0, (52)
defined by the curve in 3D Riemannian space. Then, the
electromagnetic curve with respect to the multiplicative cal-and
culus holds the following relation:

V(s) = a(s) v es(s). (53)

B(E) =V x, E, (35)

whereV is a Killing magnetic vector field. This section an-
alyzes the orthogonality of with the elements of the alter-
nating frame{ey, es, e3}.

4.2. Electromagnetic curves on the optical fiber for the
casell L ey

4.1. Electromagnetic curves on the optical fiber for the ~ For the cas€E(s), ea(s)). = 0, we have

casel | e;
E*(s)=p-, s),e3(s)) s - e1(s 54
From Sec. 3, i E(s), e1(s))» = 0, we find the align ofE* (8) = 4 (o), esle)] 1(e) 59
as follows: + (ko (E(5), €1(8)) (55)
E*(s) = —f - (E*(s),ea(s))s v e1(s)  (36) — B(s) -« (E(s),€3(s))x) « €2(s)  (56)
+. (B (s), e3(5))x - €2(s) (37) —s tox (E(5), €1(5))we3(s). (57)
= 15 (E(5), €2(5))x -+ €3(5). (38)  From the Lorentz force, we get
According to the Lorentz force align, we know that
o RN o @(e(s)) = (s) s ca(s) — p o2 e3(s) (58)
<<I>(E(8))7 e1(s)- : _<(I)(el(s))’ E(s»* ’ (40) P(ea(s)) = —xa(s) -« e1(s) ++ B(s) v ea(s),  (59)
(B(E(s)),e2(s))x = —(®(ea(s)), E(s))x,  (40) B(ea()) = r e1(s) —s B(5) -2 ea(s) . (60)
(P(E(s)), e3(s))x = —(P(es(s)), E(s))x - (41)
Using thed(s) on multiplicative Frenet frame, we get We can compute the magnetic vector field according to the
multiplicative Frenet frame as
D(ei(s)) = als) « ex(s) , (42)
D(ea(s)) = als) wei(s) —xp-ves(s),  (43) VI(s)=B(s) s ex(s) v p v e2(s) +r als) v ea(s). - (61)
D(es(s)) = p-x ea(s) - (44)  Since ey(s) is perpendicular toE(s), we can write the

If we write the Killing vector field according to the multi- Lorentz force aligns as follows:

plicative Frenet frame, we obtain

P(er(s)) = als) -« ea(s) , (62)
V =a1 xe1(s) +s a2« €2(s) +x a3 we3(s).  (45) B(es(s)) = —ra(s) - ex(5) 4+ B(5) s es(s) . (63)
And also, we know that B(es(s)) = —2B(s) -x €a(s) (64)
D(e1(s)) =V x4 e1(s), (46)
B(es(s)) = V x4 ea(s) @n o
D(esz(s)) =V x4 es(s) . (48) V(s) = a(s) -« e3(s). (65)
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4.3. Electromagnetic curves on the optical fiber for the
caseF 1 e3 "

Assume thatE(s), e3(s)). = 0,. From Section 3, we know .
that

E*(s) = 1« (B(s), e2(8)) - €1(s) (66) SRS S
—B(8) -« (E(8),e1(5))« - €2(s) (67) y i ,
< (5), €2(s))xe3(s)- (68) FIGURE 1. E., - Rytov curve and the electric field? for

(E, e1)« = 04, respectively.
Using the® on the multiplicative Frenet frame, we obtain

P(er(s)) = —wp s €2(s) (69) -

P(ea(s)) = pox e1(s) +4 B(s) - es(s) (70)

P(e3(s)) = —upt -+ €2(5) - (71)
Thus, we have R :
V(s) = B(s) -« e1(s) =« pt -« €3(s). (72) y

FIGURE 2. E., - Rytov curve and the electric field& for
Sincees(s) is perpendicular to the polarization vectB(s), (E, e2). = 0., respectively.
we get the Lorentz force as

O(es(s)) = 0., (73)
D(ez(s)) = g« es(s) , 74
D(e3(s)) = —uf(s) - e(s) 75 @
and A
V(s) = 8(s) -+ ex(s). RN S <

FIGURE 3. E., - Rytov curve and the electric field& for

5. Example (E, e3). = 0., respectively.

In this section, we give some illustrative examples to verify

the results. Moreover, in Example 5.1, we discuss the dif- Let us reconsider the example in the classical analysis:
ference between multiplicative E-Rytov curves and E-RytovASSUme thaty(s) = [(4/5)sins, (4/5) cos s, (3/5)s) is the
curves for multiplicative helix curve and the general helix helix curve. Then the alternatlve moving operatorsyof)

curve with some figures. are computed by
Example51Let7( ) = ((e*/4€?) -4 siny s, (e*/4€%)
cos, s, (e3/,€9) -, e°) be a multiplicative helix curve. Then, e1(s) = (—sins, —cos s,0),
the multlpllcatlve alternative moving apparatus ofs) is es(s) = (= cos s, sin 5,0),
given as
. 63(8) = (070u _1)7
e1(s) =™ / |7 (s ||* = (— *sin, s, — * cosy 8, 0,),
a(s) =1,
ex(s) = / ller(s)]|x = (— * cosy s, siny s,0,), B(s) = 0
S) = U.
e3(8)=(T - *x t+4k-xb) / *\ K2, 727 =(04, 04, —s1s),
In the following figures, we show the E-Rytov curves in terms
a(s) = VK" +, 77 =1, of three cases. Additionally, we present the electric fields on
B(s) = 0 5 als) = 0 the sphere, respectively.
- * — Ux.

The study [26] is about the characterization of electro-
In the graphs below, we have examined the E-Rytov curvenagnetic curves with the help of the alternative frame by
according to the three cases, which are examined in Sec. geans of the classical derivative. Now let’s give Example 5.1
In these cases, we draw the curdgs, E.,, andE.,, aswell  in Ref. [26] using multiplicative calculus and compare it with
as the electric field E on the sphere in Fig. 1-3, respectively.the results in classical derivation.
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=7(s)/ I ()l

= ((6\/5/*62) < % COS, 28,
i B O (¢V7/.%) - xsin, 25, (] c),
ea(s) = ei(s)/, ller(s)|lx = (=« sin, 2s,cos, 2s,0,),

] el = (reoxt bk b R

~

e1(s

- = ((e/«€?) - %cos, 25, (¢/,€?) - xsin, 2s, (e‘/g/*ez)),
a(s) = xV/K> 4,7 = eV?,
FIGURE4. E., - Rytov curve and the electric fielll for (E, e;) = B(s) =0« a(s) = —,1s.

0, (0 = 7/2) respectively. _
In the figures below, we present the E-Rytov curves for three
different cases. Specifically, the electric fields are shown on
the sphere in Figs. 7 to 9, respectively:

FIGURE7. E., - Rytov curve and the electric field for (E, e1) =
0, respectively.

FIGURES. E., - Rytov curve and the electric fiel for (E, e2) =
0, (0 = 7/2) respectively.

il : L) FIGURE8. E., - Rytov curve and the electric fielfl for (E, ez) =
IR 0, respectively.

FIGUREG. E., - Rytov curve and the electric fiel for (E, es) = . )
0, (0 = 7/2) respectively. .

Example 5.2 Let y(s) = ((e3/se*) - singys —, AL > ' M
(e/ce'?) - sing s, —.(e3/,e) - cosys +i (e/ie?) - ) "
cos, 3s, (eV3/,€2) -, sin, s) be a unit speed curve. Then we ST
have the Frenet apparatusfs) to the alternative moving FIGURE. E., - Rytov curve and the electric field for (F, e3) =
frame: 0, respectively.
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6. Conclusion such as optics, fiber systems, radio waves, communication,
astronomy, medical imaging, etc. Moreover, it is used in
The relationship between multiplicative and classical (adtne definition of the Rytov curve, where phase perturbations
ditive) derivatives is elegantly captured by the expressionyng diffraction effects on the wavefront are described by the
f*(x) = ef (I)/f(’ff, where f*(z) denotes the multiplica- curve. The wavefront is distorted by diffraction and scatter-
tive derivative andf () the classical derivative. This for- ing when waves travel over a randomly changing medium,
mula highlights how the multiplicative derivative encodes rel-such as the atmosphere. The small-scale diffraction effects
ative (percentage-like) changes in a function, in contrast t®f optical and electromagnetic waves are examined using the
the absolute rate of change measured by the classical derivRytov approximation. Furthermore, there are several signif-
tive. A key advantage of the multiplicative derivative lies jcant application areas, such as optics, laser beams, radio
in its natural applicability to problems involving exponen- waves, acoustic waves, etc. Considering these fundamental
tial growth, scaling behaviors, or multiplicative processes.application areas, in this paper, we reinterpreted these curves
as seen in fields such as economics, biology, and informassing an alternative moving frame in non-Newtonian analy-
tion theory. It allows for more intuitive modeling in systems sjs. Unlike studies in the literature, these curves were ex-
where changes are better understood in proportional rath@ressed by exponential functions using non-Newtonian anal-
than additive terms. However, a notable drawback is that isis techniques. Therefore, the results helped to understand
requires the function to be strictly positive and differentiable,the growth, scaling, and ratio-based systems for these curves.
limiting its applicability compared to the more broadly de- Moreover, we gave an example and visualized their images
fined classical derivative. The comparison between multiysing the MATLAB program in multiplicative calculus.
plicative helix and general helix is given for E-Rytov curves
in Example 5.1. Geometrically, the multiplicative derivative
can be interpreted as a proportion. Acknowledgements
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