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ABSTRACT

The methods of linear algebra are applied to the algebraic analysis of the
Structure of obfects possessing arbitrary sets of indices. With the belp of the me-
thodics of analytic functions, general relationships are essabisshed between invari-
anits of various types (similar to Rodriguez' formula). The theory of meromorphic
functions on generalized matrices is developed, and the theory of canonical forms
of generalized matrices is outlined. The theory developed can be used in the study
of the algebraic structure and of the algebraic types of the arbitrary spinor-tensor
fields. (E.g. spinorial fields with arbsitrary number of indices, lorentzian and iso-
topical, various curvature objects, etc.). Thus, possible applications can be found

in field theory (classical and quantum), and in particular in general re lativity.
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I. INTRODUCTION

In the various fields of theoretical physics one often meets quantities (in
general complex) which are simultaneously tensors with respect to a few groups,
e.g., C =, Lorentz group, isotopical group, etc. As such, these quantities (fields)
'wear' sets of indices referring to the transformations related to the given irreduci-
ble representations of the groups in question. The sub-sets of the indices of the
definite type referring to the given representation of the given group may be sub-
mitted to some symmetry requirements.

The recent developments in the methods of theoretical physics are often re-
lated to the study of the algebraic properties of such quantities. (E.g., in general
relativity the Petrov-Penrose classification of the algebraic structure of the con-
formal curvature has stimulated important progress in the covariant study of the -
asymptotics, in the theory of the gravitational radiation as well as in the ;heory of
exact solutions; see e.g., (1], [2], [3], [4], [5]).

Usually one studies the algebraic properties of the objects mentioned above
by applying rather standard techniques of the linear algebra: the canonical Jordan's
classification of matrices, studies of various types of the eigen-values problems,
ond specific spinorial techniques ( (6], (7], [8] ).

Nevertheless, in each specific problem one usually has to construct tad hoc'
a special method of applying these techniques of the linear algebra -=a method which
would be manifestly covariant with respect to the groups to which the indices of the
studied field refer. In such adaptations of the methodics of the linear algebra the
tensorial notation with all indices specified explicitly is somewhat confusing.
Sometimes therefore, one applies a more compact notation, e.g., the bi-vectors

fomalism [9]. However, such an improved notation usually has to be adopted
"ad hoc® in specific problems; there seems not to exist a generally accepted method

of introducing it.
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The oim of this study is to approach the mentioned problems in an unified
way, to explore the general situation and to introduce a convenient adaptation of
the methods of the linear algebra fitted to it. A simple notation is proposed which
farms asort of compromise between the tensorialand the matrix notations. [t shares

the advantages of both: it is compact similarly to the matrix notation; similarly to

the tensorial notation it is manifestly covariant and allows the convenient use of
the techniques operating with the Levi-Civita's and Kronecker's symbols.

It is to be stressed that we do not intend to present here any essentially
new mat hemat ical results. In fact, all algebraic problems which one meets in theo-
retical physics usually have solutions implicitly hidden in textbooks of linear dlge-
bra. What we intend to do in this paper consists simply in the application of the
well-known ideas and methods to the specific general situation which one meets

in the problems of theoretical physics. This situation, however, we intend to ex-

plore in a systematical way.,
For thereasons of compactness and self-consistency we shallsketch ideas

of proofs of the mathematical facts we use. Most of these facts, however, follow

from more profound general theorems of the linear algebra. The reasons why we

care to sketch our more primitive proofs are simply: (1) we want to illustrate our

techniques and notation especiolly those based on applications of analytic functions
(2) this paper is thought as providing the thecoretical physicist with some working
tools which he may use without looking into mathematical references; it is better

to convince him that the quoted theorems and results are true.

II. SETS OF INDICES, NOTATION

Let the theory we deal with be covariant with respect tosome set of groups
Q1 ' Q2 , see Suppose that we characterize these groups by their irreducible repre-
sentations. Therefore, the tensorial quantities appearirig in such a theory shall
‘wear' sets of indices referring to the various representdtions of the groups

Let various possible kinds of indices be denoted as:
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A' = 1',2,c0.,0', A" = 1", 2", ... 0", etc, [capital Roman types; primes, bises,
efc., distinguish different kinds of indices. It may happen, however, that A', A"
refer to different representations of the same group while A" refers to some other
group]. The capital Roman indices may appear as co-or contra-indices which,
respectively, are assumed to transform co-or contra-gradiently under the transfor-
mations of the given representation of the given group. Therefore the contraction
(the Einstein's summational convention will be assumed) of the indices of the same
kind is an invariant operation. The groups of indices of the same kind may possess
some definite symmetries-which is also a tensorial property.

We would like to introduce an abbreviated notation: a,b,c, . » (lower-cose
Roman types) will stand for sets of capital Roman indices withdefinite symmetries
(in particular, no symmetries), assumed for any sub-set of capital Roman indices
of the same kind (or, more generally, for any sub-set of A', A", ..., all referring

to a single given group). For the definite type of the symmetrization - separate

for each kind of indices = we shall use the general symbol { }« Therefore,
we identify
a — {A'l,---,A'P; ';;---, “q ;lll}l (2'])

The sets of indices a,b,. .. may appear as well as co-or contra-sets at-
tached to complex fields* .

Our set of indices a runs through its values £, which consist of all possi»
ble substitutions of numbers in place of the capital Roman indices. These values

N
we group into the ensembles of the essentially different values ;{'j: P

By this we mean, that if an object T_ has the independent components

n

1 2
T, T;---, T then

"All further theory applies when the studied objects have components from any algebraically
closed field of numbers; for simplicity, in this text we restrict ourselves to complex objects.
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k
for a from; Ta =* I, k=1,2,...,N. (2.2)

|

[Plus or minus to leave place for the skew symmetries] . The number of
numerical values which constitute }we denote by p, and we will call the weight
of the essentially different value ; It is obvious that the number N in (2.2)
which is characteristic for our set a may be understood as the highest of the

numbers k for which are possible non-triviol objects of the type

T = T . The square bracket denotes the total symmetry
alninﬂk [alil-lk]

with respect to the sets a_,...,a, . (It does notatfect the internal skew symme -
tries ) of sets a ,»ss,a in their capital Roman indices).

We will illustrate these definitions by two simple examples:
(1) Let a = [a,l a,z] , = 0,1,2,3 refers to C ~; [ ] stands for the skew
symmetry. Obviously ;lt= ((o,1], (1,0]), ;= ({0,211, [2,0]),¢4.
,2 = ({1,2], [2,1]). Here the N is equal to 6 and all the p, are equal to 2.
2) Let a= (A A ...A,,), A=1,2 isaspinorial index (referring to the
vnimodular group) , round bracket stands for fotal symmetrization, s = 1/2,1, 3/2,

Here we have

1 2'

k
A = (11 v e -) 9o o oy A = (21'._.k.+11 2 1:-12) y N Py = (k-l) (2-3)

25 +1
combinations, ... a = (22...).

Here the number N is 2s + 1.

These examples are rather trivial, but they show clearly the : onstruction of

our definitions, The aim of this paper is precisely to provide ourselves with the
mothematical machinery capable of handling conveniently much more complicated

sets of indices, by the use of the concepts so naively simple in examples mentioned.
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1lI. TENSORIAL MATRICES, MULTIPLICATION

By the square N x N tensorial matrix we understand the collection of

complex numbers:

| r . " v
a {Al...Ap,A...A;,...}

M = M !
(3.1)

where the co- and contra-sets contain the same number of indices of each kind and

enjoy the same symmetries; consequently, they have the same number of essentially

different valyes, N.

From this definition it is obvious that our matrix

a
M = H Mb ” is entirely characterized by N X N complex numbers
k

k
MI df t M‘ where k,/ =1,2,..., N. (% to indicate that in the case when
1

|

some skew symmetries are present, we have to pick up for M something with a
!

definite sign). These are the inde pendent components of the matrix, However, to

k
the given component M  there corres ponds Py * P, combinations of the internal
I

indices which all are leading to it (with accuracy up to the sign) .,
Now, because we want to construct the notion of the multiplication of the
matrices as a tensorial notion (covariant with respect to the groups governing the

internal indices) we define the multiplication rule as

a S | a {s;...,s'l'...}
” Mls MQb ” ) ” Ml {Si R . } Mzb ”
(3.2)

M-=M M

2
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where over all internal s=-indices the standard summational convention applies.

So defined multiplication is manifestly covariant with respect to G1 , G2 Jeos =

N
k S
The usual multiplication of independent components of the type )3 M M
s=1 % 2
is = in general - a non-tensorial operation. Qur rule (3.2) in terms of independent

components may be understood as

k N L s

M

M
<
<

(3.3)

I = 1 18 21

Note that the ambiguity in signs associated with the choice of the complex
numbers serving as the independent components of the matrix (present in the case
of the skew symmetries) is here immaterial; in the summation the contra-inde

k k
pendent values 'of the 8et s, § always meets the corresponding co- g .

The unit N X N matrix we define as

15 Ea E” {A;...A;'...} =u {A;---JA:---}‘
b {B;._.B;'...} df B! B!
(3.4)
A\‘
where JB' , etc, are the usuval Kronecker §'s and { } stands for the

symmetrizations of the type which is specific for the considered set of indices.

a
The independent components of the matrix Eb clearly are

; k
a
E[ =0ifk%l-E =1/Pkr
k
d ¥
with the proviso that in the case of skew symmetries we accept a suitable choice
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of signs for the independent components.

By the trace of M we will understand

{s'...s“...}

T.(M)-M - M | 3.5)

where the summationol convention applies over the internol indices. It is obvious

that

T,“l )= E" - N (3.6)

1T " M-M-M- -1, (3.7)

which holds forany M.
From the technical point of view, it is convenient to consider simultaneou-
ly with the set of indices a constructed from it the skew-symmetric sets of sets

of indices

[a]k = [ala .

. -ak] F k= 0,1,--1,N, (3.8)

where the [ ] means the total skew-symmetrization with respect to the partici-

pating sets a. . it does not affect their internal symmetries. For k = 0 our

1,
symbol becomes trivial; [a]  ottached to a quantity means that it has only one
component. The |[a ]1 coincides with the set a itself. It is clear that the es-

sentially different values of [a], are of the form
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k
Ry e o ] (3.9)

where i ...i.,are all different, and form a sequence picked up from the numbers

1,2,...N. Therefore, the set of sets of indices [a]k has exactly

Ny = (l: ) (3.10)

essentially different values. |t is obvious that the weight of (3.9) is just
K'P, ,P ...P .

11 12 lk

a
Now it is also technically convenient to consider together with our M

b
(of the N X N type) the matrices:

[a],

M = | M

H E,C"mk , k =0,1,2,... N (3.11)

which are N, x N mafrices; by the symbolc'mk we denote the set of such matri-
ces, The“/ forms an ensemble of 1 x 1 matrices, i.e., scalars. The 77 s

the ensemble of the N X N motrices studied.

Sometimes, when it is clear to whichc’mk the matrix M belongs we
will omit in the symbol kM the suffix k which appears on the left.

The unit matrix inﬁ'mk is obviously

[':k [‘1 ‘k] _
L 1 E” E[b:k = l Eb1 b, s k= 0,1,..., N.

(3.12)

153



For k = 0 we understand 01 just as the number 1. The trace of | 1 is

obvious ly

Tr(k1)= F % =N = (:) : (3.13)

With the help of our unit matrices one defines the generalized Kronecker's

symbols, 5's, as

(a), [a]
] == k! k ’ k= 0,1,--»-,N- (3']4)
[b], df E[b]k
. . s
For k = 0 the Kronecker § is just the number 1. The 57 = [b]l
[a] ; ‘
coincides with [ [b]l = Eb . The advantage of these quantities lies in the
1
fact that they moy be represented as
(g 2 .. 5 a,
b > & & b
5 [a], ) 1 J
[b], | ° f
]k CS 2, ... 5 a
b * b, (3.15)

ice., as the usval determinant from single §'s.

(o],

N
Now the quontities of the type T and T [b] because NN =( N )
N

[a]

have only one (essentially different) component. Therefore if F N and [
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are the objects normalized so that

c K]

= VNI = [ (3.16)

for a choice of numerical values of internal indices from sets of essentially differ-

ent values as indicated, then necessarily T o] and T

[a]

have to be pro-
N

[b]

N and E a] Because of the as-
N

portional (with numerical factors) to [

sumed skew symmetry which is always present, writing these objects we may omit

a
l.I-aN

the symbol [ ] ( E[ )= E )or we may divide the indices of these
a
N

quantities into arbitrary ~ also skew = syb-sets of sets of indices

11+...+15=

o, A
2 .

)N a The I‘Iﬂl"mdl-

€eGe, E N= E[‘]l

[a] 1

ization of these symbols is so chosen that the following is true

N (o] [s),_,
(k) : E

(2],
E[] k =01,...N

(b} [s)y.,  Ib],
(3.17)
(These are the partial traces ; note the important relation
E:E:é:N _ E[‘]N E[b] ). Also notice that
N N
R T (3.18)
[bl"'bk-l s ] k 'bl"'bk-lj
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With the help of E[m]N and E b] one defines the generalized
N
Levi-Civita symbols €~ = 1/VNT E. . and €= 1//NT E)
[a] [a]
. o ICACY 5 I
(their normalization is € = 1= € 1! n°  in the same sense
(2 ... x ]

as in (3.16) ).
Using these and the Kronecker &'s we may rewrite (3.17) and (3.18) as

1 a
e[ ]" [S]N"‘ € = J a), (3.19)
(N=k) ! [b], [s]_, [b],
[a]“"l . n=k +1) Lg — (3.20)
[b]k-l s [b]k_..
For k = 0 (3.19) reduces to G[S]N E[ ] = N!;for Kk =1 (3.20)
S
N
reduces to 8, = N. These formulae are formally identical with those well -

known from the tensor calculus. However, the fact that they hold in unchanged
form for our sets of indices =although logically trivial = is not trivial from the

technical point of view. [t reduces algebraic manipulations with the quantities
"wearing" sets of indices to those with which we are well familiar, moreover, it

enables us all the time during these operations to ke=p the manifest covariancy.
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IV. POWERS, SKEW POWERS, MINORS

The aim of this section is to extend the standard notions and results of the

theory of determinants, minors, etc., to the case of our tensorial matrices.

LQ"M:

the sequence of matrices

l M: “ be a N x N matrix from Ml. It generates ir'a"""H’l.k

[a], _
Mgy - ” Mia™ o || &
Nq [al ak_q ‘k-q-i- ak]
) TI: [b (S by q Mbk-q-l-:: Mbk] ”

(4.1)

which are the skew symmetrized external products of the matrix M with itself
N

well - defined for N> k> q> 0. The index [q] on the right indicates how

d
many times this quantity contains the matrix Mb « For q = 0 we have

and the unit matrix, By N, we here understand ( ) . These quantities are

M

M=o 1. (4.2)

The other extreme for ¢ = k defines the skew powers of the matrix:
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€ “’}nk

[al ak]
M[k] B ” Mbl Mbk

(4.3)

Because these quantities from definition are objects from Mk we may omit

in their symbols the k on the left. By M we will understand just the number

[ o]

1. The M coincides with the matrix itself. Formally, the skew powers are

(1)

defined for any k but for k> N all of these identically vanish,
The skew powers enable us to infroduce the concept of the rank of the

mui'rixM::l M

b

; the matrix M = M is said to be of the rank r if

1

N_>_k>r—'M[k]'0,r2k20—'M[k]%o. (4.4)

The traces of the skew powers define the fundamental sequence of invari-

ants of the matrix:

[s s, ]
poy T M — 1----Mk
[ k] r ( [k]) Msl *x
:L éul...“k le MVk . k=01,2,..., N.
k! v v u u
IR A g "

By M we understand just the numberone, M =1. For M we
[ o] [o] [N]
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also will use the alternative symbol

Det | M: ‘ = M. (4.6)
(N1
Notice that for the motrix of rank r necessarily N> k> r — [M] = 0.
k

The invariants with lower k may vanish as well as they may be different from zero.

Note that the normalization factor in (4.1) is so chosen that

T M = M ,for N2k2gq. (4.7)
f\e Ll [q] |

The skew powers are to be contrasted with the proper powers of the motrix,

or simply, powers. These we define inductively as

!
<
<
o

~

!
&L

-l
>

L

M°= 1 ’ Mp+1
(4.8)

Of course, with M € ¥ all its powers also ore objects which belong
1

tom
1

Note that the concept of power of the matrix may be extended along the

same line for kM from "M,

O

M =k1’kM

pti1

P
M"M !P*_"Oflrzr"'

k
(4.9)
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The troces of the powers of M = M form the sequence of invariants
1

(t

T (Mp) = M.p=01,2,... . (4.10)

8
For p = 0 we obviously have M = N; not all of these invariants are

independent, But those with p = 0,1,2,..., N are independent. Consequently,

0 1 N
we shall call M, M,..., M the second fundamental sequence of invariants.

The next important concept which we must introduce is that of minors.

o], [s],

Mg “ /it (S (6], Cc], MEJ 3] l "
N2k>20, N2q20, k+q<N. (4.11)
We have the obvious
Moo= 1 (4.12)

Lo

The minors in the extreme case k + 4 = N we will call the proper minors,

and they moy be put in one $o one correspondence with the skew powers:

hﬂy]“ u%n¢]' (4.13)

Indeed, these are the algebraic complements of each other in the sense -
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that the following holds:

M - M = M 'k1,k=0,1,2,...N.

[N-k] (k] [N (4.14)

(The equivalent of the Laplace's development of the determinant). Observe

that

N N'q !
Tr (km[q]) _( L ) [24] . \4-]5‘

[N-q]
of view, setting k = 0 in (4.11), we conclude that

(For the proper minors T,( M k]) = M . Also, from the farmal point

(] = M . (4.16)
0" [q] (q]

so that the fundamental sequence of invariants may be understood as a specialcase
of minors .

Notice that the skew powers may be expressed through the proper minors as

r

(o], [s] .. [l .
B e

(4.17)

in obvious notation.

In order to learn more about the properties of skew powers, powers and
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minors, now we will study the so-called A- matrices. Let

My = M- -1 (4.18)

where A is a complex number. All of the previously considered identities are still
true when we substitute M — M (\) ; by comparing the coefficients of different

powers of A we will obtain a further sequence of useful identities.

First of all, substituting M =~ M - 1 * A into (4.1) one easily finds

_ q=-p NP
A. — -}\. .
kM[q] (M) Z (=A) (q_p) kM[p]
p=20
(4.19)
These general formulae for k = q gives us the expression for M[ ] :
q
q N -p
q=-p
/\ — - >\. .
M. (0= 2 (= (q_p ) M
p=0 (4.20)

Toking the traces of (4.19) or of (4.20) =because of (4.7) - we derive that

9

N-p
M ()\-) . Z (-)\)q-p ( ) M q= 01,25 N
lq] q-p [ p

p=0
(4.21)

The last formula becomes specially important important for ¢ = N With

the help of it we define the characteristic polynomial of the letter A as

DN(A):Det x- T -M”=(-)NM (A) =
df
[N ]
N
- =YY (- TP M.
“~ b

(4.22)



N
(The A here enters with the coefficient M

(o]

For the minors we find

d - N-k-
A -\ q-p P m
Mg V= 2 BN ( q-p)k o]
(4.23)
which for the proper minors reduces to
N-k Nek-p
m A. = (- & m >
£ [N-k] M) péo ) " [p] (4.24)
Writing down (4.14) for the A - matrices we derive
k N-k Nep-qd [N-gq
- A m .
qéo péo =) (k-q) kT [p] kM[q]
N N-n M
= (= A) .
e 1 ngo [n] (4.25)

Because the coefficients of powers of A must agree, this splits into
2
(N + 1) identities :

llMp;-

n= 0,1,- I N

Ne- k=0,1,...N
ém, ! )y Mg - uh",,";{ -

(4.26)
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These identities exhaust all the relevant information about the products of

o] Mgl

Particularly important are these identities for k = 1. Because lm

the type | M

eM ,
[p] !

similarly as the matrix M = M itself, we may here omit the suffix 1 on the left,
1

M =M. . . One easily sees that (4.26) for k = 1 may be written as

[P] LP]

I - M=M - 1 . (4.27)

(4.28)

an expression for the N x N minors through the proper powers and invariants,

Using (4.28) written for p = N =1 in the last of {4.27) we obtain

N M N-q M
- = 0 .
2 ) [q]

Q=0

(4.29)
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This is equivalent o the statement that the characteristic polynomial taken

from the matrix itself (the powers of the matrix undersfood as proper powers) vanishes:

JS)N(M ) =0 ., (4.30)

This is the Hamilton - Cayley equation for our tensorial motrices

»

{B!...B"...)

This statement holds in general, independent of the rank of the matrix. In
the case of rank k< r £ N o similar but stronger statement is true, Define the

incomplete characteristic polynomials as

Bﬂ (A)= (‘-')s Z (-k)'-q M s S — 0,1,2,--:,N
9= 0
[q]
(4.31)

[For s = N this becomes the full or complete characteristic polynomial].
Therefore, (4.28) may be rewritten as

m =GP0, (M ) . (4.32)

Now for the matrix of rank r we have M = 0 which implies that

(£ +1]
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M-B,(M)=o (4.33)

which is an equation of the (r + 1)'th order. The assumption M[ oyl =
£+ 1
while M £ 0 implies that M ... M all vanish, so that (4.30) re-
el (e41] (K]
duces to

M9 (M ) - 0. (4.34)

Therefore, for t = N=1 (4.30) says the same thing as (4.33) . However,

N«f=]
for N-r > 1 the fact that the factor M may be removed from the identity

(4.34) is not trivial,

One can remark that the more involved quantities of the theory I.:M

[q]

ond as matrices from'mk , also define their characteristic polynomials

M

N
(of the order N = ( ) ) ) with invariant coefficients and -substituted to these

polynomials = they annihilote them.

We now should like to introduce the concept of the inverse matrix. The matrix

-1
M is said to admit the existence of its inverse when there exists such matrix M
that

M-M'"=1T-M

M. (4.35)

The rank of the matrix which admits the inverse must necessarily be r = N .
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Indeed, our definition of the determinant enjoys the property

Det I M - M ” = Det ' M ” » Det M il.
1 2 1 2
(4.36)
Also: Det 1 ” = 1. Applying this rule in (4.35) one finds
Det M ” * Det M o l =1, (4.37)

Therefore, for the rank r < N we have a contradiction. But if r = N so

thot M = Det “ M ” £ 0, the inverse is uniquely determined, Indeed,
[N]

the last of (4.27) yields

M = M n . (4.38)

Clearly in this case

Now we would like to prove a simple theorem: if P (A) is a polynomial of
the order n in the letter A {(with the coefficient of A" equal one), if P (M ) = 0, ,
then, for every A such that P () f 0 there exists the inverse matrix

[1-r- M]7.

Indeed, ler

PN ==" 2 077 P p oy=pPn.

b= 0 [p] a

167



the P, p=0,1,...,n being some coefficients, P. = 1
Lp] [ o]

Then one easily checks an algebraic identity:

ne-1 ] P A) - P nejy ]
Z Pﬂ-l-s (z) ) n( ;\-z n (Z) _ z Pn_l_s()\)z .
S =90 $ =0
(4.40)
Therefore
n-| '
(A=z) 3 P . (N2 =P_(\N=-P_(z). (4.41)

b

0

Substituting into this identity z = M and making use of the assumption Pn (A) #0

we conclude that

-1 =1 P A 3
[ 1 - M] -y Teaes (Y6 (4.42)
§ =0

which proves our theorem, moreover, it provides us with the explicit construction

1wl

148



V. THE MINIMAL POLYNOMIAL

| et

2
<l
If

6s (M) =(=° Y nN""°P M s = 0,1,2,..
p= o0 [p]

o
—

(5.1)

o J——

be some polynomials with coefficients M ,..., M . The one with the highest
[o] {N]

order in this sequence, the ﬁ'ﬁ (\) is said to be the minimal polynomial if

(1) B-N- (M) = 0, (2) the number N is the lowest number for which a relation
of this rype can hold in a non-trivial manner.
The minimal polynomial enjoys a few important properties which are de -

scribed by the following theorems:
Theorem I, The B’ﬁ (A) is unique., Therefore, all the family of -53 (A)

is uniquely determined. Indeed, if there exist two ditferent minimal polynomials

of the order N, thelr difference would be a ron-trivial polynomial of the order < N
wh’-h canr be annihilated by the substitution A— M.

Theorem I1. The D - (\) is a factor of any polynomial P {A) with the

property P {M) 0. lndeed according to the definition of N the order of
P (A) nas tobe N' > N. Therefore, according to the rule about the division of

polynomials

PO =Dg v+ s+ RN, (5.2)

where S (\) is of the order N' = N, but R (A) is of the order N - 1. Substi-
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tuting A = M we get R (M) = 0, which because its order is < N can be
possible only when R (A) =0.

Theorem lIl. The roots of the characteristic polynomial DN (A) are roots

-

of D_ (\) and inversely, the roots of DN'(M are roots of DN (A):

h

Do(X) =0-~D (A) =0,D (X =0-D-(X)=0.
(5.3)

indeed, the truth of the first implication follows from theorem Il according

to which D N()\) may be represented as

W
z

I
Ol

(A) = 3D (N). (5.4)

As far as the second implication is concerned, assume the opposite, i.e.,

that D (N*) = 0 but D..()\ ) # 0. Now taking in (4.42) as P_ (PC") just
D ()\ ) , we explicitly construct the well-defined matrix [1 y M]

Now taking the determinant of the ldenflfy[ 1 ¢ A" - M] [1 - M] = 1
and remembering that DN()\* - Def"" - X' = M ” vanishes by assumption,

we get 0 = 1, i.e., the contradiction. Hence, the second implication is true
The characteristic polynomial (because complex numbers are algebraically

closed) may be always represented as

N N

NPT Y VR e
p i=

DN (A) = Det

P= 0

(5.5)
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where

(5.6)

%

The quantities M , 1 =1,2,..., N, =the difterent roots of DN (A) =
i
will be called eigenvalues of the matrix M . The integer exponents n. are their
multiplicities .

Now theorem III implies that if DN (A\) has the form of (5.5) then

N . N

e i e D. , .
N ORI M CIPN R M - n (»-M )™
o0 P (5.7)
where
0
0;2q;21, ) ¢; =N, N2N2N . (5.8)
i= o

The _M- are uniquely defined invariants of the matrix because the B'ﬁ (A)
[p]

is itself unique. The quantities Sni = n; = q,, the algebraic defects of the multi-

plicities are therefore arithmetic invariants of M . Note that 8D (\) in (5.4)
may be presented as

5D (M) = l'[ﬁ (?\-M) Yy =-12 &, 2> 0,

i= 1

SN = N - N = ZSni>0. (5.9)



For tne order of the minimal polynomial, N, we always have the 'bound’

N < N. However, for the matrix of the rank r, N = 1> > 1 we have another

stronger 'bound' for N. Indeed,we found in the section IV that M D ( M) = 0.

Hence, according to theorem II we have AD (A) = Dﬁ (MY S (A) which is

possibl;e only for N <t + 1. Moreover, because in this case DN()\) ~ )\N-r D]r (M)

L 1

) Y
one of the eigenvalues,say M , must vanish; its multiplicity must obey n 2N-r
1

When additionally M £ 0,we know more about this eigenvalue. Because ?\Dr()\)

[r] _

here has only the single root A = 0, it follows that DFJ' (A) also has only the single

root A\ = 0 so that q, =1. However, M # 0 implies that n, = N =r,so that

Lr]

8“1 = N=re=1,

Now comparing the coefficients of A in (5.5) we find

(5.10)

so that the invariants M are uniquely defined functions of eigenvalues. Among

[p]

these, particularly simple are

1 (5.11)

172



N [i](M:""’ M'o) - M

n
Now let F(z) =a I (z; = z) be any polynomial of z (the z; do not
j=1
need to be different) . Substituting z = M we have a well-defined matrix
F = F(M) . Now because the determinant of the product of matrices is eaual to

the product of the determinants we have

letl] <ol ]
j=1
n NO ’ n
= aN [I Det Z--M =aN I DN(zf)=aN 1 .H (Zi-Mi) -
j=1 ] j=1 j=1 1=t

NO n n No n
= n (a H zi_M'))li= H [F(M.)] i

iy T ' i= l

(5.12)

Replacing in the derived identity § (M ) by 1 A - F(M ) we obtain

N N
Det |1 A - F(M)“ == Y =NVPOF S n (x- F(M )
p= o [p] Q=1 '
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This relation shows that the eigenvalues of F(M) are simply F(M )
if it happens that i #j - F(M ) # F(M ) their multiplicities are the same

as those of the original matrix. Moreover, comparing the coefficients of powers of
X in (5.13) we conclude that the invariants of the matrix F = F( M) , F ,are
given Qs Lp]

£ - [e:] (F(Ml) F(M;O )) (5.14)

with the same functions @ as those defined in (5.19) . in particular, observing

Lp]
that [M = M’ = M = Tr(M) we conclude that
1] :

r:[F(M)] - o F(M.) (5.15)

l"1

This formula will be of importance later.

Note that we have proven (5.13) and consequently (5.14) and (5.15) only
for the polynomials F ()\) But these formulae also happen to be true for more
general functions on matrices F(M) , which we will study fater. For the moment

observe this: if G (z) is a polynomial with roots z, for which the inverse matrix

{ ;- M ! exists, we may understand -if G(z) = b ;I. (zi - 2) = the
j=1
G.I(M) as the product
- =1 1 z, o 16
G(M’ b iEI[r M] (5.16)



of corresponding inverse matrices. Therefore, the rational functions

F (M)/ G (M) of M are well-defined. It is obvious that what was crucial
in the derivation of (5.13) = (5.15) was the product representation of the F ( M )
studied, This clearly remains true when F (A) happens to be a ratio of two poly-
nomials, Therefore, (5.13) - (5.15) are also valid for rational functions. Applying
a limiting process in the numerator and the denominator so that F (z) and G (z)
tend to intinite products or series one concludes that the formulae considered also

remain valid when F (A) happens to be a meromorphic function such that F(M )

makes sense. We will return to these problems later.
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VI. RELATIONSHIPS BETWEEN INVARIANTS

In this section we would like to study the relationships between various

kinds of invariants which one can construct from the matrix M ec'ml .

There are two fundamental kinds of invariants

M = Tr(M[p])  p=01,...,N ; (6.1)

M=Tt(Mp),p=0,1,2,... . (6.1)

The question arises: how are these related. To answer this question, ob-

serve first that (5.15) in particular implies

NO

P P

M o ni Mi P = 0,1,2,- s » » (6‘2)
i

=1

Now introduce the polynomials constructed from the incomplete character -

istic polynomials as

'l’s(z) =ZS(DN}£- = z (-z2)* M ,s =0,1,...N.
1= 90 (6.3)
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(Observe that \b. (0) = 1). Now using the product representation DN (z) from
(5.5) we conclude that

N NO
v (z)=z" D (L) = (-z2)' M = @ .
. o) qz la] =
(6.4)
Taking the logarithm of this relation we derive
No
In( l,bN(z)) = z n, ln(l-z M:) . (6.5)

1=1

Therefore , using on the right side of this equation, the uniformly convergent de -

ve lopment of ln(l-z M:) [ for | z | < Min {M:,-l,,'M; ,-IJWO

obtain

NO . N

2 o i 'zgpM;p“i zp( 2 “iM;p)-

= 1 p=1 p=1 P i=1

1n(¢N (z)) =

i

(6.6)

Here using (6.2) we derive an Identity which is crucial in this section

N 0o D
ln{z (2)° M} - Y E M, e
P=1

1= o [q]
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'<R—Mm{’MI NJ’}

This identity, valid in the radius of convergence, R for any z, already

(647)

does not explicitly contain either M 's or ni's .
i
It enables us to immediately write down a sort of Rodriguez* formula in

which we express one type of invariant through the other

py N, =

I)P (dz) exp [ Z M] = 0,1,...,N.

8 =1

(6.8)

Here the upper limit of summation may be p or one can go with s upto N

or up to o, as is convenient,

p b ps N
M=- (P}I)i(% ln[q;, (-2)" [I\:lJ] z=0,p=1,2, .
®
(6.9)

The upper limit of summation for p < N may be p; for p > N it must be
kept as N .
These formulae, although looking very innocent, solve in a compact form

a rather difficult problem: expressing the determinant M through power invari-
[N]
P

ants M obviously is always possible; but for the determinants of higher order it
is rather involved when we just start from the definition of the determinant.

A few additional coments : (6.7) in the form
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N

Z (=2)" M =exp[ - i z? ;4]

P
a=o o = (6.10)
implies not only (6.8) but also
D 8
3
(_d._)pexp[-ZE M:l = Q0 forp=N+I,N+2,... .
dz s 2= g
8 = 1
(6.11)
This -by applying the Leibnitz rule of differentiation - reduces to
pti1 P . S
pri>n = M =L CHP e[ - > 2 My
p! dz S z = o
s =
(6.12)

P
This formula gives us the step-by-step rule of how to express M for the

1 N

arbitrary p > N through the independent invariants M ,. .., M . Indeed, (6.12)
N+1 1 N 1 N +1

for p = N givesus M through M .. M.

Knowing M... M writing (6.12)

N +2
for p =N +1 we derive M , etc.,

Now expression (6.9) suffers one technical disadvantage: it fails to cover

J
the case p = 0 in which we should have M = N. We claim that the uniform ex-

P
pression for M through M] {M], valid for all p's, including p = 0, may be
N
written as [1
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P
_ .1 dz _d 1 -
M=-— 957? 1n {Dn‘;)} , p=01,2,...

Co (6.13)
N
where DN (1) = (-)N )} (-z)q”N M . One can verify this directly by
Z
q=o0 (ql
computing the integral for p = 0 (which happens to be N) and for p 2 1 rewriting

In D ( ) as ln( N!./J (z)) = = N lnz+1n¢l (z) which proves that for

p > 1 (6.\3) reduces to (6.9) . The other method of checking it consists of the
substitution of 1/2 = ¢ in (6.13) (remembering the necessity of changing the di-

rection of integration) . That way one gets

P
_ 1 p d i
M=gie @ e (1De)) e -
Ceo

=L gf) df«fpz—T Z_

C oo i=1 'f_ i=1
(6.14)

os expecied.
In the further considerations we will often use the incomplete characteristic

polynomials D_ (A) [see (4.31) for the definition] , or the generated by these

polynomials Y (A) [see (6.4)] . These, according to their definitions, are de-
8
termined by the invariants M , from the first fundamental sequence, which serve

[p]

as their coefficients. We know, however, that M may be uniquely expressed by

[p]
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1 N
M... M, from the second fundamental sequence. It is of interest to express the

polynomials "bs (A), Dy (A) explicitly through the invariants from the second

fundamental sequence.

In (6.4) using the expressions (6.8) for M we have

[p]

Y (A) = (-NF M -

2 N

8 s q q

_ 1 d AP __ -
- T27i 95 j' Z - M':’[ Z %’ M]"

Co p=o 171
_ 1 dz ([)\]'+l-l)exp[- : z° hqd

LT Az Z <
Co q=1

(6.15)

If Ais located outside C_ the second term in the integral, as an analytic,

does not contribute. In that which remains we set z = A& obtaining

q

s q
l’b-(h): 1' ¢ lif 214-1””[- Z d M Kq'] ;

211 q

Co -1

(6.16)
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it is obvious that in this integral we may replace 1/ (1 = £) by

- |
-ln (1= ¢) - [ ¢ ] that
exp £ exp q; . so tha

q q
AR _gi'“ “p[z (1->\‘IM)]

Co 1=1

LA N

(6.17)

and, consequently

s - P
J () =L %) “P[Z %P (1~ AP M)]l s = 0,1,..., N .
p= zZ =0

(6.18)

Which is an explicit expression for the polynomials mp. (A) in terms of the

P
invariants M . Because . Ds (A) = A° gb. (_}X.) , using (6.18) we easily find

O’I’ll"Ni

1 d' - 2P p_p
D, =Ly e[ D 20 M]

s =
s! _
P=1 £

(6.19)

It is interesting to observe that with the help of this formula one may easily
obtain a simple identity

(6.20)
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for arbitrary A\ and w; it is obviously symmetric in them,

P
One can add the remark that the relationships between M's and M may

[p]
be also approached from another angle. Indeed, by taking the trace of (4.28)
[remembering (4.15) ] one finds

q-1 q-p
q * M + z (_)CI'P M M =0, q=1,2,00.y,N=1,
ldl 0T [p}

(6.21)

l
On the other hand, multiplying DN(M) =0by M and taking the trace

one has

0, 1 = 0,1,2,---

M=
<
<
t

(6.22)

These algebraic relations of invariants of both types form a chain of e-

P
quations which enable us -by a sequence of sué¢cessive steps - to find M -of any

desired order - as expressed through M , p = 1,..., N . The inverse problem

(p]

entirely solves the system of refations (6.21), which enables us to express step-

1 q
by-stepany M through M ... M . The relations (6.8) = (6.9) are essentially
[q]

equivalent to (6.21) and (6.22) . However, paying the price of the higher order

ditferentiations we have the compact expressions which do not require any step-

by -step treatment.
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Now , we should ljke to infroduce o third closs of invariants which hos

P
certain advantages in comparison with the M's or M's ; fhey enable us to ap -

[p]

prooch the problem of the olgebraic criterio for the sxistence of N, of ditferent

eigenvalues. We define the invariants of the third kind as

k + !

A, =Det{l M I}, k,2 =0,1,...,s=1, s = 1,2,..
(6.23)
k + !/
where the matrix {| M || and the determinant are to be understood in the standard
sense,
In order to see the meaning of these invariants, write them explicitly as
k + / kﬂ+lo k:'-l'bzer.-»l
A, = Def =1 ¢ € ... M
s M 35 ki.tl kl - 1 la ll -1
k, = 0,1,...,s =1,
(6.24)
p No
.. + P ‘
But taking into account that M = Z n, M1 , we may rewrite it as
t=1
Nﬂ' Nﬂ
_ 1 vk +1 vk ]
iu:_-l i"l=l L 0 ll-l
(6.25)
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Now recall the definition of the Van der Mond's determinant

x
v (xl y rxn) d=f : :
I?-l x:'l
(6.26)
and its fundamental property
V(xl,...,xn) = I (xi-xl). V(xz,...,xn) = I N &;=xy.4)
i=2 k = 2 i=k
(6.27)

With this definition of V as the function of many variables, it is obvious
that (6.25) reduces to

NO NO
2 ’ ’
A. = 1 Z > v o Ns . n V M » M
sl : . 10 ll-l ' iO il-l
i,=1 i, =0

(6.28)

This form of A_, along with the fact that V is skew -symmetric with re -
spect to permutations of the variables, immediately implies that
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This implies thot the highest non-vanishing A_ defines the number of
different eigenvalues. In the case of N different eigenvalues

2 ’ ’
Asz (er"'r MN);!Odnd AN+.=0,S=1,2,--.-

Another interesting feature of the invariants A, is that in the case of real

eigenvalues all of these invariants are non -negative. One can mention that A

may be represented as

1

ce.d ln { DN (z;l)} ‘Vf(z-l e z;l) i (6.30)

which in principle expresses them through the M's. But these formulas are of

[p]

little practical value. The most compoct expression for A_ is that which serves

P
as its definition, the expression through the M's.
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VIl. THE MATRICES AS TRANSFORMATIONS

Up to now we did not need to infroduce the notion of vectors upon which
our matrices may act thus changing them into ather vectors, There are, however,
certain aspects in the analysis of matrices which will become clearer when one
uses this approach.

The quantities (complex) of the type v*, v_ 'wearing' one co- or contra-
set of indices a ={ Al ... AY... } may be understood as the elements of linear
vector spaves V°, V.; (the contra- and co- vector spaces) ; we will refer to them
by the word *vectors' .. All of the standard theory of the linear vector spaces ap-
plies, of cot;'se, to the case of our vectors 'wearing' sets of indices.

Without entering into any details, we will recall a few definitions and conse-
quences which follow from them.

The vectors v* ¢ V,i=1,2,...,n are said to be linearly independent

if

i
x ¥ =0 - x =0 (7.1)

i
(x ore numbers ; over f-the summational convention is assumed) .

The necessary and sufficient condition for the linear inde pendence reads

Vi.we 4o (7.2)
[i i, ]

1

[The *volume of a parallelipiped® spanned on v®*... v® has tobe # 0].
) |  : |
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The necessity of (7.2) is self -evident; the sufficiency may easily be demonstratec

Namely, because i takes on values only between 1...n,

v 1 v o= € : v 17" n
[il i ] L n
vﬂl---ln _ '1_ eiln--in v‘l...v‘n ) (7.3)
n! i 1
1 n
Therefore
1 e_ii2 i Vil Vtz... Vl" _ ‘,‘1'“‘:. Si
- J
(n=1)! [l i2 ln]
(7.4)
This, contracted with x -(when it is assumed that x v* = 0) - yields
}
v 1 "y =0 +x =0 whenv! " # 0 .
(7.5)
Therefore, (7.2) is necessary and sufficient for the implication of (7.1) .
The obvious
a A [‘1 ‘n]
v ! v =¥ v
[11 in] l1 1::m (7—6)
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--recalling that from the definition of the set a there does not exist a quantity

a_ = Implies that the maximal number of

totally skew in more than N sets a, ...ag

linearly independent vectors in ow vector spaces is N . For this reason they

N
shall be de noted as V , VN . From now on all that is said about contra - vectors

will apply 'mutatis mutandum® to co-vectors . Any N linearly independent vectors

form a basis. lLete®, i =1,...,N form the basis. The necessary and suf-

ficient condition for it can be seen to be

e =1 611. lneu cer B ?51"?‘1\'*0
(N} N! 1 N o i
(7.7)
N :
A contra-basis €* € V  uniquely defines the inverse basis é‘ in VN
|
according to
. j i a
€ e’ = 8 s eb e‘ — Sb °
|
(7.8)
The explicit expressions for é. in terms of g' are
| 1 -1 iiz s e w iN ‘1 HN
e = e € € e ‘... e .
. 7NTI_)T Le ] 88 % i i
(N) Y | N
(7.9)

With the help of these concepts some new information concerning our
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N X N tensorial matrices may be obtained. Using (7.8) we may write

= e, e = : —- e’ .
Mb Ms i b '\14 eb M df Ma 1
(7.10)
Therefore, the skew powers of M may be written as
[ﬂ a ] [a a ] 1 1
M 1 M v M 1 M Q el 3 .
b, b, : ; b, b_
1 q
(7.11)

This simple fact has the implication that if the matrix is of the rank r = N,

- | a
all vectors M = M e® are linearly independent ; the same may be expressed

H 3 1

by saying that the matrix of the rank N transforms the basis into a new basis .
For the matrix of the renk r ,taking (7.11) for ¢ = r + 1 and using the
first of (7.8) we conclude that

M1... Mr*1 = ¢ (7.12)
i i

1 l:-*H]

a
so that any of the r + 1 vectors M 's are linearly dependent. Similarly one

i

a
shows from M # 0 that among the M 's there certainly exist r linearly

[e] ,

independent vectors . These facts , together with the representation of the matrix
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as {7.19), enable us to prove that the matrix of the rank r may always be

represented as
M’ = Z £ (7.13)

N
where £'s and 7)'s are linearly independent (respectively in V and VN) .

In particular, any matrix of the rank r = 1 may be represented as

M: = ft nb; a motrix of this form is said to be dyadic. Therefore, the

matrix of the rank 7 is o sum of r dyadic matrices.

Suppose that the matrix M is given in the form (7.13). The r
- | f

linearly independent f‘ olways may be completed by some & ,... £
i £+ 1 N

N
toa basis in V . This basis defines the corresponding inverse basis
N i
éa €V . The same may be repeated with respect to the Na's; we com-
plete the set of 1)'s by adding some N =r vectors to a basis in VN, and

this basis defines the corresponding inverse basis 7* ¢ VN + On thase
i

vectors one can span the following vectorial syb -spoces :



1 =1 i=1 + 1
: N :
v(‘) ? Z T fa ’ V(N-r) Z T gl ’ VN = V(r) ® V(N-r)'
1= 1 i=1 41

Now, the linear relations of the types

(i) y* = M: «® ,  (ii) Y, = X4 Mb (7.15)

N
may be understood as the linear transformations in V  or V respectivelly,

Consider first the case with the rank (M ) = N. In this case,

because M transforms a basis into another busis, (7.15) may be under -

stood as the mappings

A A M A (7.16)

(7.17)
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then to any y* or y  there exists a vnique x" or x_:

& — M yl X =Y, M . (7.18)

Consider now the case 1 < r < N, It is obv[ous that in this case

the transformotion (7.15) corresponds to the mappings:

v(r) ~ y(r) | V(N-r) . o

Vey = Yoo » Vin.y — 0

(7.19)
or, more symbolically:

() = M vl yv- o)

vt = MV , 0=MYV

Y(r) =v(r)M ’ 0= Vin.r) M.
(7.20)

—(N-r) —
The sub-spaces V and V(N-r) (annihilable by M) are

called the nil-spaces of M . The matrix with non-trivial nil -spaces is

called singular. Therefore, any matrix of the rank 1 < r < N is singular,
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This scheme makes clear what the situation is when we want to solve (7.15)

with respect to the x's, when the y's are considered as known. It is obvious

that the consistency of (7.15) requires that

ya E V ’ ya € V . (7.2])

If these conditions are met, the solutions are determined with the accuracy

x* mod v* € V(N-r) , X, mod v, € V(N-r) .

(7.22)

Or, more explicitly, if M: hos the form (7.13), and furthermore if y, and

y® are given as

4

r
i  _a i
Yl=ZY§ ’ Ya=2_3"77‘
i i *

i=1 i=

(7.23)

then the solutions of (7.15) are given as

r ‘ N :

1
x'=Zn‘y+Z n* C
-, i ,
1

: i
1=1 =r+1
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I.=i£’l{+ i s‘la? ’

=1 1=ra (7.24)

1
where C, C, i =r+1,...,N are arbitrary constants .
i

The form (7.13) of the matrix, as well as formula (7.24), which offers the
solution of (7.15) when y's are of the form (7.23), has a theoretical value only.
It gives a clear schematic insight into the meaning of matrices understood as

tronsformations. But by no means may these formuloe be considered an effective

3
solution, when Mb is given by just numerical values of its independent com -

ponents .
To some extent, however, the general scheme discussed above may be

frans lated into the language of formulae free from the use of £'s and 7's. In-
deed the statement M[r] # 0 along with the form (7.13) implies that

(7.25)

with the summation being over the i's from 1 to ¢. This, however, makes it

obvious that the necessary and sufficient conditions for y* and y, to be the

form (7.23) may be written as

(7.26)
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These are equivalent to

[a]  Le] (o]
m Nt s _ B INor-y 8 " _
(LI, B, ¥ 50 Mgy et
(7.27)
For t = N = 1 they become particularly simple:
m ¢ -9 , > =0, M.
o]t ) CLIRY Minaa] €M
(7.28)
Now, although M = @ implies M = 0, in generql M
[e+ ] (r+g)
M e # 0 does not lmp]y :\4 # 0. Suppose, however, that we restrict our -
r
selves to the special case in which
1<sc<N-1, M #o. (7.29)
£

[ This is the case of M having the eigenvalue M' = 0 with the multi-

plicity exactly N - r; because M D, (M ) = 0 the algebraic defect of this
multiplicity Is N -r - L; we discussed this in section V). Under this assumption

one can explicitly construct the solution of (7.15) by performing simple algebraic
operations on the matrix M ‘. Indeed, by contracting(7.27) one gets

masys=0,ysm5, =0, M e M. .
[r]- Lr] b [f] ' (7.30}
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In generol these are only necessary but not sufficient conditions of con-
sistency [for r = N - 1 they are also sufficient] . But under assumption (7.29)

we shall demonstrate that they are sufficient.

Write (4.27) with p = ¢ , r + 1, remembering that M ] =0
[r+1
m + . — . {?-3] )
£3 m[t- 1) M [e] 1 ;
m -M=o0. (7.31b)
[¢]
Assumption (7.29) implies that £ 0, M =0, M = 0,
(] [e-1] [£]
(7.310), together with M A 0, would mean that M oadmits the inverse ; this
[¢]
contradicts r < N=1. If M = 0 wewould have I =M - 1 ; using
(1] el (o]
this in (7.31b) we gat M M = 0 which contradicts r > 1 (when [M # 0).
Le ] r ]
Now, we claim that
y* = Ma x® x® = I/M ma . y' + ma < Ok
s [e]  Le-1] [£]
(7.32)

b
where C° is an arbifrary vector. Indeed, letting M act on the x* given by
a

this formula shows that the contribution with C° vanishes because of (7.31b) .
On the other hand, using (7.31a) and the assumption about v*, (7.30), we have
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. 1/M » . v = .4 c v —
M E\r/l] M[r-1] y I/M(m 1 m“]) y = vy

(7.33)

where for simplicity we omitted indices . Therefore, (7.30) happens here to be
the sufficient condition of consistency. In order to prove that it is also necessary,
we do not need to contract the general (7.27); because of y = M. x acting with

the left -hand member of (7.31b) on x we see that m[ ] * y = 0.
£

The term N° C  exhausts all the arbitrariness in x® ; one can prove

[e]®
this by showing that under assumption (7.29) m[ ] e"?ﬂl is of the rank N -r,so
(
that M C " contains exactly N -t linearly independent vectors. It will be

[r]®

simpler, however, to demonstrate this point later with the help of projection oper-

ators. Notice that (7.32) may also be written as

D, (M)
D, (0)

X —

. y D;—(M) . C .
(7.34)

Of course, (7.15) (ii) has a parallel solution.
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VIII. THE IDEM=-POTENT MATRICES

The matrix M with the property that

M =M(~M =M ,n21}) 8.1)

is said to be idem-potent. This condition is trivially satisfied by M = a 1 ,
a=0,1. The matrix M # 0,1 and which obeys (8.1) is said to be non-trivially
idem-potent. For the non-trivially idem-potent M s, (8.1) serves as the minimal
equation. Indeed, an equation of the first order is excluded ; it could be only

M = 0, . Therefore N =2 and D, (A\) = A(A=1). This, however, implies
that

Dy (M) = W=r (A=) = (43N 3 k(1)
k= o

1<r<N-1 . (8.2)

»

The number r =the multiplicity of the eigenvalue M = 1 (the other is

= Q)= characterizes the structure of M . Indeed, one sees at once from (8.2)
that the invariants M are

[p)
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M =(r)r p=01,ce.,r; M = 0 for P> T
P

[p] [p]
(8.3)
N
P P 2 ‘p
The invariants M according to M = Z’ n, Mi are
1=1
0 P
M=N, M=r«forp21. (8.4)
0
(For p = 0 we always have M = 2 n.) . The invariants A _ are
A1=N,Az=rN-r); A, =0s>2, (8.5)
Let M be of the rank r' ; as such it may be written as
i
M =' n (8.6)

where the £'s and 7)'s are linearly independent. Using this form in (8.1) we
find that

~ . .
Z?‘nb (n & -8 ) =o0.
i,j ° ; (8.7)
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Here using the lineor independence we conclude that

£ s i 1 8
e T oM E s
J 1

This implies that Tr(M) = M' =t', But TI(M) =M = ,\;fz r

Therefore

(8.9)

"

|

|
]

v

and the multiplicity of the eigenvalue M =1 coincides with the rapk of the
idem-potent matrix . Because of (8.8) the £'s and 7)'s may be identified with

1
e® and e_ which are a basis and its inverse. Spanning on €% ... e* the sub-
i ! r

Space v(r)' on e®...e" the sub-spoce V(N ) so thot VN = V(r) ® V(N -

r +1 N

we see that

(8.10)

Therefore the idem-potent M of the rank r may be understood as the

transformation which projects any vector v into its part which belongs to some

: : t
r-dimensional sub-space V( ). For this reason idem-potent matrices are also

called projection operators . Of course, the parallel interpretation applies with

respect to co-vectors ,
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Note that M.I. = 1 - M is also idem-potent of the rank N - r. It pro-

: . (N -r)
jects vectors into the sub-space VY . The following relations are true:

(8.11)
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IX. NIL=POTENT MATRICES

The study of the properties of nil-potent matrices constitutes an integral
part of the theory of the canonical forms on the level of the standard matrices. The
same is true on the level of our tenscorial matrices where the standard theory of
nil-potent matrices applies without any essential changes. For the sake of com-
pleteness we will sketch the theory in this section.

The matrix M ¢ M | With the property that

M=0, M "#0, q22 (9.1)

is called nil-potent; the integer q is called the index of nil-potency.
We claim that ¢ < N. Indeed, assume the opposite, i.e., q> N—-q=1=N2 0.

-1-0

N
But we always have z (- M)N- d Pd] = 0. Multiplying it by ( M ) b
P

p= o0
and using (9.1) we get M = 0. Therefoare, the Hamilton-Cayley equation re -
[N]
N-t1 N
duces to z (- M) "P M = 0. Multiplying it by (- M,’q- " we
p= o [P]
deduce that M = 0. Repeating this process, we get in the /-the step, multi-
[N-1]
-1-
plying DN(M) = 0 by {- M)q ' the conclusion that M = 0. Inthe
[N-1]
q-1-N |
N -th step we would get ( multiplying DN(M ) = 0 by (- M) with the
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positive exponent) M = (0, which contradicts M = 1. Hence, 2 £q <N.

(o] (o] ¢f

Let 2 < q < N. We claim that Mq = 0 is the minimal equation of M.

———

N -
N-p
It it were not, the following minimal equation of the form Z (- M) M =0
< [p)

would be true, where M =1, q = N> 0 or equivalently q =1 = N> 0. Repeating
lo)

exactly the same process as in the proof that q < N, we would arrive at the contra-

diction M = 1. Hence N = q. Because the minimal polynomial is unique, we

o]

therefore have

Therefore, the nil-potent matrix has the single eigenvalue M' = 0 with

the multiplicity n = N and the algebraic defect 6n = N =~q. From (9.2) it

follows immediately that

M = & , p= 0,1,...N , h4=N8 , p= 0,1,...,

(9.3)

The inverse statement is also frve : the matrix with vanishing M ... M
1] [N])

is nil-potent., Indeed, such a matrix has Dy (A) = AN Hence, 5( A) must be
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of form Bq (N) = A% ,2<q <N, if M is not identically zero. From the very

. . 1 q-1
concept of the minimal polynomial it follows that M # 0.

A general comment about the rank of nil-potent matrices ; because M =

[N]

all nil-potents are singular, rt < N =-1. Now, because of (9.3), equation (4.28)

reads
P
m . =E=*M ., p=01,....,N=1, m__ €N .
[p] [p] !
(9.4)
This implies that 0 £ 0. Because M contains linearly
[q-1] [q-1]
M[ ] this quantity cannot identically vanish. Hence
q-1
N-]._)_l'?_q"l- (9-5)

Thus, the possible ranks of nil-potents are bounded according to (9.5) .
This restriction for ¢ = N implies that r = N =1. Also, for ¢ = N =1 there
is a special situation., Namely, according to (9.5) and (9.1) we have that

"m[N ] = 0 implies that M = (. Hence, here r = N-2. But for

[N-1]
the lower q's there exists more freedom for the possible r's,

Now, without entering into details of the proof, we shal! quote the im-
portant theorem about nil-potent matrices which one proves in the linear algebra
and which also remains true for the nil-potent matrices in our sense (this theorem

is vaiid also if the considered matrices have elements from o field of numbers

which not necessarily is algebraically closed) .
If the N x N matrix M is nil-potent with the index 2 < q < N then,

there exists a number ;/ and numbers q, .9, - 9, such that
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(9.6)

N
and there exist vectors v* , v* ... v?® ¢ V  such that the vectors
| 2 ]

r
I

p 1,25 ¢4
(lll) c — M ' ’
(Prk) df P k 0,1,..., qP'I

N
form o basis in V ; moreover

The numbers q, ,... q, with the properties specified above form the
sequence of the arithmetic invariants of the nil-potent matrix.,
This theorem is the key to the understanding of the nature of the nil-potent

matrices , Observe that M acts on the vectors of the basis defined in (9.6) ac-
cording to

o
|
-

(p!k) (Psk"'l) (P!qp‘l)

(9.7)
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The choice of the vectors V, »++. v, is not unique ; the arithmetic invari-

ants, however, are uniquely determined.
Let the inverse basis to that in (9.6) be defined as

q_-1
(PIr , k') ' ! I P (p, k)
e® e, =8§-8k—*zz e® eb=8:
(p, k) p=1 k=o (PrK)
(9.8)
This together with (9.7) implies that
1 qp-l (
P!k'l)
M = Z z e® e,
p=1 k=1 (p, k)
(9.9)
from which we may conclude that
(Pr k) (Pr k - 1) (Pr 0)
e M = e ; e M = {
(9.10)
One also easily sees that
q_-1
o (Prk's)
Ms = Z z ea eb y S = 0111 y 4
p=1 k=35 (Pr k)
(9.11)
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[We understand the sum where s is > than qp -1 tobeempty]. Now,
let @ (n) be definedas® n> 0 - O(n) =1, n<=1—-@() = 0. Sucha

function may be sepresented as

OO

®(n) = z dn,m = z

m= 0

0

1 é dz . m _ 1 dz 1 .
2771 L0+ 1 2771 ,at1 12
CU

(9.12)

From the form of (9.11) and the linear independency of e it is obvious

(Prk)
that
l
S
re d-—; rank(M ) = Z G(qp-l-s) . (qp-s) s = 0,1,...,q=1
p=1
(9.13)
also
s (P!k) s (p,k-S)
M e = & , e M = e .
(p, k) (pyk +s)
(9.14)
The M"II therefore has nil-spaces of the dimension n, = N=r_. Formulo
(p, k)
(9.14), together with e = 0 for k> q, and e = 0 for k< =1, makes

(p, k)
it obvious which vectors of the basis belong to these nil-spaces.

The numbers r_ , n, are also arithmetic invariants of M. It is obvious
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that the sequences of q's and r's determine one another, Hence, it is only a

maotter of convention which of these is to be considered as fundamental.

The sequences of q's, r's, and n's, although important in themselves,

are not the most convenient to handle. In order to obtain a simpler arithmetic de-

k
scription of the properties of M one may group the vectors of the basis M A

according to two schemes:

SCHEME 1 SCHEME I

iiiiiiiii
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k
where the numbers ks denote the number of the sequences of the type M Vp

g~ S8
which end with M Vo Clearly, k.21 while the other k's are ky > 0equal

(equal to zero in the case where corresponding sequences do not exist), Looking

on our schemes vertically, in I the first line corres ponds to vp's, the second to
-1

q
M V, » etc. In the second scheme the last line corresponds to M P Vo s the

q -
next (going from right to left) to M p"?

v, s etc. In both schemes M shifts a
given line into its neighbor on the right; but it may happen that after shifting, a
part of the given line will be annihilated (in the first scheme) or it will meet new
participants (in the second scheme), The numbers k21, k,oooy kg 20
are of course arithmetic invariants of M. They must satisfy the obvious re -

striction

(9.15)

All other arithmetic invariants may be expressed through them. As far as
the q's are concerned, it is obvious that any k, > 0 gives rise to k.  numbers
9; = q, participating in the sequence q = q, 2q, 29, 2 o0 2 q,2 1. It is

also obvious that

(9.16)

As far as the numbers r. are concerned, it is obvious from (9.11) that only

B
those e participate in M which in the first scheme are located in columns
(p, k)
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starting from the s-th column (this being included). The number of vectors in the

s=th column clearly is

q-1-8
Z’= klp 5=0!1r !q-l
1= ¢
(9.17)
Therefore
q-1 qe-1-| qe=1-8
fs::z z ki= Z (q""S"‘i) ki-
j:; i:o i:g
(9.18)
q-1
In particular ¢ = Z (Q-i) k; =N, tq.1 = kK, o This implies
i =
that
q-1-8 g-1
ﬂ.=N-t'=3 Z ki+ Z (q-l)kl
1= g i=q-8
(9.19)

which may easily be seen from scheme II. by remembering that its last s + 1

3
columns form the nil-space of M .

The numbers k_ are particularly convenient in the problem of finding what
is the number of the possible discrete structures of our nil-potent NX N matrix

with the index q. [t is obvious that any combination of k. 21, k,..., kq .
which obeys (9.15) confributes to-one possible discrete structures Therefore,

denoting the number of the possible discrete structures as [N] we have
q
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(9.20)
But the same may be rewritten as
20 00 o
k k k
N1 = 1_ ¢ 1 Z Z Z, (z9) 9 (z9-1) '... =z 21,
[q] 271 SN +1
C, ko=1 k=0 Kgop =
(9.21)
For sutficiently small z (close to 0) the sums converge so that
q - 1
rNJ = 21 gﬁ dz I 1=z
lq e N9+l
Co
(9.22)
One can easily see that our [N] is the number of possible partitions of
q
N = q into numbers < q. Note that [N] = N = 1 in agreement with the
q [N-1]

fact that q = N implies r = N=1, q = N=1 implies r = N=2. Note that
for q = 2 (the extreme case for q) (9.22) yields

N m when N =2m o 2m+1.
N
(9.23)
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We shall conclude our remarks about nil-potent matrices with the statement

that, although they do not admit the inverse, one may define to these the pseudo-

inverse matrix which to some extent provides us with (not unique) inverse transfor.

mation. This molrix M(- l), we define by the conditions

Ml _ M-[M(-l)]l Mt v[M(-l)]' Ms [M(-l)]i _ M(-l) s

9.24)

If the matrix M is non-singulor these conditions aore uniquely satisfied by

-1 -1
M( Yo M . In the case of the nil-patent M with the index q this chain of
relations fails at s = q =1.

From our previous analysis one can easily see that such M(- ) certainly
exists., Indeed, the matrix:
9,-1 |
- (Pr k)

constructed from the basis defined in (9.64) and its inverse satisfies conditions (9.24)

1t Is obvious that if M ' obeys (9.24) alse M ! -1 will fulfill it if G

is any non-singulor matrix commuting with M.

The conditions (9.24) imply that the mafrices

P MM et M) e
(9.26)
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are idem-potent. They generate their idem-potent complements

PP=1-PFP ., Q=1- Q. (9.27)

In terms of these quantities, relations (9.24) say that

M Q] -0, PLM =0, QUM —0, (M0 B <.

(9.28)
Consider now the transformations of the type
y = Msx s = 1,2,...,9q=1. (9.29)
The consistency of these equations for x requires
3
Therefore y = - y ; now, decompose x as
- Qs . Qs
X = ( _L)x = X, * X, . (9.31)

S 8
Consequently, using M Q.L 0, equation (9.29) reduces to

H
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y=M x . (9.32)
(1) s
Acting on it with [M ] we have

[M('I)] Ty = Q x o= x. (9.33)

Therefore, the sol ution of (9.29) may be written as

X =[M(_l)]’!t y + le (9.34)

where v is arbitrary. This formula justifies the term ' pseudo-inverse' as the name

of M(-i)

transformation in VN . It is also obvious, because of the symmetry, that M may

(=1)

. Of course, similar formulae are true when M is understood as a

serve as the pseudo-inverse matrix to M when one has to solve

(-1)7] s
y =[M x with respect to x.
The last comment of this section: we may give to the numbers

3
r, = rank (M ), the independent arithmetic invariants of the nil-potent M, an

alternative interpretation. Namely, there holds

§ _ al lak _ (| ":’m .
M[k] M[bl‘” Mbk] | M[u]] ’ M[u] "k (9.35)

5
a
( Mb denotes s-th power of the matrix with indices a,b.)

6{7”!_ are nil-pafent with the

[r] s

It follows that the skew powers M

index q (r,)) = s +1.
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X. THE RESOLVENT AND THE MEROMORPHIC FUNCTIONS ON MATRICES.

In the end of section IV we saw that if P(A) is any polynomial of the
letter Awith the property F’(M) = 0 it may serve for the explicit construction

of the matrix R (\) = [f\- M] o (for simplicity of notation we omit 1 at A;
we shall do so through all this section; this should not lead to any confusion) .
This matrix is called the resolvent. The most economic choice for P (\) in (4.42)

is P(A\) = Bﬁ (\) : this choice gives us the representation of R (A) as a poly-

nomial of the N =1 degree in the matrix M

(10.1)

The resolvent exists and is uniquely defined for any complex A different
from the eigenvalves of M, M;'s . Therefore, the eigenvaluves may be interpret-
ed as the singularities of the resolvent. These singularities, zeros of Dﬁ-()\) ;
form a set of isolated points on the complex plane of A.

Note that construction (10.1) , when convenient, may also be repeated on

the basis of the characteristic polynomial DN()\); on the right side of (10.1) we

have, however, in this case, a polynomial of the N -1 degree in M.
Now, with the help of the concept of the resolvent we would like to define

the concept of the meromorphic function on the matrix M.
Let F (z) be a meromorphic function of the complex z with possible singu-
larities z_ , s = 1,2,... distributed arbitrarily on the complex plane which,

--= is an essential assumption == do not coincide with any of the singularities of
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the resolvent, i.e., with the eigenvalues M .
1
Now, consider the matrix, being a linear functional of F (z) defined to the

original matrix M, as

MIF(z)] =_L gﬁ dz F(z) ;
Z

2771 - M
C

(10.2a)

N -1 5

M [F(z)] = Z { 2‘1’7} 96 dz . I%'“P(Z) F(Z)} Mpp

- ~ (z)

p= 0 C N
(10.2b)

h
where the contour C is so chosen that it contains all M 's (the singularities of
1

the resolvent) but none of z (the singularities of F (z)) . This matrix is well-
defined and always exists.,

We would like to show, by studying -the consequences of the definition
(10.2), that a so defined linear functional of F (z) deserves the name of "the
meromorphic function on the matrix M". This will be the main topic of this
section, where we will use only the definition (10.2a) and the fact that the singu-
larities of the resolvent are isolated.

In the next section we shall study the consequences of (10.2b), i.e., of
the detailed structure of the resolvent, approaching that way the problem of the
canonical forms of the matrix.

According to the definition of the contour C in (10.2a) it is obvious that
(10.2a) may also be rewritten as

M [F(z)] = Z M [F(z)] = Z — (ﬁ M F(z) .

1=1 i.....l

(10.3)
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%
Where C\p are small contours around M 's (which do not contain the
1 i

singularities of I (#2)); regions inside separate CMa are assumed to be discon-
i

nected [the C in (10.20) may always be deformed into the sum of C ..:'s] *+ (10.3)

L

M
defines unigquely the decomposition of M [F (z)].

[

The "partial matrices" M [F (z) ] enjoy remarkable properties. Indeed,

1

an identity holds:

1 ) 1 _ 1 ( 1 _ 1 ) z £ z
L Z_ - Z R 2 !
z - ZQ-M /I zl-M zz-M
(10.4)

which is a perfectly well-defined matrix equation with the proviso that z and z,

do not coincide with eigenvalues. Multiply it by F (z,) ond G(z,) ond integrate

the output é le ¢ clz2 , the contours being so close to eigenvaluves

o C.~
MI Mj

that they do not contain singularities of F(z ) or G (z,)« Because the domains

1
inside of contours are disconnected and because of the structure of (10.4) we easi-

ly derive
i #j—~ M [F(z)] - Mi (G(z)] =0 ,
(10.5)
for any F(z), G(z). Now, let Cyp and 'EM\ be the contours around the same
i i

!

M‘ so close to it that they do not contain singularities of F(z), G(z). More-
1
"

over, assume that Cpo lies outside Copt e Integrating (10.4) - multiplied by

i* o
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F(Z1) , G(Zz) ~ along these confours( 96 dz1 5@ dz2 ) we derive

P~
i

L S

(10.6)

On the left side we simply wrote for the corresponding integrals the symbols

M [F(z)], because these clearly do not depend on the particular choice of

1

contours. On the right side, in the first term, the integration over z, may be per-

formed: because z lies inside Cyn where G (z,) is analytic, the Cauchy formula
1

may be applied here. |n the second term we first execute the integration over z ;

but, because z, lies outside C o the integrand is holomorphic here so that the
i

integral vanishes. Therefore, (10.6) reduces to

(10.7)
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The formulae (10.5),(10.7) together imply the genera:

MI{Fz)] - MI{G(2)] = MIF(2) G(2)],
(10.8)

which is valid for any F (z), G (z).

Now, we claim that no matter what M is, the following is always true

_ 1 dz _ )
M 1] 2771 gé z-M 1

C (10.9)

Indeed, let a be a complex number; we have

_ 1 dz
(aM)[l] = 1_ (ﬁ dz R é T M ta)
2771 Y - a z-aM
S z-aM e

a

(10.10)

4
where C, contains the points aM , which according to (5.13) are eigenvalues
1

of the aM . Of course, such a contour may be deformed into C. For any finite

a the matrix M (a) certainly exists and is well-defined. In particular, obvious-

ly, M (0) = 1 . On the other hand for any a # 0 we also have
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(10.11)

From these facts one concludes that {im (aM) (1] = M [1]. On the

a— 0

other hand, lim (aM ) [1] = M(0) = ] . Hence M [1] =7 ond (10.10)
a—"'g

is true,
Now, the decomposition (10.3) together with (10.9) gives us a decompo =~

sition of the unit matrix :

N N
0 0
1-3 652 ¢
— i df — 2771 : Z'M

%
M

(10.12)

The matrices £ = M [1] in consequence of (10.5), (10.7) fulfill a very
1 1

simple algebra :

E_ . E = 3_ E (i,j = 1,2,..., N{} : No summation over i},

(10.13)

therefore they are idem- potent. Their structure and properties will be studied in

the next section. For the purpose of this section the information contained in

(10.12) and (10.13) is sufficient.

Consider now M [z] ; we have
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2771 771 _
C C
(10.14)
This fact, together with (10.8) implies that
Mzl =M ,a=01,... . (10.15)
This, however, means (because of the linearity of the functional
M L F (7) ]) that if P(Z) IS any polynomial
M (p(2)] = P(M). (10.16)
Now, take the obvious identity
1 1 _ 1 1 _ 1 1
A=z - M A=z A=-M A =-M z=M
(10.17)

(essentially the same as (10.4)), and integrate it over C containing all M 's
1

but not the point z = A. Doing so, we obtain
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A=z A= M
(10.18)

This, together with (10.8) implies that

(10.19)

1,2,...N . From this, one concludes that

) A
valid with the proviso AZ M , i

1
-z

) we have

for any polynomial P (

MIPC 1)y =Pt y .

(10.20)

The facts contained in (10.16) and (10.20) give us a convenient starting
point for approaching the Laurent-type development of our functionals.

Let z, be a point on the complex plane. 1t may be (but not necessarily is)
one of the singular points of F(z). Assume that it does not coincide with any of

)

M *s: (Later we will see under what conditions this assumption is not needed.)
1
Now, consider a family of circles K ,K , K ,... with the centerat z . The

K, coincides with the point z_ itself (a degenerated circle). The K has as one
of its points the singularity of F(z} which happens to be the closest to z o There
may alsa be a few singularities of F (z) on K, it they happen to be equidistant

from z « The K  goes through the singularity of F (z) (or a few singularities),
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which is the next closest to z_ etc. Now, consider for any circle K. two circles

C;_l and C7 infinitesimally close to it, from the inside and the outside respective-
ly. Between the circles C: and C;' we have the domain of the complex plane, o

ring, denoted as R., We shall assume that all singularities of the resolvent, Mr's,
1
are somehow distributed inside of the family of rings defined above (none of M *s
1

lies on any of Ki's) . By this assumption we simply intend t¢ remove some incon-
venient limiting locations of z from our cons iderations. The situation is illus-
trated by the map, )
Now, because, as follows from our construction, the F (z) is analytic in
ony of rings R., it may be represented there through the corresponding Laurent

series

+ oo

z €R. - F(z) = Z ai (Z'Za)n

ﬂl=—m'

(10.21)

of course, in general, different in each of the rings.

Let RI , R yese R be those rmgs which are no’r empty, i.e,, which con-

tain at least one ot the M 's. Let E E yooo E be sums of E 's (defined

by (10.12)) which corresmnd to eigenvalues:present in corresponding rings. Obvi-

ous ly
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M=
H_ml
|
—N
i
g
M
Il
G, N
o
m‘mt

-
t
o

(10.22)

Atter these preparations, we may approach the problem of the quasi-Laurent
series for M [F(z)]. First of all, we claim that by appropriately deforming the

‘
contour C containing M 's but none of z Wwe may write:

(10,23}

where C, consists of two circles C;” and C;: which form the frontiers of the 'non-
empty' ring ff{rk . (The ring C; has to be traversed in a clockwise direction.) These
circles, however, still may be moved a little bit inside of the ring where the uni-
formly convergent development (10.21) of the F (z) is already valid,

‘

[The shifted rings which still contain between them all the M 's from
|

R, we denote os Ek' 1+ Therefore, if by Eﬁ we understand the coefficients of

the Laurent development of F (z) in ik , We may write

m + oo
_ 1 d ~ k n
M [F(z)] = Z — é Z_ZM Z a_ (z = zo) .
k =1 ~, Nl = w oo
C

(10.24)
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We may here, however, sensibly interchange the order of the integration and
summation. The Laurent series uniformly converges, so that the same is true for

each essentially different component of the matrix considered. Hence

[F(z)] = Z Z Ak 2m 96 _‘fiZ(z-zo) _

N z- M
(10.25)

Now, comes a simple trick: because of the properties of our idem-potent

E ,c|eur|yE ¢ dz G(z) _ ¢ dz G(z)
z=- M z- M

C C

Therefore, with the help of these matrices we rewrite (10.25)

m + oo
gy | dz (z - z )"
_ ~k 1
MIF@E)] - kz- Z "o Ek 27i gﬁ 0 '
=1 N = =o0

(10.26)

In the last step of our construction we apply (10.16), (10.20) for the nega-

tive and the positive powers, obtaining

(10.27)



where the negative powers are to be understood as powers of the resolvent.

This result represents the quasi-Layrent development of M [F (z) ] which
generalizes (10.16), (10.20) for the case of arbitrary meromorphic functions. As
it follows from its derivation, the series (10.27) is convergent in the sense that
series for each essentially different element of the matrix M [F (z)] are con-

vergent. Our quasi-Laurent development of M [F(z)] "around z " (i.e., "around

1 z ") has the peculiarity that, in general, the coefficients of Laurent series for
F(z) from o few different rings ore ‘present in it. This is due to the fact that the
matrix is not just one number but many. The corresponding Laurent series has to
participate in (10.27) when there are present some eigenvalues in rings where the

Lourent development holds. The matrix is, so to say, 'partially' present in these
alfing

rings. The idem-potent ! projection operator' [ extracts from the corresponding
k

matrices exactly that part which concerns the eigenvalues present in the given
ring-
Formula (10.27) contoins a few interesting special cases. When all

eigenvalves are located in one ring it obviously reduces to

+ 0o

M [F(z)] = Z an(M_zo)“

=_n.

(10.28)

where a_*s are Laurent coefficients from the ring in question. This is more like
the familiar Laurent series. In particular, it may happen that the principal part of
this development vanishes (a_ _ 0for n < 0)s The F (z) is here holomorphic in
a circle around z which contains all the eigenvalues.

In this case (10.28) may be rewritten as

w1 - 5 g (Mo
n=o (10.29)

228



Now, summing up, we see that formula (10.27), which has as special cases
(10.28), (10.29), (10.16), (10.20), entirely justifies another interpretation of our
functional M [F(z)]. We may understand it generally as the meromorphic

function on the matrix, F(M ); the consistency of such an interpretation is as-
sured by (10.8).

For these reasons we shall also write

F(M) = MIF@)] .
(10.30)

In all this section we kept M fixed but F (z) variable. Of course, one
can proceed otherwise, keeping F (z) fixed but M variable with the proviso that
its eigenvalues should not coincide with singularities of F(z). The study of such

relations lies outside the scope of this paper.
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XI. THE CANONICAL FORMS, EIGENVECTORS

In the previous section we studied the consequences of our definition of
the meromorphic function on the matrix without using the detailed structure of the
resolvent. In this section we shall approach our F (M) = M [F(z2)] from
the other angle, exploring the consequences of (10.26).

First rewrite (10.26) in the form where C is deformed into the sum of

contours CM‘ , each around a separate singularity, surrounding it so close that

1

inside of it, F (z) is holomorphic; of course, regions inside Cyt » Cyy are
i }

disconnected if i = j.

-~ N
N =} 0 -
1 Dﬁ-l_'&) p
F(M) - Z 1 dz F (2) P M .
2771 ﬁﬂ
p=0 1= 1 C N(z)
M»

(11.1)

Because inside each C, « the F (z) is analytic, it there has the unitormly

1

convergent Taylor's series

F(z) = Z 1 F(")( MT)(z—M?)ﬂ,i: 1,2, 000, Ny
nt 1 1

n=249

(11.2)

Substitute it into (11.1); the interchange of order of the integration and
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summation is legitimate. [n effect we get

(11.3)

(n)

1

where the matrices | are defined as

(n) ’ N -1 _ p
Ei df 2771 é — Z) ' Z Dﬁ-l-p(z) . M )
C —

N pP= 0
(11.4)
Define now the polynomials of the complex A
«\n N-i
(--M) .
E(n) (A) = L . ¢ dz E-Ml - D- (z) AP
1 df 2771 D*'(z) Nei-=-p
N p=o0
C
M}

(11.5)
of course, E M) . But these polynomials may easily be reduced
to a more plausible form. Using (4.40) we may rewrite them as

n (Z"' )’ 5"‘ A
E()(K)= L Sﬁdz M‘ (1 - __N()).
1 2771 7z - A D..._(?)
C. .\ N
M|
1 (11.6)



If we restrict ourselves to A outside Cyp « the first ferm does nat contribute
\

to the infegral, In the second, we take DITJ (z) in the foctorized form (5.7).

Therefore, in the notation

= i Yo .
D (2) = n (z-Mj)qj,jaéi :

(11.7)

| The minimal polynomial with extracted factor (z - M‘ ) % ; with the suffix
1

i up, todistinguish it from the incomplete minimal polynomials 6k(z) ! the formu-

lo (11.6) reduces to

E" () = L gb LI S
! 271 (z- M:'h)qi“n A=z D' (z)

C e
Mi

- 1 B ..ii_._ qi-l-ﬂ 1 __-1_ _...-
(‘li-l-n)! ( dZ) A~ Z 61(2) M‘ DN()\-)
z = 1
q,-1-n (

YA ® -~ k) | I S|
:(K-Mi) Z A, (A-M) D (M

. k= o i
K(k) 1 d\)k 1 \
S Tl b - | = = : 1.

kl ( dz) -Iji(z) M; (11.8)

232



The second and third lines make sense only for q.=1=0a> 0, The first

line clearly shows that for n > q. the Efn) (A) do vanish,

Taking this fact into account, we rewrite (11.3) as

N, q,-1
FM) - 3 X Los M E”

1 i

=1 =0 (11.9)

so that only finite derivatives of F (z) may participate in this formula. But all

(n) -
the £~ which appear in this formula are aiready non-trivial as may be seen from
1

their explicit form (11.8) [after substituting A -~ M ] which demonstrates that

they are polynomials of the (N = 1)th degree in M with non-zero coefficient ot

Mﬁ‘-l .

Specializing (11.9) for F(z) = 1 and comparing (10.13) with (19.12), we

conclude that the matrices £ introduced before coincide with EFD) :
i 1

E.-E - (11.10)

The explicit form of Efn) (M), along with the definition of Bi (A), mani-
1

festly shows that the eigenvalues of the matrix Efn), which according to (5.13)

(n) '

ore just Ei (M:), ) = 1’2"“’No ore given os
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D= 0,1,eee,q,=1 . (11.11)

This has important consequences. First, according to (10.15):

NG
) E) 3 e (M)

} =1
(11.12)
But the trace of an idem-potent matrix is equal to its rank. Hence:
rank ( F ) = n, = multiplicity of M‘.h . (11.13)
1 1

(n)
Secondly, because for n > 1 all of the eigenvalues of £~ vanish, therefore

1
(n)
the invariants of these matrices also vanish,. Consequently, all matrices E for

1

n 2 1 are nil-potent.
(n) v \n =1}
Now, because E (A) is proportional to (K- M ) D (A) therefore
1 1

(?\-— Mjl})qi-nt Efn) (A) certainly contain BE(M as a factor. Consequently

1
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(M - M‘)qi'n £ =0, n=01,...,q,-1.
(11.14)

With the help of this formula and the third line of (11.8) one easily finds

E” - (M-M)E, -
(11.15)

(n)
This form plus the algebra of £ s at once implies that the E1nl 's obey
1

1

the simple algebra:

(n) (m) (n + m) (n)
E. 'E. =Jii E ’ ﬂf.’..qi'"'Ei = 0,

1 ] 1

(11.16)

Also:

) (
(n) . m E'nm) _ 0. for am 2 q; .

(11.17)

: (n
which forms a more explicit expression of the fact that £ ° for n > 1, if non-
1

trivial, are nil-potent.

Finally, we may define a set of nil-potent matrices:
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(11.18)
The formula (11.9) may now be rewritten as
No
F ( M )'—"" z Fi(M) :
1= 1
q, 1
(M) = 2 L (M) ME .
n=ag
(11.19)

This may be understood as the spectral decomposition of F ( M ) . The
different eigenvalues of M, i.e., M provide us with the 'rough' structure of

F ( M ) (its decomposition into Fi(M)) . Simultaneously, if one looks upon

N
F ( M) as a transformation in V , this ‘rough' structure caresponds to the decom-

n
position of V intoa sum of ni-dimensionﬂl sub-s paces V ! where Fi M oper-

ote non-frivially:

(veVl) ~ (v = E v) ; vV  =Viev?e.., @'VHND .

(11.20)
236



Now, each F, ( M ) has its own 'subtle’ structure determined by the arithmetic
Invariants of the nil-potent matrix M . In o sense, M may be understood os a
|

1

n
matrix of the order n. x n., because i /= j implies Mi Vi=o.

Gathering together that which was established about the nil-potent matrices

in section IX, we may claim that there exists a number 1. and numbers

q; = 'q;2 %q;2 ... 2 'q; 2 (11.21a)

such that

n, =1q; +2q; +... q, (11.21b)

4
ond there exist vectors 'v. , ?v. ..., 'v. such that the vectors

P=1’2,Ill, 1

(i, p, k) i

(11.21¢)
form the basis of Vni . moreover:
Pq
M e =M1 P =0.
1 1
(i, ps Pq =1)
(11.21d)



This basis has the property that

M e = @ and where e = 0.
i (i, P» k) (i, p,k ¢ 1) (i, p, Pq.)

(11.22)

The numbers Pq. with the properties (11.21a-b) are the arithmetic invariants
which describe the subtle structure of the matrix M .

The statement contained in (11.21) is the literal repetition of the theorem
(9.6) but as applied to the nil-potent Mi which operates non-trivially only on

1
V L hence the necessity of adding the suffix i to all quantities concerned.

Now, similarly as was done in section IX we introduce the inverse basis to

. (l.,p',k') i! pl kl
e e = 1 —
(11 P k) l P k

N, I "q, -1

a (llprk)

1 - Z . © ®b
(l,p,k

1 =1 p= 1 k= O

(11.23)

Generalizing the considerations of section IXwe easily find that the quanti-

. (n) . N
ties £ may be represented through the vectors of our bosis and its inveise as
1
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- 0’1,---gqi-1

(11.24)

Of course, all sums over k where n > Py ., are to be understood as empty. Using

(a) g
this representation of E.n in (11.9) we may write F M in the form
1

-1

F < 3 g () < a (hpken)
(M) ) z Z nl (M ) z Z (iv po k) .
i=1 n=

p=1 k=n

(11.25)

This form of F( M) may be called the Jordan's canonical form of the
meromorphic F (z) on M; it may be interpreted in the standard way. Namely, the
L lk
quantities { % ) F( M ) - ebk‘) which entire{y describe the matrix F(M)
1" 4P
may be ordered intoa N x N table, the columns ond rows of which correspond to
(i, p, k), (i',p', k'), properly ordered. This table clearly splits into a sequence

of non-trivial n. x n. squares along the diagonal which correspond to the different

eigenvalves M (Jordan's cells). A given . xn; square below the diagonal
1

has only zeros. On the diagonal in all n. places is F( 'Vr|L ) « In the first line
1

above the diagonal (and parallel to it) there is first the sequence of q;-1 = !q.~1

(1)
of .%. ( M J 's, followed by one zero (starting from above). Then the
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L

sequence of 2q.~1 of
9 9, I

F () (M‘) 's followed by zero, and so on. [n the next
 §

2l
The tirst q.=2 = 'q,=2 of these followed by two zeros, then q, =2 followed by

Y
line above, parallel to the diagonal, there are located sequences of 1 F(Z) (M ) 's,
1

two zeros, etc. As may easily be generalized from the first three lines discussed,
we meet a similar situation in higher lines above the diagonal (and parallel to it).
E.g., the typical *Jordan's cell* with n, = 6, 'q, = 3 = 2%q; is visualized in

figure I.

FIGURE IL

0 0 0 0 F(M) FY (M)

For F(z) = z, l.e., F (M) = M our scheme reduces strictly to the
Jordanian picture, with eigenvalues {ocated along the diagonal and descending

sequences of 1's followed by zero above the diagonal line, all other places in the

table are occupied by zeros.
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Form (11.25) of the F (M ) is particularly convenient for studying the
eigenvectors of the mafrix F( M ) , ile€., vectors v, # 0 such that

(F(M)-)\ 1 )-v2=0.

(11.26)

It is obvious that the only admissible A for which such a non-trivial v,

may exist form the sequence: A = F ([\4“Ih ) , 1 =1,2,..., No' (In general, some
|
of these may coincide). Now, the structure of (11.25) plus the linear .rindependence

of the vectors of our basis make it obvious that to the eigenvalue A = F( M‘) '
1

(1)

if F (M: ) # 0, belong only the vectors e as linearly independent

(i, py Pq, -1)

eigenvectors, i.e., exactly l. of them. More generally, one easily sees that if
F“)( Mi ) ee., FOTU ( M ) all vanish but beginning with
1

.\
s: F(®) (M ) # 0 (1 <s<q;=1) then € ’ e > ¢
' (irprpqi'i) (ilprpqi'Z) (i.p,pqi-s)

are the eigenvectors of F ( M )cu'responding to A = F( M ) « When counting
i

the number of these vectors one must take into account that for k < 0 the e

(itPr k)
do not exist. Hence, the total number of these vectors is:
s =1 Ii zi
Z Z @(pql-l-m) = ni — Z (pqi-S) @(pqi-l"S) *
m=0 p=1 P=1
(11.27)

For s = q, (i.e., when all F(l)(M?) yeooy F(qi-l)(M;)which partici~
1
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pate in the given cell vanish) this number is just n. , as was to be expected. Note

that comparing (11.27) with (9.13) we may conclude that the total number of eigen-

vectors considered is invariantly given as
o, - rank {Mf } . 1128

Although the basis used in (11.25) is not unique, the numbers Pq. or (11.27),
(11.28) are arithmetic invariants independent on the particular choice of the basis.

The number (11.28) with the simple interpretation of the number of eigenvectors be-
longing to ) _ F(M?)when F(k)(M? ) =0 for k=1,2,..., s =1 but
1 1
F(®) ( M ) # 0 gives us an especially plausible interpretation of the arithmetic
|

invariants which describe the 'subtle' structure of the matrix. Of course, the
numbers (11.28) may be understood as the fundamental arithmetic invariants; all

others may be expressed through them, as follows from the considerations made in

section IX.

Here is the place to explain why we carried out the 'spectral' analysis on

the level of F(M ) instead doing so on the level of M itself. Our F(M )
— \
matrices generally contain Ncontinuous parameters [F(n)(M_ ) p 1= 1,2,.00 Ny ;
1

n = 0,1,.=-,p;=1] and by dealing with them we are able to give all the vectors
of the basis appearing in the canonical form (11.25) the interpretation of the eigen-
vectors in the simple sense of (11.26). By doing so we avoid the necessity of

considering the so-colled principal vectors (or multiple eigenvectors) defined by

n
M_ v = 0, where n is an integer, which are somewhat artificial creatures, Of
|

course, the multiple eigenvectors are implicitly hidden in our formalism. But, in

our discussion of the canonical forms, nothing forces us to introduce them explicit-

ly.
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XIl. SOME SIMPLE FUNCTIONS ON MATRICES

In this section we would like to more closely investigate some special

simple functions on matrices which are of importance.

1l
First of all, we would like to investigate M for n > N. This particular
function is of interest because the powers of the matrix appear in the developments
of the analytic functions over matrices; it is interesting to know, in particular, how

the higher powers may be expressed through the fundamental set of powers

0 1 N n
(M M., M )Gnd invariants; it is also interesting to know how M be-

hnves when n - oo ,

According to {11.9)

M =

S (1) Ml

N, q,-1
i=1 k=g

(12.1)

- 1
consider it for n > > N. The dependence on n only enters in (k ) and in

s nek . 3

M . let M be the dominant eigenvalue defined by | M'lt | > M.

1 max ax i

Formula (12.1) makes it obvious that

Iim . M )H:O €>On
n - co ,M + €

. max

(12.2)



In order to be able to use (12.1) we must know the eigenvalues M‘ . Itis

1
interesting to observe, however, that directly using (10.2b) we have

n D (z) p o
~ | n “Neil- _ E n P
P= 0

(12.3)

[Because z" has no singularities, one may freely deform the C of (10.2b)
into Co ]« The parallel formulo holds when one constructs the resolvent on the

bas is of DN (z) instead of _Ijﬁ (z); it has essentially the same structure as (12.3)

but with all the bars above the given symbols omitted. The invariant coefficients

- n
C: (or Cp when one works with DN (z)) may conveniently be expressed in terms

of fundamental invariants. Indeed, substitute *z goes to 1/z* in the integrals

for C: « One obtains

(12.4)

where the polynomials 1,bs (z) are as defined in (6.3), This formula at once tells

¢ that for p> n, CI; vanish; for n > p we get

(12.5)
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This is, however, not the best form obtainable for these coefficients. Indeed,

observe that accarding to (6.3) the following is true

p
Yo (2) = Y (z) + (=1)NT17P ZN-P M (-2)9.
Nei1ep = ¥N qZ:’O [Nep + q]
(12.6)
Therefore, denoting
p
¢ (z) = M (-2)"

qu [Nep +q]

(12,7)

and substituting (12.6) into (12.4) we obtain

o n y (= 1.)N-1-p ¢ dz ___¢pL(Z)__
P p 2771 > (n .N) + 1 le (Z)

C
0

(12.8)

which implies that

P (12.9a)
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n>N "~ c = y .
- N ! d
p (n = N) z l’Z/N(Z) 2=
(12.9b)
In particular, for n = N we obtoin
Nei-
N=¢-1n""T" M
P [N-p]
(12.10)

with these values (12.3) [without bars !] reduces to DN (M ) 0, as should be.

(12.9b) gives us the explicit expression for C; in terms of M yaony M .
(1] [N ]
Neti
n n n P
Therefore, in order to reduce M to lower powers accordingto M = Z C, M

P=0
\

we do not need to know the M 's; it is enough to know the M 's. Of course,
‘ Lp!
p
exactly the same argument, formulae (12.4) through (12.9), maoy be repeated on the

basis of Dﬁ(z); the invariant coefficients of the minimal polynomial cannot, how-

ever, be expressed through the fundamental sequences of invariants (or M 's or
[p]

P

M 's) . Therefore, such a construction has no practical importance.

Now, a few remarks about eM = M [e*]. This entire function has no

M

singularities (for finite z) and e"™ is perfectly well-defined for any M . Accarding

Yo (11.9) we may represent eM as

N
0 .

qi-l
M (k)
M= e ¥ LE
! i

k=g

1= 1

(12.11)
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When the eigenvolues, multiplicities and their defects are known, the motri-

(k) .
ces E also are explicitly given and formula (12.11) is very convenient when
1

one has to solve a system of the differential equations of the type j v=M-v
t

with constant M.

Up to now we discussed only the one-valued functions on M. The question
arises whether one can extend our theory on multi-valued functions and define
sensibly quantities as Mllji (where s a real number) 1n M , etc.

The key to this problem obviously consists in a convenient definition of

1n M; having such a matrix one may even define the complex powers of M as:
a

M

= exp [aln M J« It is, of course, necessary to demand thot

ln{F(M) - G(M )} = 1n F(M),+ in 6(M ) It follows that in order
to approach the problem of 1n M first one has to settle the question of what one
should understand by the symbol u = 1n 1 . |t is obvious that one has to demand

of this matrix: e# = 1 . On the other hand, according to the general theory

where the E( k)

are constructed from . From this equation we easily conclude

k
(because of the algebra of E( )) that: 1. all q. have to be equal to one, 2. thot
‘ 1

e” = one. This information gives us a clear insight into possible ‘discrete*

structures of matrices which may serve as 1n1 . A matrix of this type, i 1n1 '
may have N > 1 different eigenvalves M = 27i k,, s = 1,2,..., N, » kg
5

are intecers and are different. These may have some multiplicities, n, , such

N
N
that Z n. = N Because, however, q. =1, 1 = 1,2,..., N, the 'subtle’
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structure of each of the Jordan's cells is trivial. Consequently, the canonical tarm

of 1n 1 is

N
p=1T = ” ZD 27 k_ z (s?:) (Sét)

s =1 p=1

112.12)

where e ,fors=1,...,N and p=1,...,n,,forma basis; @ is its

(SIP)
inverse basis. The arbitrariness here is in: 1. integers n_ and k_, 2. in the

choice of the basis. This shows how the vsual 'branches' of the logarithm, in o
sense, 'multiply themselves® on the level of matrices; there is a lot of arbitrari-

ness in (12,12). When one deals with some definite matrix M which is not pro-

portional to 1 , one can restrict the matrix which should serve os 1n 1 by the
additional condition that it should commute with M ; when M is maximally un-
degenerate | N different eigenvalues) we have to pick up in (12.12) N, = N,n, = 1,
the basis has to be identicol with eigenvectors of M; only the k_ here remain

arbitrary. But when any degeneration is present even the condition M * 1n 1 -

1n1 * M = 0 leaves the arbitrariness in the basis and in n_ which enter in

From these remarks it is clear that in principle one can extend the theory
of F ‘M ) on the multi-valued F (z), care fully taking into account all the arbi-
trarinesses which may occur.. To go into the details of such developments, however,

lies outside the scope of this poper.
Now, it is also of interest to say a few words about the structure of

n
( 1 v ) — M[( zl_ ﬂ:)mI , the matrix which enters in the principal parts of
zZ - 0
0

of the quasi-Laurent development (10.27).
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According to the general (11.9) we have

No q,-k
-2 ()
z - M %3
0 i=1 k=g

(12.13)

which explains the asymptatic behavior of [zo- M ]-n for large a's. In particy-

Iﬂl’,fd'n=1-

\4.—
|

(12.14)

(k)
This lost formula gives us the interpretation of the matrices |~ as just
|

-1

coefticients in the decomposition of [.za- MJ in simple ratios with respect ta
%

ZD_ Mi .

It moy be olso observed that because of

(12.15)



(clearly the contour C__ = C_ is equivalent to C around the singularities of the
0

resolvent), and the fact that the integral over C_. vanishes (for n > 1; this may

be seen by the change of variable z = 1/z), we may write

Nel  —
U L O L R DF .1.p(2) Mp _
] ne-i}! dz B -
[20' M (a=1)] ‘ F,Z'Q D5 (2) .

(12.16)

When one does this construction on the basis of DN (z) instead of 5&' (z),

= I
one.gets [zo— M] as the polynomial of (N - 1)th degree in M with coefficients
expressed through M PPN M and the number z_: in order fo write it down we

0 ’
(1] [N]
do not need to know explicitly the eigenvalues and their multiplicities,

Now, for the last problem in this section we shall return to formula {7.32);

we were claiming that if the matrix M is of the rank r but M s different from

1]

zero, then the equations

y = Mx (12.17)

have as the consistency condition | = 0, and their solution is given as

B
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(12.18}

where C is an arbitrary vector; this arbitrariness exhausts all of the possible arbi-
trariness in the solution of (12.17). Now is the time to clorify the lost ossertion,
with the help of tools from the previous sections. First of all, rewrite (12.18) as

was done in (7.19):

__0b.(M) ;+D,(M) - c .
D, (0)

(12.19)

Now, in our case we have MDrl(M) = ( and the characteristic polynomiol

N
- 0 %
has the form D\ (A) = AN "FD (A) = (A= 0" " (x- M_)“i, e,
1= 2 !

Y
we have the eigenvalue M = 0 of multiplicity exactly N = r and all the other

l
.

%
eigenvalues M , ..., MN are necessarily different from zero. {t follows that
2
0

Ng

D;.(M) = ] (M - M;)ﬂi . This makes it obvious that DI(M) acting
1=
on an arbitrary vector C *kills' exactly that part of it which cannot be expressed

“

as the linear combination of the eigenvectors befonging to the eigenvalve M = 0;
1

hence D_ ( M ) C is exactly a linear combination of these N = r eigenvectors.,

Now, as far as the term with y in (12.19) is concerned the necessity that
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m[r] vy = (=1)° D;(M) y = 0 follows from MDI(M) = 0ond y = Mx.

On the other hand, we have the obvious: D,(M) - Dr (0) = MD“I (M) .
Acting with it on x , which obeys (12,17}, we get

_._..___._...D“i(M) ‘y +_..[.)f__(.__M_)_. X
D, (0) D, (0)

X = =

here the second term is of the form D_ ( M) , C, which anyway is arbitrary,
Hence, (12.19) is true,
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XII. THE METRIC, TRANSPOSED AND "RECTANGULAR" MATRICES.

The material presented up to now did not require the use of the metric fenscr.
When, however, the metric tensor is detined, i.e., when we have a simple pre~
scription of how to raise (lower) our sets of indices, the tensorial matrices in our
sense become richer in properties. The aim of this section is to explore the situy-
ation which arises when we have the concept of the metric tensor at our disposal,

Let us return to the considerations of section ll. Suppose that we are con-

cerned with sets of indices a,b,... with the internal structure

(13.1)

k
and with N essentially different valves ¢, k = 1,2,..., N. Now, assume *hat
for each kind of internal index there exists a well-defined non-singular metric tensor:

GA. B * GA" gn -+« o The contra-variont mefric tensors to these exist and are

- unique ly defined:

Gug G ° =J _

(13.2)



with the help of them we may raise (lower) the internal indices according to the

scheme

(similar formulae for A", etc.). (13.3)

We do not assume these metric tensors to be symmetric (e.g., in the case
of spinors the metric tensor is skew symmetfric) hence it is necessary to preserve
the orders of the indices and the contractions as given in (13.2) and (13.3).

Now, with the help of the 'elementary' or 'internal' metric tensors we are

able to construct the metric tensors with res pect to our sets of indices (13.1).

Namely, we define

Gab = GA;{B; GIA;J IB;:: 'G A" ‘B'; GIA:’[ IB.:[ ...}
(13.4)

where the symmetrization of the iype specific for our set a is applied here over
all B indices. It automatically yields the required internal symmetries for. A indi

ces. Quite parallelly, by symmetrizing the external product of contra-invariant

AB b
G 's over, say, B indices we derive G . Now, it follows from (13.2) that

(13.5)
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and the rule of raising ( lowering) the sets a,b,... which is consistent with (13.3)

must be

=G, T,T =T 6 . (13.6)

Sometimes, when it is necessary to indicate that the given set of indices

has been lowered (raised) we will use the notation

T.

Il
Q)
—4

ab
Because ., and G  have both sets of indices on the same level, they
are not NXN matrices in the previous sense. The notion of the determinant may,
however, be extended to these quantities.

Namely, we define

a .a b b
G = Det Gb =1 N ¢1 NG, ... G .
2 N'! %5 N°nN
(]3-7&)
ab ab a
G' ""De'rlG “—“._L 53 . Eb 5 Gll...GNN
N! 1° n 1 N
(13.7b)
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G -G =1. (13.8)

Moreover:
a a a b b b
Gabzl . 1 c 2 N ¢ 2 NGab‘ Gab ’
G (N=1)1! 2" 2 N N

(13.9)

which justifies the term *the determinant' as the name for G.. . One can prove
that (.. is just the product of the determinants (in the literal sense) of the 'in-

ternal' metric tensors = of course in powers corresponding to the number of times

each given type of the index occurs in the set «.,

Now, having the notion of the metric tensor at our disposal, we may intro-

N
duce the notion of the scalor product in V :

a_b s .
(U V)G, U'V = ULV’ (#£V® U, ingeneral) .

(13.10)

a
Moreover, to the given NXN matrix Mb we may define the fransposed

T

motrix Mb" (with the help of the metric) by

T o?
M =, Me’

Gps M, G U ' (13.11)
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With the help of the notion of trans positiom we are able now to define o few
special types of matrices: symmetric, skew, orthogonal and Hermitian matrices

(with respect to the given metric). These we define by demanding

M is symmetric M= M
M is skew M - -M
M is othogonat M = [M']"
M is Hermitian M = M

M is wunitaory M* = M
(13.12)

By thr we understand the complex conjugate matrix which one obtains by
applying the complex conjugation to all its elements. Note that in order to be able
to define the unitary matrix we did not need the notion of transposition.

The notion of transposition is manitestly covariant because whatever the
groups and their representations which govern the internal indices are, the concept
of the metric is from definition covariant. Hence, the concepts of symmetric, skew

and orthogona! matrix are covariant when the groups and their representations still

are very general.
With the concepts of the Hermitian and unitary ‘'matrices which use the

notion of complex conjugation, however, one has to be very careful in our formal-
iS e M’|r forms an object with the same transformation properties as M only with
the proviso that the complex conjugation of the transformations acting on its in -
ternal indices (with symmetries taken into account) yields the same fransformotion
as these which oct on M . This clearly is so when the representations of the

groups we have to deal with happen to be real. But, in the case u some specific
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symmetries, this may also happen to be true in the case of complex representations.,
It is important to stress that the consequences of the properties (13.12) be-

come strong and important when the metric G_, has definite simple symmetries in

sets a,b, t.e., when it is symmetric: Gab = Gba , when it is skew: Gab — - Gb
when it is Hermitian: G;b = Gba v :
One easily sees thot
. _ pa T T]p
Gab = Gba implies [M ] = [M ]
(13.13a)
pYT - T p
Gab — == Gbﬂ implies [M ] = (-l)p : [ M ] *
(13.13b)

Because the properties of the proper powers of the matrix are the key to
its structure, as we learned in previous sections, it is clear that relations (13.13)
are crucial in the analysis of the consequences of (13.12).

Up to now we delat with *square’ NxXN matrices. . There are, however,
some algebraic problems which also require the use of the concept of the 'rectangu-
lar' NXN matrices.

Let

— ' ' " ' 3 = ' ' '
adf {A1“'Ap ’ A!'.“A'q"” } y A TAI.“AT)', A;A,‘ql.,}

(13.14)

be two different sets of indices, with generolly different numbers of essentially

-

different values, N, N, and different internal symmetries.
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The set of complex numbers:

Ay

“ M= M

(13.15)
b

we shall call the rectangular NxN matrix.

Its transposed matrix we define as

M’ = |[M**
L ®

— ” MS Gy o~ GJ“alL l

(13.16)

and we may understand it as a NXN matrix.

Now, the products

M- M =M M MMM M

(13.17)

are already square NxN and NXN matrices to which all are the previous analysis
applies. They are crucial in the study of the structure of the rectangular matrices.
Now, a few words about the motivations behind these definitions. The
general fields, which one meets in theoretical physics and whose algebraic
structure one intends to explore, are usually objects with indices for which metric

tensors are we ll-defined and which therefore may be written with all indices on

the same level:

‘/JAl___AL; A:"'A':l Jase (13.18)
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These indices may have some symmetries or, in particular, none. Now,
picking up some of these indices so that they will form a set a, raising them by

the help of the metric, calling the remaining set 3, we may understand our object

as

L"" s (13.19)

i.€., @ NXN rectangular matrix. If it is possible to thus pick up the set a’, that

which remains forms a set b = b, with the same internal structure, we may under-

a ~ o~
stundL"J,'.; as a NxXN matrix to which all our previous analysis applies. There

are, however, some objects where such grouping of indices is impossible (e.g.,
L|"'ABC , a spinorial field with an odd number of indices). The best that one can
do, if one wants to apply the methods of the linear algebra, is to form from such
general object a rectangular NXN matrix and to investigate its structure. This
explains why the study of rectangular matrices is imporfant. Note that a general
object like (13.18) may be put into the form (13.19) in many ways - by making all
possible choices for the set a from the original sequency of indices (and making
2 confain one or two, or three etc. of the internal indices). It is intuitively obvious
that the algebraic characteristics of all possible rectongular matrices which one

can form from (13.18) must completely deScribe the structure of the original object.
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