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RESUMEN

The Moszkows ki and Scott approximation of Brueckner's many body the ory
is put in a suitable form for calculation, when the two body model bas tensor s pin

orbit and quadratic s pin arbit coupling.

[ INTRODUCTION

In 1960 Moszkowski and Scott! proposed an approximation to the Brueck-
ner method, when it is applied to nuclear matter. This ipproximation which was
proposed as a simplification of the Brueckner method, is based on two observa-

tions:

—
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1. At short distances (less than 1 Fermi) the two nucleons do not feel the
presence of nuclear matter (i. e., the rest of nucleons), since the average distance
between nucleons is about two Fermis.

2. For the long range part the nucleon is strongly affected by the presence
of the other nucleons because of the Pauli principle.

Then the scattering of two nucleons is not like the scattering of two free
nucleons. The Rauli principle does not allow the energies of the scattered nucleons
to be different from the energies that they had before the scattering. Thus, the phy-
sical presence of the other nucleons restricts elastic scattering to the forward di-
rection. Therefore, the nuclear matter two particle wave function (i. e., the wave which

describes the mutual behavior of two nucleons in the presence of nuclear matter)at

long distances becomes a plane wave.

[I. THEORY

A. Summary of the Brueckner Method

Before discussing the method of Moszkowski and Scott in more detail, some
of the mathematical features of the Brueckner theory of nuclear matter? will be re -
viewed. According to Brueckner, one generates the nuclear matter ground state by
perturbing the ground state of a nucleon Fermi gas. The unperturbed Hamiltonian
is
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where m is the average mass of a neutron and P the Fermi momentum, related to

the density of nucleons by?

3
po== 4/h° 4;{'__1:’!; ,

where the first factor 4 is due to the fact that for each momentum state in the ground
state of a Fermi gas there are four combinations of spinand isotopic spin. The

energy E, of the ground state of H is
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where N is the number of nucleons.
The perturbation is assumed equal to the sum of all the two nucleon inter-

actions, namely

-
W =1 2 .
y. i, { V‘fr

i# 1

where Vy is the potentiol between the nucleons 7 and j. The possibility of three
or more body interactions (i. e., potentials like Vi etc.) is ignored.
The total Hamiltonian is then,

If the antisymmetric state vector | Y, > and | > denote the ground state
of H, and H respectively, then

(Hy +W) | > = (B, +B) | ¥,

where E is the energy shift due to the perturbation. Multiplying on the left by

<l1b° |!

<y | Hy | > +< iy |W | > =(By +B) <y | ¥>.

Since one supposes that | Y, > and | > have the same boundary condi-

tions,

<Yy | Hy | Y> =B <y, | Y>
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Taking the normalization of | > and | g, > such that

<Yy lyy>=Tand <y | Y> =1,

E=<y | w]y>. (I-1)

One can think of E as the sum of all one particle potentials in nuclear matt.

er. Specifically,

u (E,) ? (H"Z)

—

where u(k,) is the one particle potential such that the total energy of the nucleon

i with momentum k. in nuc lear matter is given by

(k) =L &2 +4(%) (11-3)

That is, “(’?i) represents the total interaction of the aucleon i with momen-

tum Fi when it moves through nuclear matter,

Brueckner, rearranging terms in the explicit perturbation expansion, found

the expression for u(z;.) as

u(E) =%._fz< o | Ky | > (H-4)

where K;:is a two particle operator, given by the implicit equation,

_ 0
K:‘j =V TVy= Kis, (I1-5)

e
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The subscripts identify the two particles ¢ and j, which collide with momen-

"—'|

ta &£, and kj# inside nuclear matter. 2 is the propagator that characterizes the way

that purhclas i and j are excited when they are dispersed in nuc lear matter. Spe-

cifically,

e = E(E}) + e:(Z}) - G(Fi') - e(z}r)r

and

Q0=0,i ki, k,/, < kg

-_— ]; i/kii, kj’, > kF .

That is, Q is the projection operator in momentum space for the region out-
side the Fermi Sea.

6(?'-') repres;enfs a virtual excitation of the particle ¢ from momentum &; to
k,' and is given by an equation similar to (II-3).

Since all of the energies appearing in the expression for e depend on the K
matrix from éq uations (II-3) and (II-4), the solution of equation (II-5) requires a
self-consistent procedure. That is, one must assume an &(R) to obtain K from
equation (II-5), which is later used to obtain a new, generally different (k) from
equation (I[-4). The procedure is continued until €(k) is the same as the one :alcu-

lat ed.

Finally Brueckner obtained the average binding energy per nucleon as
2
Bay=3/Pp | dP [P /2m+au(p)].

Besides equation (II-5), there exists another important relationship between
7 and Ky, , which will be used in the next section. From equations (II-1), (II-3)

and (II-4), one easily sees that the energy shift E of the ensemble of nucleons has

113



the two expressions,

= I
i <WolVy 1>

}

and E =] 2 <"bo|Kﬁ|"bo>’

Y

It is assumed that \J_ can be expressed as a product of single-particle wave
functions. Then calling ¢ the two-particle-wave function, which represents the
mutuval behavior of s and 7 in the presence of nuclear matter and ¢ the corresponding

two-free-particle wave function (plane wave).

g=) 3 <<P‘V;j|<PN>=%- ‘_zf <‘PIK,';|CP>r
i# ] i#{

and

<<P|V£/|°PN> = <CP‘K,';|<P> .
Since ¢ is any eigenfunction of the free-two-par ticle Hamiltonian,
V;'j"PN:’ = K;‘;l‘F’) '

B. Separation Method of Moszkowski and Scott.

This method consists of two successive approximations t< the Brueckner
method. These successive approximations henceforth will be called AP1 and AP2.
As a result of numerical calculations™, AP gives roughly 90% of the average of one
particle potential in nuclear matt er and AP2 accounts for almost all of the remaining
10%.

The advantage of this procedure is in the simple physical foundation of AP1.
This foundation was explained in the introduction and will be rewieved and formally
expressed in the following paragraphs.

The two nucleon potential V is divided into short and long range parts, name-

ly
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v=vS +vl, (I1-7)

or graphically:

The separation distance d; (k) is determined so that VS produces zero phase

shift for nucleon ~nucleon scattering in the particular anqular momentum state !/

and for a given relative momentum k.

First Approximation

Let N be the true two-particle wave function in nuclear matter when the
two-body potential is V.

Let ¢ and @ be the corresponding ¢ when the t wo-body potential is v°
and VL respectively.

oF will denote the two-particle wave function when no nuclear matter is

Fis simply the two-par ticle-Schrodinger-equation solution

present, that is to say, ¢
with potential V.

For the first approximation of Moszkowski and Scott, the following assump-
tion is made: N is equal to ©F for distances less than 4 and equal to the unper-

turbed wave function (plane wave) for distances greater than 4. This means that
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the behavior of the two nucleons in nuclear matter for distances less than 4 is the

same as for two free colliding nucleons. In other words, the presence of the other

nucleons is not felt by the two nucleons when their mutual separation distance r
is less than 4.

From equation (II-60) the energy shift of the particles 7 and j is given by

AE i <@ l K;‘f\ >, (I1-8)

where | ©> is the unperturbed state vector (plane wave). This rather formal ex-

pression does not show the statistical facteis which arise from the different spin

orientations and the Pauli principle. Now by equations (II-6¢c) and (II-7) the pre-
ceding equation becomes

AE;‘; =<¢ \ fol ‘P~>i t<e¢ ‘ V%jl ‘PN:)?" (I1-9)

The limits o, 4 and ®are those of the radial integrals.

In AP1, cpN becomes of in the first matrix element of equation (II-9) and
equal to @in the second one. Therefore, in APT

d

L
AB, =<0l V,|oF>" + <cp|V“|cp>:. (11-10)

0

The boundary conditions of wand of at zero and 4 are:

@(0) = o(0) = ¢F(0) =0,

and, by definition of &,

= oF doy = (497y |
¢(d) = ¢" (d) and (7:0_)& (a!r )
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These three equations moke the first motrix element of equation (II-10) vanish,
and theretore,

O
AE,’; = (*CP'V:}' CPL>J_

If the phase shift O (k) of vS does not vanish for any distance d, one chooses

d such thot Sz(k) be a minimum and then the first matrix element of the expression

0 (k)

(I1-9) contributes ~ 47852 /'m to the energy shift.

Second Approximation

The second approximation (AP2) of Moszkowski and Scott! is obtained by
substituting AP into the correct expression for K {equation (II-5)) in the following
way (the subscripts 7 and j have been dropped),

K=v +v2K. (11-11)

e

If Vv = V°, one has what could be colled the short distance reaction matrix

X3S,

kS =vS +yS1 kS,
e
o

where e  is the free propagator since at short distances the presence of nuclear

matter is neglected. Thus,
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where H  is the free Hamiltonian and E _ its value in the ground state. The corre-
sponding long distance reaction matrix KL in APl is just VL since in the exact ex-

pression

vE| N> = kb | >

one assumes that | N> = [¢> for r greater than d. For 7 less than d, VL equals
zero by definition of VL. Consequently in AP1 K1 is

K1=KS+VL.

From
v=vL+vS and VvS=(1+k51)" kS
e
one has
v=vl+q+xSL)" k5.
eﬁ
Substituting this expression in equation (II-11),
k=k5+xS1-H)yx++8lyvin+ly.
€ en eo e
Making K in the second member equal K1, one obtains K in AP2; that is
K2 =K +P.T. +D.T. + LD.T. + C.T.,
w here

P.T. = k% Q-1 K3 (Pauli Term),




S
D.T. = K5 (.]_ - .‘_.)K (Dispersion Term) ,
€

®o

L.D.T.=vL 2 yL (Long Distance Term),
L 24
and
C.T.=vkL .Q_. K° + K5 Q;. VL (Cross Term) .,
e e

C. First and Second Approximations in Suitable Form

for Computation

It is now convenient to rewrite the formal relations, which appear in AP]
and AP2, in a form suitable for calculation. This has to be done according to the

mathematical structure of the two-body potential.

The Hamada-Johnston potential, which is the most complex potential con-

sidered in this work, has the following terms:

1) Central = Ve (r) (0'1 '9’2) (7‘1 .7'2) ,

2) Tensor =V, (r) (7, . T,) S,,.,
3) Spin orbit coupling =V, o (r) (L.S).
4) Quadratic spin orbit coupling=v, (s} L ,,

where
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r
1

S, = —— = spin of nucleon 1,
o
s, = 2_= spin of nucleon 2,
2
7' = relative distance between the two nucleons .
T1 = %_7'1 = jsotopic spin of nucleon 1,
and T, = %_7'2 = jsotopic snin of nucleon 2.
The good quantum numbers for a system with this kind of potential are:
1) the total angular momentum J = L + § and its component J_ along the z
axis ,
2) the parity since t he potential is invariant under spatial reflection,
and  3) the total spin §, since the potential is not altered under the exchange of

o o .
10I‘1d \

Since the nucleon is a fermion, any state of the system must be antisymme-
tric with respect to the interchange of all coordinates of the two nucleons. There-
fore the following relation holds:

(spin exchange) (space exchange) (isotopic spin exchange) = = 1.
The state of the system will be a linear combination of the total angular

momentum L by the formula

im 1 ”m ~m m
P (8, 7) = S imgdmpmgsm) Yy TS (R, X
S

==

where (jmj, Im; = mg, smg) are the Clebsch-Gordan coefficients for m; = m;=mg.
The plane wave of momentum &,<r| X"SK> = e.:‘F "'_'XT:S , with the spin

S
eigenfunction explicitly indicated, has the partial wave expansion:
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0+ 1) 47 'y (89 j,0) XS,

<r|x:5k> =
0 2] + ]

M8

/

where j,(kr) is the regular spherical Bessel function of angular momentum /.

Since
I+1
X:S Y?(‘Erﬂ = ; ZI 1 ( IO,S?H ) ijjs r;) '
the plane wave expansion becomes
m o) l:j-ll'] 477 1/2 , E a)
e{X Sp>= S % 21+ 1) & ) j,(kr) (jm_, lo,sm ) Fz r
X 2o 125 BT D T

(II-12)
The two nucleon state, ¢f , which is the solution of the Schrodinger e-

quation with a tensor potential, has an expansion similar to that of the plane

wave, Thedifference lies in the coupled state: I=j+ landI=j«1. The un-

. _ im * _ _
perturbed solutions P} ”js (E,7) jj +1(kr), under the tensor action, goes over into

F;T{s(g"ﬂ Uf‘*']r f"'](r) +F1' ]js ;) U ]rf"](r)

where Uj 41, i”(r) and Uj 41, j’,_](r) are solutions of the coupled radial Schro-

dinger equations. |If the tensor force is switched off, then Ujin, 4= 1(7) vanish-

es.
f
in an analogous way one finds that F ’s(ﬁ r) goes over into
jm S E
( r’) U] -1, §= ]( ) _1+'| f’) I.|.-|(f) Consequenfly,fheexpressmn
for cp ,of.written explic ity as the sum of the two coupled and the uncoupled

term, hus the following form:
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Ph(r) = jgo (2.1, ms, f(Fm (£, Ujr, j(7) "'F;’:?s(g'ﬂ Up-1, g01(7))
jm_s fm s
F Oy, m, 1 F ) R Ujaq, g0 BT (k1) Ujypy 4a14(r))
F Y m, g P A Uy, (0] (1F-13)
where
4y, m, 3= @) AT (jm, to, mes)

Since in AP2 one has to deal with matrix elements taken between functions
corresponding to different momenta % and k', the plane wave and oF must bere-
expanded in other forms more convenient for future developments.

The usual plane wave expansion is

m i: ';. m 1/2 . m
< Sk> = e — Z z +] l ’ L
"IKS 1_0(2 )‘(21+.| ) I;(b’) Yz(E;’:) X

From the addition theorem,

1/2 ~ l m ~ ., ml -~ N

(21.._.+ ]) Y? (k,f) = z YZ ? (krk' ) Yl (k,f) .
Using this equation in the plane wave expression,
l l 1""l* ' ' ”

<r|xToR> “‘”’;20 S k) PYTU (R E) v, PR XLS

= mz~-l
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Introducing now the eigenfunction of j given by the equation

fm, + s /+] ”m m_
Ft ’f’z g" (5,1:) = 2 YZZ(E,;) Xss(yms +ml,lmz,sms),
j=1e1

one finally obtains

“lxfow =an £ S0 dpt R BT RN, ()
]= = - mz

Similar treatment for of leads to

0 i+

F l m
Pr (r) = >3 >3 3 L(E B ! ;!
() =47 f=0 I=4-1 mz=-1YI ( )U”’Z*'ms' my Sms) ’
i+l + m_,
(2, Uh e O ETT R, (1-15)

The subscripts (1, 1') can only have values of the same parity which are:

(jfj)r U" ]rf"])r (f +]rf +1)r (.f""Lf +]) and (j+]r.i" ]) .

First approximation « APl. The B.E. of the nucleon Fermi gas is given by

2/ 2 -
BE. =3 S kp) +U kg,

2 —
where ikF is the average kinetic energy in the Fermi seg and U(kF) is the aver-

5

age one nucleon potential inside nuclear matter. That is,
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—_— kF
Ulk,) = [u (k) P(k) dk, (11-16)

where P (k) is the probability of finding two nucleons in the Fermi sea with a rela-
tive momentum &.

It can be shown that

_ 8k 3 1,3 ,3
(8) =2 (1= 2 Wy + 5k /kg)

u(k) is the interaction of two nucleons in nuclear matt er with relative momentum

k. Including the statistical factors, the expression for u (k) is

s, m., T (%) -

Here T is the total isotopic spin and u_ 7 (k) is the energy due to the
F sf
interaction of two nucleons with relative momentum % in a state with total spin s,
total isotopic spin T and spin component m_. |f -Fl and Ez are the momenta of the

two particles before the interaction, then

m ”m
] <X % (k tk,) [vl]x_*® (ky +ky)> .

g MS,T(k) =ﬁ

Going over to the relative and center of mass coordinates, this equation

becomes

m m
#S:mslT(k) = (Xss k|VL|XSS k>'
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According to equation (II-12)

© i+l i+ 1 /2
= 2 2 2. 21 +1) i (_A4T 21" +1 am
“somgr® = 2o 50 BN @R ey
m ’.S & '
_L dr fz(k") Vu' fz'(kf) r?, (jms,z O:Sms) (j‘ms,lo_sms)
where

S

V’;r == IFZMS (E,;) V sz:ns,s (E, r‘) d(E,ﬂ .

Since U ms;T(k) depends on m_ only in the Clebsch-Gordan coefficients, which

have the property that

t _2fi t1
mé_] (fmsrz o, m_s) (]I‘?IS,Z 0, mss) = 2; 7 71’ ,
one concludes that
] Qo f+] o0 S
uST(k) B mz=:-] #S;msT(k) =4ﬂf§O =%"| (2] +1) f re ]l(b) V”’I(b) dr
S

]

1
The coefficient | s 2T *+ > accounts for the statistical
4 T=0 2 s =

properties of the nucleon Fermi gas.
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Second approximation - AP2. As in AP the average one-par ticle-potential
(0.P.P.) is given by

_ kp
Ulk,) = [ u(k) P(k) dk.

In AP2 u (k) will be the sum of the contributions from the Pauli term, the

dispersion term, the cross term and the long range term; that is,

u(k) = uP (R) +dP (k) +uC (B) +ul (k).

a.- Pauli Term.

Ppy=13s2Ttlsy 5 P
u () 4 - 2 s ms “SrmsrT(k)’
w here
p . ” _'I m
oF 0 = <x]* kRS AL k7

m
Ug,m 7 (B) = <X;° R|KS _él_ @-1 -° kS| x0s p>, (H-17)
O € eﬁ
Since

VS,CPF> ___.kS'XmS k>,
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or

S| Fs — S |v s S 1 oS|y’s
Vi |of> =vS|x_ s> +v E.._...Jrclzr:s >,
o
we have
”m ”
oF-x .Sk =_1_KS|x_sw
e
Q

Substituting this expression in eguation (I[-17), one obtains

2

”m € m
Hi’Hs;T(k) = <qu-XSS kl (Q-1) _S.'CpF-XSS k>,

or, in momentum space,

m ” m e’ m
wl (k) = Z, <@f-X TR[X SR> SR [@-1) 2 lof - x % k>
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Ms ¢ F _+™s 2
<X _Sk'|gF-xk 7,

"
where P is the center of mass (C.M.) momentum and ‘Xss E'> is the state vector

of two non-interacting nucleons in relative and C.M. coordinates. From equations

(I1-14) and (II-15) one obtains

m_ m 2 ke’ (1-1") ki’ kk'  kk' _ .
<X SR |of -x % B> = (4) %% (2, Ay Ijpe) =Ay Hyp 1.
(II-18)

The integration over the solidangle (£,7) has already been done.

In the above equation,

2k’ ml* m, s | ’

Ayt = il Y, (%, k) Y, (&, &") (]mz'f‘ms,lmltsms) (fmz’ tmg, 1’”;'3”‘5):
kk' m™ ” 2

Ay = EIY, (R, B) Y, (K R') (jmy+mg, Impysm)

kk ' i k _ ,
Ilz' — I Ulzl (T) ]ZI (b)f dr

O

and

k' d ,
H,, = Iﬂ iy (kr) j, (R'7) ¢ dr,

where d (k) is the cutoff distance which separates the long from the short range

parts of the potential.
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When <X:3 k' | ofF - XZS &> is squared and integrated over the solid angle
(E, £' ) one obtains

Kk kk
[aE ) <" =@n' {335 [(3, (44), ot 1y pr)
] i 12 L 1°2°%1
kk kk kk  kk kk  kk

- (Aa) I H ~ (Aa) H I + g H H ]}
L, e Lot 2yt T v

(II-19)
where
_ At S m, = (£, (£,
(AA)zlzzz; = § > Yll E) YI ) (jm, tmg, lm ,sm)
2
(fml t sm, lzmlrsms) (jml T m 5!1 Mg, SM ) ’
U -4 ) 7y .
(Aﬂ)z ; 'Zn Y (£, B) YI (&, k) (fm m, llml,sms) (;m1 tm,
1
3
l,m ,sm_) ,
_ (-8 s vy ” . 3
(Aa) 1211 - ¢ - Yzl (Er E) Y12 (5:5 (fml +m M, llmfsms)
1
(}ml 1 by m [ S <)
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and

(‘W);l;l = E Y:v:l (k, k) Y::l (ﬁ,i)(jml +s .1 ml,sms)4.
1

Since (/.,7,) and (1,, 1) are coupled with the same parity, namely:
Ge)y G=1,7=1), (G +1,7%1),(f t1,j= 1) and (f - | P¥ +1), the preceding
expressions become quite simple. (See Table I.)

For the singlet state, (AA), (Aa), (aa) are all equal to

] *
z Ym Ym — _21 +_] YO — 21 +]
”imel 1 (o) 7 (o) in i (o) e

In this case the Pauli term takes the form

2 @ 2 ) -
PR =8 () [Ta wrewry w7 LT 3 e

ki’ kk' 2

where c, is the statistical foctor equaling 3/8 for the singlet even and 1/8 tor
singlet odd state.

b.~=Dispersion Term.

S
S

> aD,m,T(k)

where

”m m
2m 78 = <X R|KS (%.-.l.) KS|x,° &>,

s,m
e
0

or, explicitly,
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VR SIS ORI LG ¢ {== W P S TR | 1.2 | o= W
("D ayy = 1 1py)  z pun (17D 1yy = Tlpy) *
{ {
T S O - Z 1 1-="w P P 1.2,1 |== "
| |
:SDY 8uo ‘J] uo1ydeg ul pasn LOIJDIOU By} O} Buipiodoy
_.I == WE
* JUBID1}4305 UDPIOD-Yo5qa| D) Y} sI (Sus Tuy tuf) sseym _Namﬁm_uJ 'Swl) (Sus 0% Swl) (Sus'o'r Suf) e

L
Z, 1, € I S
Fv\u\”:.r JS n.::+ JS = (177) lyy kq DAULJSP S4D YDIYMm (7°1) lyy S}UD1144900 oy} saalb 9)qpy 8y |

(€+ 1D ug/t(l+ He= (M F1=f) iy

(1 -7 ug/(L+ DI = (L' L)Ly (VeFt-fisfyn _ (LFV 2 i-foy

(E+ fQup/ T/ g+ (14 §) = (LU AL +Eyy (L-fug/¢=1) (1 Hh = (LN Uy

(1 + T—..bflwu (L-F'L+A) L+ Fyy :-.ﬁnmlm\ﬂ:._, 0+ ) = (A =£L=hl-fyy

€+ Fup/(@/t+ 1) ((L+ ) = (AL by ug/(L+ f0) = Fltyy

UOHIDINDIDY) 7Y 10} S§uslD1}4e0))

I 2IqeL
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u’ k) = ] (5% db' k'2 (k2 < k'2 1 _ ]
St ms'T( ) (277)3 m J; ( ) (ETP; k,kTY 52/mmﬂ_j—)

! F m ' m I 2
Jakk) <of =x_SE[X_Sk'>",

where the last integral has been found in equation (II-19) .

For singlet state this formula is simplified as

c (P k&)
c.- Cros term
€ (k) = 1 %: 2T +1) % JT. u- (k)
d T=0 2 S=0 m_=-1 M T 07
where
i B =2<X . R|VE 2 K5 |x 5 R
since
[oF = xSk =1 K |x.5 b>.



C

U
S, mS,T

(k) can be rewritten as

ﬂgr mS;T — 2 <X S kIVL Q :! IC‘PF X S L>
or, in momentum space,
© !
ug By =2 1 _ 9/m dk' k'2(k2-%'2) _Q(PR) [ gE £y
Si mS'T( ) (277)3 .J; ( . E(P.r kl‘ kr) j

<kx:5 IVLIk' X:s> <k’ X: Ich - kx:3> :
By equation (1I-14)

<. S|VL|R' XS>=(4n) S S S, Ay (V)i

and

kk' 0
Iy (V) = .L jy(kr) V{"zr jpr (B'r) 12 dr.

Using this result as well as equation (II-18) ,

' Mg L ’ M ' v s F Mss —
Jdk B') <kx_S|vE|R" x 5> <k’ x_5|¢F - kx_S> =
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4 ke’ kR’ kk’ kk’
(47) jz 2, 2. [(AA)zlzz’ ot Iy - (AA)y e Iy (V) Hyp 4 ]
1 1 1 11

The notation is consistent with that used previously.

For the singlet state

kk kk' k'

2
ug (k) = 2ty (k) =2 (ﬁm )8 2 @It 1y (V) (1, = Hyp )
S
d.~- Long Range Term
Uy n, 1 = <x_s k|vL ..g. vE|x’s &>

— » dr’ k12 Q(pP,k") f "s Ll m3>2.
j; A [ ak &) <x_Sk|vE|k x_

Using equation (II-3),

m m_ 2 4 kk' k'
<X SR|VE|RXx > =W4m 22 S S (AA), 0 2 V) I (V).
1 11 12 11 121 11 21
In the singlet state,
L (k)= = ut (k) =8 [ dr'a'2_Q(PR) s (2l+1)(!kkr (V)
1% — 14 — ! .
s, T m S,MS,T 0 E(P,k,k 2 Y )

e.- Simplifying Approximations AP2

et f;; and Z: be the momenta of the two nucleons after the interaction.
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They are related to the total momentum P and the relative momentum &' by

1

- . E‘:-Eﬁ
P = E’;'i'k;andk = _1 2
2

By definition of Q,

Q(P, k') =0 if k; ork; < kg

—— * ' !
=1 if kl andk2>kF.

It can be shown that these equations are equivalent to

Q(P,k') =0 if k'*+ P2/4< R},

=1 if k"-P/2>kF..

R'2 + p2/4 - kf,
kP

iy
i

otherwise .

The valve of P will depend on Fl and E;, the momenta of the particles be-

fore the collision

The problem is simplified if P is taken equal to the average center of mass

momentum over the Fermi sea of two nucleons having relative momentum

. £k =k
k= _1 ; 2 . It can be shown that this average is such that
2
P2/4 =3 b, (ky-k) [1+ k ], k<k
5 p kg = ) | Tk, 2k, t B F
= k> kg
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The propagator e can also be simplified if it is calculated in AP1 instead

of using the self-consistent procedure. Thus
e=52/m (k2= 1'2) +U(P2+ B +U(P2-F)-U(P2+Kk) -U(P2 -

where U is calculated in AP1.
The simplification can be facilitat ed if one supposes that U (m) is calcu-

lated at an average momentum. Moszkowski and Scott chose this momentum as

1/2 _
(k5,/8 + m*/4) ", which corresponds to the average value of the relative mo-

mentum of a particle with momentum m with respect to a particle of momentum

kp/V2.

The same authors assumed that

|P2-%| = |BP2+E]|, |PR2+E |=|P2~F | andthat P=kj.
Consequently, the propagator under these simplifications becomes
e(P,k, k") =32/m(k*=k"'2) +2k%/372 QU(R) ~2U(R*),

where U(8) and U(k’ ) are calculated in AP] at (k%/B + k2/4)1/2 and

(k%/8 + &' 2/4) Y2, res pectively.

D. Determination of the Cutoff Distance 4

The distance, d, which separates the short from the long range potential,

was determined by setting equal to zero those nuclear parameters, x's and y's

used by J. L. McHale and R. L. Thaler’, which are proportional to the matrix
element of the potential in the Born approximation. In a coupled state they are

defined by the asymptotic form of two independent solutions to the coupled equa-

tions in the form
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Uper, ) =F 2y, 6y (),
Uj”'f(r) >Y Gy (r) ,

Uf-'l,j(') ~Y,G, (r)
and

Uf"":i(f) E_Fjﬂ(f) +xf+] Gy (r) .

Here =1 F,(r) and r~1 G ,(r) are the regular and irregular solutions of the
Bessel radial wave functions in the /, f channel.

These nuclear parameters are related to the Blatt and Biedenharn phase

shifts by the equations:

= + + sin? +
X cos € tan 3,_]”, sin® € tan Si-hf

7+

and

Y %_sin 2 € (tan Si'l - tan Sf”).

The x's, for a given j are called the tangent matrix elements because

when there is no coupling (i.e., € = 0) x becomes the tangent of the ordinary
phase shift.
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