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ABSTRACT

Using the re presentation of the generators of the U ., group of supermuliiplet
theory in terms of creation and annibilation fermion operators, we express the ex-
change operators (Bartlett, Heisenberg, Majorana) in terms of the operators of s pin
and is os pin and of the Casimir operator of the U, group (or equivalently, the Casi-
mir operator of the associated ur group of orbital space). From these expressioms,

the eigenvalues for a long-range interaction with exchange follow trivially,

[. SECOND QUANTIZATICN FORMULATION OF THE PROBLEM

A central two-body interaction with exchange effects is usually written as
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the operator

”
Y W+ BES - HET + MB[)V(r,),
<=1

the parameters W, B, H and M specify a particular exchange mixture and are custom-
orily normalized to unity, i.e. W+ B+ H+ M= 1, In the limit of long range cen=-
trol force we con make the approximation of taking Vv ("ij) = =V, {a constant) , so

we are left with the two-body interaction

I=-v, > 4, B (1)

<7

a= 0

(Ag=W,A =B,A, =-H,4, = M), which is independent of the orbital coordi =
nates of the particles since the exchange operators Ii.;."') depend only on the spin
(s) and isospin () operators of a pair of particles. The explicit forms of the -

operators in (1) are?

RI°) _ (Wigner) (20)
F};” = a;"s -;— (1+ 4 ;;. . E;) (Bartlett) (2b)
B = B] = L(1+41%; - }‘;) (Heisenberg) (2¢)
B =pl==-g(1+4s5°5)(1+41,+7) (Majorana) (2d)
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the eigenvaives of s, and 2 belng % .

The second-quanhzed form of a general two-body interaction z Vi is 2
1<
A .. P, P,
_ 1 T + 12 + 2172 1 2
V=3 Y ) <pipy| Vialoop> 1oy 81052 =50 bt 87 3)

/ )
AR PR

I
b*, b being, respectively, creation and annihilation fermion operators obeying

the usual anticommutation rules, and p. is an abridged notation for the quantum

th particle: p; = (p_’.,gi,r‘-) where p.= 1,2, ceee, 7

numbers of a state of the 7
will characterize the orbital state, o;,= % -;- the spin state and 7. = + % the
isospin state. Now, if the interaction is independent of the orbital coorainates,
as in (1), the summations over the indices y in (3) can be performed immediately

and we obtain for the second-quantized form of the operator I

(A)
d= =V, z AP (4)
a=1{
with
p(a) 2 l (a )l f 0-1’ 'r; J; T; 30; ST: O'; T
<cr T, 0, P o, 7 o.7. >IC C - )~ C
1°? 1’ 272 1 71 Ty T, ’ , 94T
(5)
Here the suin is over all repeated indices and the C operators are defined
as
{T! ! 4 p,cr"r!
T +
Cop = QD bl,. b (6)



From the anticommutation rules of the fermion operators it can be deduced
that the 16 operators Cﬂ““f‘",:_""'j‘r have the commutation rules of the generators of a four-
dimensional unitary group: U, . Our purpose is to show that the exchange oper-
ators pra) of (5) can be expressed in terms of the Casimir operators of both the
group U, and its subgroup sU, (spin) X SU, (isospin). Once this has been done

ay | . . . .
the eigenvalues of P will follow immediately, and furthermore, .4 will be diago-
nal in a basis spanning an irreducible vector space of U, and whose rows are classi-

fied by the subgroup SU, x SU, , i.e.in the basis

|(hib bob, 18 SMy , TM, > (7)

[I. SECOND-QUANTIZED FORM OF THE EXCHANGE OPERATORS

Following Moshinsky and Nagel 2 we define 16 operators constructed by

. . . o T .
linear combination from the U, generators C7 7 :

N =3 3, M5 N)T €= 3 6] (8a)
S, = 3 = S (MYZ (N)Te €27 (8b)
I, = L33 (M) NI g7 (8e)
Ry=+ = S )T (NI €Z7 (8d)

where j, k=1, 2, 3 refer to cartesian components, and

10 0 | 0~ i 10
M0= NO=(0 1 1M1=N1=(.| 0)’1M2=A2=(£ 0)““3=N3= 0 = ]
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are the unit matrix and the Pauli matrices whose rows and columns are labeled by
0,0 = -;-, - -%- for the M's, and by 7, 7' = .%.;’, - -2’- for the N's. Among the commu-
tations relations between the operators (8) one has

[S ,Sk]:ﬂ '] lszlez,[T,Tk]= '] ?eﬂd Tz,[s ,Tk]= 0

so that $,¢5,,5, are the generators of the subgroup SU, (spin) and I..T,,T,

are the generators of the subgroup sU, (isospin), of U, .
We can now return to equation (5) which gives the second-quantized version

of the exchange operators p(a). For ©°” we obtain from (20} and (8a)

(0)
1 oT G“?‘_ _l -
Pl=d 2 cgrls cgr-1ts pnin-ti (9)
1
Forp()wehave
(1) O"'?' G'I'T' ﬂ'r T D"T
2 ='!"Z Z<UUIP0|JIUI> cl1¢c22_85181 21
2 — 1 %21 %12 1Y% 9 0T 9T, o, T, G'}’f'l
%1% 9% 17

and since from (2b) the matrix element above has the value

<o, 9| B |g 0>

5 o

3
o, G
+ 6 83+ 2 Z <01|S,§1)Ia;><02[Sé2)|0;>
1 2

k=1

i
[~
O

2 4+ % %
N el % (Mk) J (Mk)o.' 7
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we get finally

PR LNM=-1+ D 55 -3 =N =N+ (10)
k=1

where use has been made at an intermediate step of the fact that

2 E(M)Gi(M)G.z’= E(MM)JII=3BG;[F-
ka_z kﬂ"z k:'::l'2 L kkcrz A

(2) : . .. .
For P" we obtain, by an entirely similar analysis

3
ra‘”.:%n(n-n«- Zrkrk-%na%ng-n+rﬂ, (1)
k=1

and for pm

we have

P _o2an-1 [%n2+32+:r2+4 p)

Now, if we define a tensor operator Xy in U, by

oT

Y= 22 MY )T €T (gur 2 0,1,2,3) (13)

we find, by using the property of Pauli matrices



t".TO'

3
D M) )7, = 2 (Mg ® M)T7 , =287, 87,

that

Y XX, = 4 Z Z co'™ o, =46, (14)

qr

where G (U4) is the Casimir operator of U, , which has the property of being diago-
nal in o basis irreducible under U, , ise. in the basis (7). But from (13) and (8)
we see that X =M, X, =25, ,X,, =2 T, and Xip = 4 Ry, , sowe have the

alternative expression

2
qu Xpe Xgp = N +4$2+4T2+16j2kRijjk (15)

Equations (14) and (15) allow us to rewrite £ in the form
P20 -1 6() (16)
If in analogy with (6) we define r? operators
ct . 5 by pr T (17)

7 poT

we can show, from their commutation relations, that they are the generators of an



r-dimensional unitary group: -U.,, . This group also has its Casimir operator G (-U,)

and using (6) and (17) together with the commutation rules for {va"' and 5P we find

this relation between the Casimir operators of the U, and ,Uf groups

G(U)=(4+r)N=a6(U) (18)

4

Combining the above results into equation (4) we arrive at the long-range

exchange operator

d= = Vol WNN=1) + & B-H)N(N-4) +BS2 - HT? - 2 MWL + 3 MG (U,) ]

(19)

This operator is thus diagonal in the basis (7). The eigenvalues of G (U )

are known to be 4

’
Nr + Z b#(bu-2#+])'
p=1

where N is the number of particles, and [ & b, «es B,] is the label for the irreduci-
ble representation of .U, which in Supermultiplet Theory musthave a Young pattern

conjugate to the pattern of the representation || 31 52-53 54] of U, .

Finally one has the algebraic eigenvalue equation

S | Ch1BsSMy, TH,> = =V, tL WN(N-1) +L (B - H) N(N - 4)
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,,
+BS(S+1) = HT(T +1) + L1 M Z by = 2u+ N} [ B BSM,, TM, >

p= 1

(20)

[II. CONCLUSION

The operator .d with eigenvalues given in (20) for states | [?Z]B SM_, TM, >
represents then the exchange operator for a long-range interaction. |t has been
shown elsewhere® that a good model for an arbitrary central potential is a combi-

nation of an orbital pairing interaction () plus a quadrupole-quadrupole inter -

action (D2), the interaction P taking account of the short-range correlations while
02 takes into account the long+ange ones. Since our operator .d could be applied
in the longrange case, it is reasonable to consider that a long-<range interaction

with exchange could be described by 92 .4 . Use has been made of this type of

interaction in calculations with exchange effects in the 2s-Id shell > .
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