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RES UMEN

The NN annibilation at rest is analyzed assuming the final state interactions
are so strong, that instead of a n particle phase space, we have actually a 2 parti-
cle phase space, Considering as particles the T, p and w *particles” and taking
in account only the one nuc le on exchange diagrams, ex presions are derived for the
charge multiplicity distribution and for the one pion energy spectrum. These expres-
sions are function of the NN, NNo and NNw “effective’’ coupling constants. We
use these as parameters which are chasen to fit the experimental charge multipli -
city distribution, When these values are used in the expression for the energy spec-
trum, we obtain a good agreeme nt with the experimental data, except that ouwr model
yields sharp peaks, which are not evident in the experimental data. (In our madel,
these peaks come from the processes N+ N~ n+p, N+ N~ntw),
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L INTROGDUCCION

Since the discovery of the antiproton in 1955" and the discovery of the an-
tineutron soon afterwards?, a large amount of experime ntal work has been carried
out on the nucleon-antinucleon interaction with counters, emulsions and buble cham-
bers3.

The results of these investigations show two peculiar facts:

1.- Large NN'scattering and annihilation crt;ss sections.
2.- Larger multiplicities than the ones computed using the statistical model®,

if a reasonable radius of interaction i.e. 1/ is assumed.

In an attempt to avoid the unconfortably large interaction radius, several
phenomenclogical models have been assumed:

Koba and Takeda® have assumed the NN annihilation process occurs in two
steps: First the NN annihilation occurs between the cores with the emission of2.2
pions on the average and in a such a short time the pionic clouds are left unaffected;
afterward, the clouds break up and produce extra pions (2.6 on the average). Using
a core radius of 2/3, they are able to fit the total and absorptive cross sectionand
the pion multiplicity. However, with this set of values the energy spectrum is peaked
in a larger energy than the one observed experimentally.

Ball and Chew® have attacked the problem in a similar way. They replace the
core by an ingoing wave boundary condition, which represents the large probabi lity
of amihjlation if the two particles come close together. It was found, that theirre-
sults were insensitive to the localization of the boundary for intermediate energies
(50100 MeV). They treated only the problem of the cross section and were able to
fit the experime ntal data in that region.

Cook and Lepare” computed the pion multiplicities and energy spectrum, in-
cluding:

a.- The approximote energy dependence of the matrix elements, which are ne-
glected in the Fermi stafistical model.
b.- The results of the calculation of Ball and Chew with respect to the partial
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waves involved in annihilotion. They charocterized the reoction by an interection
range and a coupling strength and fixed these two parameters by fitting the multipli-
city and energy spectrum.

Other authars® have tried to include strong final state interactions in the
statistical medel, in order to enhance the multiplicity without much sucess.

The main idea behind this work is to study the NN annihilation process,
using a mad el that is in a certain sense the opposite point of view to the statisti-
cal model. In the statistical model, one ignores the energy dependence of the ma-
trix elements and considers only the wariation of the phase space. Howe ver, we
will consider the extremes point of view that the pion-pion corelations (final state
interactions) are so strong that instead of a n particles phase space, we have ac-
tually a 2 or 3 particles phase space. We will consider as particles: 7, pand w,
ond we will study the case when in the annihilation only two of them are present.
(Although, there are another resominces such as the 7, p, since their mass is lower
than the pand @ masses, and they have a very small width, we expect by phase
spce considerations, their contribution is going to be less impor;am.) Out of igno-
rance, we will consider only the one nucleon exchange diograms, and we will study
the multiplicity distribution and the one pion energy spectrum in the NN annihila~
tion at rest, using porameters what are very closely related to the NN77, NNp and

NNw coupling constants.,

II. ONE NUCLEON EXCHANGE DIAGRAMS, VERTEX
FUNCTIONs AND SPIN SUMS

In studying the process N + N = 71, we may separate the contributions
coming from the ane nucleon exchange diagrams and the ones coming from the

remaining diagrams (Fig. 1).




£ »
i=1 =i+

3 means sum over all the possible partitions of n in two numbers: J and m = n-1
I

For the process N + N = n7 we may write the matrix element .

N %— : ’
My N =‘_r.1l Qw) T () < kg kS| p2>(_i_,?)%=

=v(p,) My nn %(2,) @.1)

Similarly, we may write

" . » /
Myagin= 1 ) ¥ ulp,) <2 by A 1110 (220 =

=3(0,) Myy,.n 92,) 2.2)

(Of course, mN.";N is the amalytical continuation of m."',ﬁN) , with f = f(0) and
[=F(0), f(x), fé) being the Dirac current opsrators obeying

mrj—* m] g = fi) (=] 2t m] Ge) = Tle) 2%)
x
I3 “

If only the one nucleonexchange diagrams are considered, we have

M=o = Zv(p) My on — 1 M .n5(,) (2.4)
N i -I);N
»7;NN 1 1 iNN i - ) N(n-1); 2
with 1< I <na=1]

Since the mass-of the nucleon in the propagater takes only non physical
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valves, in 1-4 the M, are the analytical continuation in the nucleon mass to this
non physical valves.

In this work we will consider values of n (number of pions) such that 3 <
n < 6. Due to the presence of the 277, 3mmresonances 9:19, we will consider only
1, m=1,2,3. Therefore, we have to study the following partitions of the final
state:

N+N =247, 3n+m 2m+ 27, 2n+3n, 3n+ 37 2.5)

Yertex Functions

We necd to know something about the structure of the vertexes NN7, NN27
and NN371.
A.- NNT.

For this matrix element, we have

P _ P 7/ ) — -
M, mn = (10720 )2 <0l |B B> = Giv () 7T, U(5)  (26)

Tai 2
where J_= ] (0), J,(x) is the current operator for the pion field, obeying the equa-

tion
(w2 =) ¢, (x) = J, (%) (2.7)

¢¢ (x) is the field for the pion of isotopic index a, G is the NN coupling constant
and ¥, , 7, are the usual Dirac and Pauli matrices. (Due to the non physical value
of the mass in the propagatar, the value of G may be diffsrent from the mass shell
value).
The same cons iderations apply to the vertex functions to be discussed next.
B.- NN27-

We write the matrix element as

P20 ) 2.8)
m

1/2 — o
ramg T = @0,@) " T (0,) <hyghy O 2>
a’ .
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Due to the existence of the 27 resomance, in the state with quantum numbers
J=1,T =1; it is reasonable to assume that the main contribution comes from that

state. The relevant part of the matrix e leme nt has the structure

Mo mgitin = 1/2 k), () v (2) 172 [7,, 75} [a, iy, +5,(p,- 2,) ]

ulp,) (2.9)

The invariant functions a, ,b1 depend on ¢, where ¢z = - (hl + kﬁ)2 =
2

=-(pl+p2) ‘
We define A , B, by

a EA1¢A(‘) bl = B, ¢A(‘) (2.10)

where A (¢} is the usual integral over the 77 - 77 phase shift;

Ay =2 7 ) @.11)
mooAE (2 -

Here &  is the resonant J =1, T =1 pion pion phase shift. We expect
A, ,B, to be slowly variant functions of ¢ in the region around the resonance and
therefore, we may approximate them by constants in that region.

Following Frazer and Fukoll, we may write €20 in the Breit-Wigner

form consistent with unitarity and with the correct behavior at threshold:

D () 1 , 2.12)
tmt il 11-8)%?
v 1 tl/j
3/2
(¢, -4)

1/2
’v

is the halfwidth.

where 2 is the position of the 277 rasorance and I"l
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C.- NN37.

In this case, we write the matrix element

17 P, \1/3
M ;NN = (8w, @,00) v(p 1) <A zﬁ 3y )l'flp >(22)

mymgm; 2 2.13)

We will assume thatthe 1° T = 0 37 resonance (10a) may be considerea.
as dominating the 377 cortribution. The pertinent matrix e lement has the structur-

KANRTEP 5(p)) [a, 87,45, (b, ~2,) 1 UG, 214)

NN = 1€, N\ Ry &5 k]

Mﬂaﬂﬂ ﬂy;N

The invariant functions a,.b, depend upon the invariants ¢, FipeSye (Howe -
ver, only five of them are independ ent); where

=-(p,+p,) == (h k)’
tip == (kg 1‘,)2 (2.15)

sy=-(0,+k)"

In 2.14, €% projects T = 0 and - i€, )\Th'l’k;‘h;’ the 17 state.

As in Blankembeclerwork'?, we define A,,B, by

= | 71 exp [A(e,) + Alr,) +8(6,) 10() "= exp ZA,xD()”
2 2 2.16)

The function exp ZA‘, has the phase shift due to each pion pair resonantly
rescattering and D(:) contains the effects of the intrinsic 37 final state interaction.

From the existence of the 377 resonance (w particle), we know D(t)'1 behaves’

o



as a resonance near § = ¢_, where tg is the position of the observed experivental
resonarnce.

We choose for D(t).1 the resonance form

1 -~ ! 2.17)
D(#) t-t =il G,(#)

This form is consistent with unitarity and has the correct behavior at thre- -
shold. G,(#) is the “effective’’ phase space and [, G,4(85) is the halfwidth. We
hope that A,,B, are slowly variant functions of ¢ around the resonance, and so
we moy replace them by constants in that region. Also, we assume we may drop
the dependence on the other invariants.

From the preceding considerations, we see that if the |” state dominates
both in Mzw,ﬁN and My NN the basic structure of these vertices is the one
corresponding to a N- N =vector particle coupling. For the resonant 27 [37]
state, 1/5 (k, - A,) [= PNy k‘l’ k:‘k; ] plays the role of polarization vector.

The basic structure of the NN annihilation process in the mode! that we
are using is given by the lowest order perturbation diagrams for the processes:

N+N = mtp

_ } scalar + vector 2.18)
N+N = 74w
N+N = ptp
N+N -~ pt+tw } vector +vector . 2.19)
NN - wtow

Therefore, we need to write up the mtrix elements for the lowest order
perturbation diagrams of.the processes N +N ~§ +V, N +N = V +V and toeve-
luate the spin sums (overage over the initial nucleon-antinucleon spin states). §

(v) will denote a scalar (vector) particle.
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N+N=S+V
The relevant diagrams are

B b

9%
f-q
P 1

b, ktyg

Figura 2

Where ?,(p,) is the momentum 4-vector of the nucleon (antinucleon), Alg)
is the momentum 4-vector of the scalar (vector particle and £ is the vector particle
polarization such that £ < ¢ = 0.

The +sign will depend on the isotopic structwe.

If M: denotes this matrix element, we have

s = { v - ib(p, - k) ] +
M3 m vip,) [-ay, +ib(p,-p, +h) 1 u(p,) £,

t__ Gy ) [-Ay. v atib(p,-p,- k) Ky.]ulp,)E (2.20)
(2,- ) +m? ' i Por e

In the case we are interested (nucleon-antinucleon annihilation at rest), we

abtain after averaging over the initial spin states

ls |M:|’=_862____ la|® (k2 £~ £ 0% @21)
spin .(4m2-/.¢:-#:)2 A m3
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2
4 3 "= 86 ja-sk P’ (2.22)
spin (4"2_ 'u: - ,u:)

E+~~n+n

Defining V.V, as the vector particles, the pertinent diagrams are

A

Figura 3
where K =p + ?, =q,+q, and q,,&;, p; are the momentum 4-vector, polarization
vector and mass of the vector particle V;. We require that 90 '§(‘.) =0. Ha,
b, are the coupling constanst for the vertex ENV'. using the Dirac equation and the

anticommutation properties of the . , we have

MY = 1

ey v(p,) {~a,a,iv,20,,- iv,a, 7,1+
2" 9, "

tibia,(p- 0, v 4,), [2i0,,~ iz, 7, ] tiab,y, (0= p,=0) (- 2m=ig)) ¥

t b, (0, =0, +4,) (0, =0, = 4,) , (=2m=ig,)) }ulp,) £ £ (2.23)
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We get M;’ from M7 by making the substitution u = v, ¢, ~q,a,b ~a

2 ’
52 .
If M% denotes M',’ + MY, we obtain when we average over the initial spin
states
. 2 24242 2
wva T o|Mgt= 27172 1 [aie & £, 00K, ] (2.24)
spin + (4m2-#21_#§)2 ml W AT w2y T
where

Q=1/2(q,-4q,)

In our problem we will need MY only for the particuler case By = My = M-

For this case we obtain

s |wv|’= 2 2 49mba | RY £
V‘npin 2 (4m? =2u2)2 {1262 42mba |7 16,06, (6, 24,)7 4,4, (0,;€))7)

+§x 'fz‘h’ f, 9, .'52 (-2 l24’ +2mba 12_ 8 52 b2 a? + 4a%(2a% +2mba) ]

+40% a*(E £ +4(q,-€,)(a,°E,) (54 Q% - (242 +2mba) 52]} (2.25)

III. DECAY RATES AND ONE PION ENERGY SPECTRA

In this section we proceed to compute the annihilation rate (probability of
transition of the NN system to the pertinent final channel), and the one pion energy
spectrum.

By W; (2p) [W; (?7)]; we will denote the probability of transition of the
22 (pn] system into i pions, j of them charged. %W; is the charge multiplicity
distribution. iZ’ W; is the probability of decaying in i pions. 5 W;: is the total

rate.
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We may define similar quantities for the energy spectrum: W; (k;pp) will
denote the probability that the pp system decays into i pions, j of them charged,
and one of the pasitive pions with momentum k. (We may define similar quantities
for the negative or neutral pions and for the pn system).

As discurred in the first chapter we will assume the basic structure is gi-

ven by the reactions.

N+N ~ mtp, ity ptp, ty,wtw

In order to simplify the nomenclature, the NN, o7, @ 7, pp, pw, wew channels
are denoted by 0,3, 4,4, 5and 6. Therefore we have the matrix elements M, with
i=3,4,4",5and 6. For every case we will compute rhe rate and the one pion ener-

gy spectrum. In order to compute the different rates and energy spectra we need to

- 2 3 2
evaluate the quantities: 3 1/4 £ |M, 2 I | where 3
q %) spin LR 3 L (D)
denotes the ¢ pion phase space integral and 9 tells us to perform all the inte-
Ao

grations except dk . M, consist of a sum of terms coming from the interchange

between pions. If we denote it by M, = ? M, (7) them
2 Y 3 "
IM,'D} ‘5-, M;o(l) Mgo(l)

Since in M, (j) we have always a relatively sharp resonance, we will neglect the
j# i’ and then

2 R 2
M| = 32 | M, (1) |

When we perfarm-the phase space integration and carry out the sum overthe

isotopic spin index, we get the expressions:

N+N = 7+ 27

W' (op) =W, (Fp) =27 x 3x6x12.35x10°67 | 4, /G, |’ @)
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W' (pm) =27x4x39.86x10°0G2 G, |4, - 0.85x2mB, |’ (32)

W} (pm) = 2mx20x39.86x10 °G" G, | 4, - 0.85x2mB, | (3.3)

where

2
@m-2) 2
G,= f4 de,, lexpA(s,) | 1

3
i,
172
‘12

(3.4)

W’ (k;2p) = W, (k;pp) = 27x12.35x 1067 14, VG, | " 617 £ (has)
. 1
3 —_— .s 2 2 11 0 210 |
W (kipm) = 2mx39.86x 10 °G G, |4, ~ 0.85x2mB, | x12[f  (0) +/, (1] (3.6)
' 1 1
3, — 6 2 2 1 0 a)
W, (kipn) = 27x39.86x10°°G,G |4, - 0.85x2mB | "x12 [, (1) +/3(1)] (3.7)
0 0

. +
where the vector (.) labels the charge of the pion and means (=) .

0
N+ N = 7+3n
4~ 4 — -5 ) 2 2
W (pp) = W, (pp) = 11.57x10 x2mx24| vG,A,| G (3.8)
W' (pm) = Wy (om) = 2% (pp) (3.9)
where
. 2
G lA,|=G,(t) | A,(t,) | (3.10)
with
G, = — 1 1,6) Jaslpioy | 3.11)

12(27)3
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and

(‘1/2 -1) 2 1/2 _
It =] di, (1) g M F e ) (3.12)
12

Flty2,) =378 [} dz(1-22) [exp [As,) +A () +0(,) 1|7 (3.13)

112

. 0 1
Wi (kipp) = 2mx11.57x107 6 |4,vG, | x24{, 0 +/ ()} @3.14)
1
4 - -6 _2 2 1 0 2 !
W, ki) = 2mx11.57x107°6" [4,vG, Pxd8{s M+ Ay @35
o '

N+ N = 27+27

W,(8p) = 27x 0.78x107x 4G, A} +27x20.64x 10 x 246G /(A , B, )

(3.16)
Wy (2p) = 27x0.78x10 %3262 4| 3.17)
Wy (pm) = 27x 20.64 x 10486 /(A ,B) (3.18)
where
[(A,B) = Aj+2mB A3x 0.934+(2mB )" A% x 0.227
- @mB,)" x 0.013~ 2mB,)'x 0.008 (3.19)
FU -6 2 4 0!
¥, (kipp) =27x 0.78 x 10 G,Ax12x/,() +
2
-6 1 !
+2mx 20.64x 10762 f(4,,B)) x 24 x f}, (1) (3.20)
2
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. 3
Wl k7P = 21078 x 1076, 4y x 12x £, (3)
2

o _ 1
WY (kipm) = 2% 20.64% 106 /(4 ,B,) x 48 x )
1

N+ N —27+37
W’ (20) = W, (3p) = 2mx 0.677x 106, A, G A4, %120

W’ (m) = W, (pn) = 271x 0.677 x 106,426 4. x 240

WS(kipp) = W (k;pp) =

L 1

= 27x 0.677 x 106,416 A2 x 120 [f;(1) +/7 (1) ]
0 51

wE(kipm) = W, (k;pm) =
-6 2 2 1 0 2 !
27x 0.677 x10 "G,A G A, x240[f, (1) +/,(1)]
1 1
N+N = 37+37

— “6 2 4
Ws('pp) = W‘G(PP) =27x 0-803 X ]0 63A2 X 360

w(pm) = 0

6, - 6, - 6 2 4 |
Wk;pp) = W (k;pp) = 2mx 0.803 x 10 G A, /(1) x 720
1

29
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(3.24)
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(3.26)

(3.27)
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IV. COMPARISON WITH THE EXPERIMENTAL CHARGE
MULTIPLICITY DISTRIBUTION AND ENERGY SPECTRUM

From the preceding chapter, we see that the conputed multiplicities and
energy spectra depend on the value of the quantities G,At./é;,Bl/a—; and Asz:

G,A B, and A, are actully functions of the mass of the particles in the
vertex and in particular functions of the mass of the nucleons. Since in owr case,
one of the nucleons is virtual, the value of these coupling constants may be expec-
ted to differ from their value when both nucleons are free.

If we denote by A? the square of the momentum transfer (minus the square

of the mass of the virtual nuicleon), then we have:

Table V-1
Process -n? m + 4
W om+p -30.5 4° 75.5 u?
2) 7t w -28.5 u? 73.5 u?
3 ptp -17 4 62 p?
4) ptow -15 u? 60 u?
5 w +w -13 2 58 u?

We see that we are quite far away from the physical nucleon and we should
not be surprised if the value of the vertex function is corespondingly different of
the value when both nucleons are in the mass shell. We will assume that the value
of the coupling constants are the ones for which =® + A? = 60. (This is certainly
true for reactions 3), 4) and 5). Although, for the processes 1) and 2), there is
perhaps a certain difference, as in these cases the A, and B, appear muitiplied by
G, we will absorb this difference in G.

If we define

a,=A VG, B =2mB VG, ay= A,VG, 4.1)

2
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we may express the charge multiplicity distribution in terms of G,a,, B and a,.
Before doing it, we would like to know some thing about the ratio ,L'?l/a.1 . If
we assume the o particle resonance plays a fundamenta! role in the nucleon iso-

vector slectromagnetic form factor, we find that

=.0.787 (4.2)

B . 2mGy(0) _ 2mFy (0)
a

. 60 FY (0) +2mFy (0)

From 4-1, 2 and the results of the preceeding section we may write

W, (2p) =2mx 10 [2.226%a? + 2.7776 a2 + 9.246 o} ] (4.3)
W, (72) =2mx 10 [0.25a] +0.81 o?a? + 2.9} ] (4.4)
¥,(p%) = 27x 10 "x 0.173 o? 6* 4.5)

LA (pn) = 27x 10" [0.8676° a: + 5.553 Gzai + 18.49a: +1 .624a.:a;] (4.6)

(In pm amihilation the model does not allow 5 prongs event, which experi-

mentally constitutes a sizable fraction.See table [V-2)

Table Iv-2

Charged Prongs Multiplicity Distribution
(Experimental)

number of PH at rest  pH average  pC ot rest  pD ar rest np at 900

prongs Horwitz energy 80  Agnew (3b) Horwitz Mev
(3a) Mev Agnew (3a) Went;el
(3b) (3e)
0 2.5% 6% 1.7% 2.9%
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1 14.7% 29% 10%

2 40.0%  40% 22.94% 17.6%
3 30% 29.4%  60%
4 50.6%  49.6% 19.4% 38.2%
5 10% 9%  30%
6 6.8% 4.4% 12%

number of a1 135 170 !

events

We would like to know what values of G2, a.: , a: are compatible with the.
observed charge multiplicities. ( See table 1V=2.)

For both the Horwitz and Agnew experimental data, at rest, one finds
v, (pp) /¥, (8p) = 0.805.

Experimentally we have for the pp annihilation cross section o~ mb
at T = 100 Mev what yields a value of 0.4 x 2r7for the transition probability.

If we choose a: =93 (x: =26.2 G* = 10.5 (this value of G is abouyt

a quarter of the one for free nucleons: GI'“ = 13.4), then we get

W, (pp) =27x 0.178
W,(pp) = 27 x 0.222
W,(02) /W (op) = 0.8
W, (pn) =27 x 0.002

¥, (pm) = 27x 0.361

If we choose different values, namely



a) =27.15
6 =21.13
G is about 1/3 of the physical value), then

W,(pp) = 2mx 0.178
W,(2p) = 27mx 0.222
¥,(2p) = 0.8
W, (pn) = 277x 0.001
W,(pn) = 2mx 0.354

which is essentially the same result as before. Therefore these results do no de-
pend critically on the value of G,a, and a,; except that if G/G,'“> 1/3 we
cannot fit W,/W, = 0.8: The preceeding values of the parameters lead to the total

multiplicities

n(pp) = 4.8 7 (pm) = 4.2

Now we will proceed to examine the shape of the energy spectrum. |f we
substitute the values a: =9.3 a.: =262 G = 10.5 in the expressions for the energy

spectrum we get

Wkt 32) = 2mx 107 {7.23 (/)" +2/7) +76.64 1. +0.8071,, +79.71/, } (4.7)

W,(kt;9p) = 2mx 107 {2.42/2 + 19.81 (f} + f2) +398.66 )} (4.8)
W (k*;pn) =0 4.9)
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Wy (k" 7m) = 27x 1073x 5.08 /7' (4.10)
.= -3 2t 2 1 2
W, (k*;pm) =27x 10 {5.08/, +143.28f, +159.42,,+39.62 £} (4.11)
Wy(k'; pm) = 2mx 10° {5.08(7,"+/2) +143.28 (/) +12) + 318.84 1, +
1 2
+39.62 (/) +/7) (4.12)

If however a: =3.2 a: = 27.15 G¢'= 21.13, then the energy spectrum

becomes:

Wk 5p) = 2mx 107 (5.01 (7, °+2/)) +159.2 /. +0.09/,. +9.46 1} (4.13)

W,(k%;p) = 2mx 107 {029/, +7.56(/, + /1) +426.161,) (4.14)
W,(k*;pm) = 0 (4.15)
W (K pm) = 2mx 107 x 3.52/." (4.16)
Wy(k* pm) = 2mx 107 {3,521, +318.58/,+18.92/,, +15.12/2} “17)

WK pm) = 27x 107 {3.52(7) +/1) +318.58(/, +£7) +37.847, +
1 2
+15.02 ¢/, +12)} (4.18)

In figs. 8 to 15, we plot the preceeding energy spectra functions (for both
sets of values of the parameters), and compare them with the experimental data. In
these curves, the energy spectrum curves corresponding to the first set of parame-

ters are drawn in solid line and the curves corresponding to the second set aredrawn
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in dashed line.

V. DISCUSSION AND CONCLUSIONS

From the preceeding section , we see that both sets of parameters yield a
good agreement with the experimental data for the pp annihilation energy spectrum,
except that the theoretical sharp peak in the two prong. events single pion energy
spectrum is a little too large. However, better experimental data are needed befo-
re reaching a definite conclusion.

In pn annihilation, on the other hand, the second set of parameters gives a
very huge sharp peck (corresponding to the process p+n — 7_ + w), that is neither
reasonable nor observed. If we compare our expression for W(k; pp) +W(k; pn)
with the experimental energy spectrum for the » Carbon annihilation (assuming
that half of the events are pp and the other half pn), we get a reazonable agree-
ment with the first set of parameters. (We still have a sharp peak which is o little
too large). With the second set, the resonance peak is much too large, and there-
fore, we conc lude the first set agrees much better with experiment. However, more
experimental data are needed, in order to determine the size of the sharp peaks
and to know to what extent the NN annihilation process is described by our extreme
model.

Since in our model, the charge multiplicity distribution and the energy spec-
trum are fitted as well in the other extreme model: the statistical model; and since,
in the experiments, we observe resonances, we believe that our way of describing

the NN annihilation process, is perhaps nearer of what actually happens in Nature.
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Fig.8

Fig.9

Fig. 8
One pion energy spectrum in 2-prongs pp annihilation at rest. The theore-
tical curve corresponding to the first set of parameters is drown in solid line and
the curve corresponding to the second set is drawn in dashed line. The experi-
mental data are taken from Horwitz et al™. The area under the sharp peaks is 42%

of the background for the first set of parameters and 2.6% for the second one.

Fig. 9
One pion energy spectrum in 4-prongs pp annihilation at rest. (Theoretical

curves and Horw itz experimental data).
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Fig. 10
One pion energy spectrum in pp amihilation at rest. (Theoretical curvesand
Horwitz experimental data).
Fig. 11
One pion energy spectrum in 7p annihilation at rest. (Theoretical curves

and Agnew experimental data®®).
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Fig. 12

Cne positive pion energy spectrum in pn annihilation at rest. (Theoretical

curves).
Fig. 13

Cne negative pion energy spectrum in pn annihilation at rest. (Theoretical
curves). The area under the sharp peak is 25% of the background for the first set
and 80% for the second one.
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Fig. 14
Wikt pp) + W(_Ic+; pn) (theoretical) and experimental one positive pion
energy spectrum in pC annihilation at rest. (Agnew et al”).
Fig. 15

W(k™; pp) W(k ; pn) (theoretical) and experimental one negative pion ener-
gy spectrum in C annihilation at rest (Agnew et al). The area under the sharp
peak is 12% (=) and 35% (----).
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