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In this paper we derive in a self-contained way the normalization-coef -
ficients of the lowering and raising operators of U, introduced previously by the
authors, We then use the normalization-coefficients to derive in an abstract way

the matrix-elements of the generators of U, with respect to basis-vectors charac-

teri.ZEd by tbe CﬂﬂOﬂiCﬂl Cbﬂiﬂ U”D Ui‘l el :)Ill D U2 D U1 .

= i il

1llrE:tcl-n'.mgire.- Professor of the Organization of American States,

Permanent Address: Blegdamsvej 17, Copenhagen, Denmark.,

** ” » -, - i
Asesor de lo Comision Nacional de Energia Nuclear, México.

29



1. INTRODUCTION

In a previous article! , which shall be referred to as I and whose notation
we shall be using, we introduced the concept of operators that lower or raise the

irreducible vector-spaces of U = contained in an irreducible vector-space of the

1
vnitary group U, . The normalization-coefficients of these operators were de -

termined with the help of the matrix-elements of the generators of U  with respect

to basis-vectors characterized be the chain of canonical subgroups
U,DU,. . Devs DU, DU, ,

obtained by Gelfand and Zetlin® and later rederived by Baird and Biedenharn® .
In this paper we shall turn the problem around and first give a self-con -
tained derivation of the normalization-coefficients of the lowering and raising
operators. We then use the normalization- coefficients to obtain the matrix-ele -
ments of a particular generator C:_l of U, with respect to basis-vectors charac -

terized by the canonical chain

U DU D...DU23U1 .

n ne=1

Using finally the commutation-relations of the generators we obtain the

matrix-elements of C; .

In this way we give a derivation of the Gelfand and Zetlin result, which is
a purely abstract one as it only uses the commutation-relations of the generators.
We have thus avoided the drawback of using explicit expressions® for the basis -

vectors of the irreducible vector-spaces of U, as was done in the derivation by

Baird and Biedenharn.
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2. THE UNITARY GROUP U,

We shall stort by reviewing the well-known properties of the unitary group
U, of ndimensions. .

The generators of U, which we shall denote by Cf 1<, u'< n, have
the hermiticity properties

c” =Cu 2.1)

and fulfil the commutation-relations

" ™ ’

Do o
{Cﬁ y Con ] =8, C -8 C. (2.2)

from which one sees that C;: w< ut, C; and C:' w< ' are the lowering,
weight and raising generators respectively,

An irreducible vector-space of U can be characterized by [b‘;”]‘l fu n
which is the highest of the weights of the basis-vectors of the vector-space, The

b;m which are integers fulfil

b 2h Zeee2 b > b (2.3)

17— 2n Beln— nn

For U a canonical subgroupis U, + 1 whose generators are

1l

1
C‘u 1<u, u'<n and where [b#ﬂ ]1<u<n characterizes an irreducible

*1

vector-spac. of U, « The b besides satisfying

1 unet ?

2 Deee 2 >
bl"'l—-bZﬂ'l_ ‘_bﬂ'Zﬂ"'l—-bﬂ-IH.I !
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also fulfil

bpnzbgn-lz-bp+1n * (2-4)

A chain of canonical subgroups of U is then

U DU

7 ne=1

D...DU,DU, ,

so we can now completely characterize the normalized basis-vectors belonging to

an irreducible vector-space of U by

¢ & & » & & & % & 8 » & & & B .b’:"

1n

in « 1 nein -1
> IS#SV'(’I-
v - ¢ o o % 0 8 8 208 »
blz b22
bll
Defining

]bl.................b

”

QI-----------.-qﬂ_l

qlnutunnnlq

b .
bI o &8 b#
9 g, eee g, .
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3. THE LOWERING AND RAISING OPERATORS OF U, .

(2.5)

(2.6)

In article T we defined the lowering operators L: 1< m <n of U, as oper-

ators which fulfil

{c:‘,L:']=-3: L:, 1<u,m<n,

ond
b b
L: # ol # Is_ﬂl <n.
qﬂ qﬂ-- s,u.m



(3.1b*)
The operators S#u' are defined as
L K :
SML. = C‘u- C#. tout-u, (3.2)
and have the properties
Suap = - SME 3.3)
ond
b b \
A A
8##' = Ty . *
9 9 /
(3.4)
The g, 0 are defined as
ﬁrﬂﬂ'Egp-qp"‘#"# ’
and fulfil
q‘ui# = - qmﬂ (3:5)
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and besides, as seen from (2.3),

(3.6)

and

o I
? 1<m<n,

were found to be given by

me)
n

me] P mel
" F-P B« | =1
R" ..,( y 3 co ceac ewi) L

P’ﬂ #P}FP'I.}".}“:}#I:I

(3.1a")
or
) ” e Mmey  me o
R" = H 8“# E H 8-1 C' C“l ('ﬁfp i C.‘LP '
#=1 = > > el £= e 1 P2 Yo "
PE0 HpZHpuy 7 eee?ly py =1
(3.1b")
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The lowering and raising operators given explicitly by Egs. (3.1) satisfy

furthermore

: h
[L:: Lm] g > = 0, 1<m<m<n, (3.7')

b
[R:I'R:'I'] ‘u> =0, ]S_m <m'<n P (3-7“)
1
” ' bﬂ—
(R, L] =0, 1<m<m<n, (3.8a)
1y
%
(R”, L] =0, 1<m<m<n , (3.8b)
Ty
but in general one has
” bﬂf
(R, L] £0, 1<m<n . (3.9)
1

4. EXPANSION-FORMULAS FOR THE LOWERING
AND RAISING GENERATORS®

m n”
We shall here express the generators Cn and Cm in terms of lowering
and raising operators of U_ and its unitary subgroups and the following operators

nt .
R_ 1<n*<m
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n' mel
2 ;= = g?
pP=0 f’j'p}:"t‘p >}L2>#1“n 1 13 +1
(4-]{'1)

nt " i pr Hp ey My n'
. e, S Y (:_1 ) Vel RN

p=0 “p>ﬂp_1>-n-}#2}#1=n'+1
(4.1b)

which however are not raising operators of U , as 1 <n'<m. The formulas we shall

prove are the following

, n-x ”°1 ”el e
C” (ZR Lp' i1 8 I1 SK?\,]S_m<n,
7\3";( m V= m APK =m
vE u
(4.2a*)
7 ]
” el ”ay ”net -1 ”
( I SK)\)Cns n SMZ ( I E“F)LnR”,]<m<n,
AP K=m AP K=m - Y= m
p=m gy
(4.2b*)
m m m m
C. O e“,..( Y 4R 1 € ) m €,, 1<n<n,
AZK=1 pe g v=1 A2 K=
vE b
(4.2a")
and
m ”m " .1
( I 8“) C,= 1T £, Z ( I Ew) R” LY, 1<m<an,
A2 K= A2 K=1 =1 V=]
o #
(4.2b")
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where

m
Lm = 1 P (4-3')
and
i
Rm = ] » (4'3")

We shall now prove explicitly formula (4.2a') . The other formulas can be
proved in similar ways. From Eqs. (4.3"), (3.1b") and (3.1a') one obtains for the
right-hand side of Eq. (4.2a")

7 e
e " ne=1 .1 L |

z R, L, T EW n <.,

1= V= m AP K=m

v p
ne=i
”e1 ”ney 7 e
m -1 m L -1
=L _n+ Coy ¥ ) R, L, n e, g,

v=m+1 f = my z;::: A2 K=m

nemel] n

-1
q
m 1/ 2 1 2 -1
1 g=-1 q
Z Z-__“Cfl C'Hz.ucvq Cﬂ .H Smtvz.
- >
1=0 Vp2vg.” 2 " V1

v --->V >'U =m+1

n-=1 peme=1l ji=1
DDA T, G
‘urz:?ﬂ"l'l -—-0 H'p)“p 1 s o >;_L1""m+1

neile] NB=]

( 2 Z., cermcmel Y met Jer |l
' » el Hohbyg um n eKi

g0 v?v v, 3”1: = 4y 4y
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where

We shall now prove an identity-relation for the 8##’. . Defining

Hi
C»“f 7y

Xy

one obtains from the definition (3.2), using a well-known relation (see e.g. Ref.5),

Xl X2 * ) "X . x ;
p p -1 2 ‘
'>F[ 8#1.‘&], = '>lj[ (X; - Xj) = ] * ¢ ¢ 0 s 0 0 0 a0 0 000 00 000 0 4 lF = D(Xl * XP) .
] =1 17t= 1
Pez pe2 b=2 pe2
‘(1 X2 ..... XP"I XP
Pl P -1 p=1
Xl X2 ----- Xp'l Xp

(4.5)
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D
1=1
D T DX, Xiey Xieg e Xp)

£=1
f 1 1..... 1 1
X1 X, rrrc Xper Xp |
R .. -0,
l pe2 P-2 pr2 Pp-2
X, X, +oe- Xp.1 Xp

which then shows that the sum over 7 in Eq. (4.4) vanishes and so Eq. (4.2a') is

FQVEd *

5. THE NORMALIZED LOWERING AND RAISING OPERATORS

The normalized lowering operators

" q,
L b“ "='Cq -5 1Lm<n,
" Cpm
q,- Sw
were in [ defined to fulfil
b b
q
LK g = g 1<m<n
g - Sg,m d
H q g =0
T poum

and could hence in terms of a normalization- coefficient
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N bpt ENq’u_S 1<m<n,
i pm
g =0
o m

be written as

-1
q q
(7w = [N+ L. .
g -0 q =0
o pm pmooum

The normalized raising operators

q# .
R b# = q#.‘_s lim <n,
o oum
q +3W
fulfil similarly
b b
R‘f“ L _ 4
q#+8ﬂm = s
1, 1™ Oum

and can in terms of the normalization-coefficient

H q
N b# = Nq'u‘+3 1<m<n,
v S .
1" Oum
be written as
-1
q o "7
Rq#-’_s = Nqﬁ'*_a Rm »
o pm

41
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The two normalization-coefficients were in I found to fulfil the symme-

try-relation

m-1 n-1 8
9 - = | q +
— purn

(5.2)

We are now able to obtain with the help of the operotors L:' and R: any

b b
] - ;-L - - » “
normalized basis-vector from any given normalized basis-vector
'
qﬁ iu

Denoting the general normalization-coefficients by

q
H q
N1 b = NN

n q

: H !

1,

we have
b

h q - v q -q n gl _.~q bu
4 = (Nqﬁ") L,)* 1R, )"TH
1 M
Lt 1

(5.3)

where we have considered an example with 9 <q yeeeidp. 79y, In generol,

q -q' n 4' "4
A Y b I -
when q,<.q, one has (L") and when 9,29, one has (RH) in the
P
product of the operators acting on in Eq. (5.3).
q
7

Due to Eqs. (3.7) and (3.8) the general normalization-coefficients in Eq.
(5.3) is independent of the order of the lowering and raising operators and so, if
we consider some values q;; where due to Eq. (3.9)either q;s_q};g_q# or

q;iq;_?_ q, 1<u<n , we obtain for the normalization-coefficients
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1 (5.4)

6. THE NORMALIZATION=-COEFFICIENTS OF THE LOWERING
AND RAISING OPERATORS

We shall now, by means of two recursion-relations, derive the explicit
formulas for the normalization-coefficients. From Eq. (5.4), corresponding to Eq,

(3.7'), we obtain the followin g relation among the normalization-coetficients

q
N #
q# Sm'a '
.5 .5
_ N‘?,U. qu. ; _ qu. Sj.wl'g NZ#-S o 1< m<m<n .
q -8#’”-3 ) ‘Ip' um qp- m' !J"’" [fLoum

(6.1)

Equation (3.7") does not give anything new due to the symmetry-relation (5.2).
Corresponding to Eq. (3.8a) one obtains, using Eq. (5.2),

g
N “
+O -9
" m " O um®
q +0 q me1 71 q +90 +0
= N K um H _ 1
o s s .N‘f,u » ( i1 qm#/ i (g, +l)) Nq#+8 s N,
T N L= u=m+1 1 um® H
-
- Nq# pm' N:}é S -
5 «d " Cum'
q# wum = ©pm! M pm
mel 7 =1 g +8 '8 ) q
= (qmm'+”/(qmm'+2) ( , qﬂu/ n (q"’#+1) NE& Nq#-ﬁ 1Em<m <n,
=1 L= m + 1 q#-SM, ppm?
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from which follows

+8 -8 ' q +8 q +8
NOw T Tt N ( G +2)/(qm,,,.+n) NI N e
q#'fjml #-SLLPH' qp+ m- M; L

(6.2)

Inserting Eq. (6.2) into Eq. (6.1), one obtains the first part of the 1*t recursion-

relation for the normalization-coefficients

q4,-0 q :
N H* K = (qmm.+])/qmm. Nq““_ , 1 Sm<m*<n,
q "8 -SM' LL p,ﬂ‘l'

(6.30)

Corresponding to Eq. (3.8b) one obtains, in a similar way, the second part

Using Eqs. (6.3) successively one obtains in general

ql...q' .49 ceeosd! 2
Nl me=1 ‘Mm‘m 41} n=1

' - y ]
qllliqm.lqm 1qm+1-.¢qn_1

=1 - - n<i - ' -
_ n qt}, qm+m P:+1 n qm q‘u"f‘p, m qu...qm_lqmqm+l -----qn_l
=1 qﬁ'q”’+m.#+1 u=m+y Im=q, pm W1 Im 1 Im+g v " ney

(6.4)

We shall now derive the 2nd recursion-relation which is needed for the

normalization-coefficients. Using Eqs. (4.2a') and (3.4) and that, according to
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the inequalities (2.4), bp-+
(5.1') one obtains

, is the lowest value of q‘u: and furthe rmore using Eq.

~ bieeeiiiaiiiinn, bn\ ” -1 bl .............. B,
o ( I (em-@*u-m-n) L,
;ql "qmbm+z“ b, / (L= m 42 q, ‘Imbm+2 b,
n -1 q q b b ---------------- b
( n (q,-b +,u-m-n) N1 imeg ety ;
P’,=m+2 q q 'lb -.nb
1 m m + 2 " ql q,., 1bm+2...b”
(6.5%)

In a similar way one obtains from Eq. (4.2a"), using that b“ is the highest value

of 9, ond besides using the symmetry-relation (5.2)

Cﬁ blinnililgu.....bn
m
bl. mey T soedy.,
n.l | #-1 b & & B & B * b b BV b - & B b
= I (g +1) N1 meyIm ¥l vy, 11 ”
#=’ﬂ*1gﬂ# 1" me1Im- "y | b h +
ll--ll-' m,‘lqm 1 -q”.’-l .
(6.5")

Now, taking the normalization-coefficients real, one obtains from Eqs. (6.5') and

(6.5"), using Eqs. (2.1), (2.2), (2.5) and (2.6), the 2nd recursion-relation
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B uverarsresians N % o o LT b,
= mitn
b1 bm-1qmbm+2 bn | b1“‘bm-1qmbm+2“ bn

I
0
3
'
>
3
4
.
3
i
™
|
+
it
A,
O~
&
On
e

bm-?- qm 2- bm + 1 ! (6'7)

so that as boundary-conditions to Eq. (6.6) we have

b ... b b h cesesh

N 1 mey m+1 "m+2 -0,
b oweihy By othy . eaah,
(6.8')
and
Nb1“'bm-1bm+1bm+z'“bn _ 0 .
Y T Y S
(6.8")

The unique solution to the linear recursion-relation (6.6) with the boundary-

condition (6.8') or (6.8") is easily seen to be

2

b o...h b cesesh " "
N1 Tmer T ") == O (@, b tu-m-1) 0 (g,-btu-m-1).
bl...bm_lqm'lbm.,.z "-b” w=m+2 u=m

(6.9)
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From Eqs. (6.4) and (6.9) one then finally obtains for the normalization-coefficients

of the lowering operators

nejl me1 m ”
=( I ( / 11 (qm+l)) I1 (bp-qm'l'm-p“f'l) 1 (qm-bﬂ'i'p-m-]) .
#:

1 pL=m+1

(6.10)

We shall now choose our phase-convention for the normalization-coefficients

9, m (6.11)

for all 9, b# ond m . From Eqgs. (6.10) and (6.11) one then gets for the normal-

ization-coefficients of the lowering operators

NN

H

ﬁ
i

P e
=
3
-

\\

3
—
3
=
#

S —"
— 3
N
&

Lo
+
=
$
3

p= 1 “=1 . (6.12)



Using Eq. (5.4) successively and Eq. (6.12') one now obtains the general

norma lization-coefficients of the lowering operators as

'
e | ’E

_ 1 (ql-qﬁ+#')\)! ﬂr}l (b%-q;‘i"#";\)! ;[ (qh-b‘u'*l-#- A=) ]

S |
#:»}\:1(‘1’7\"?; ti=A)! pnﬂ(b}fi’#‘*‘#‘?\)! p>r=1 @)=k, tu-hel) 7,9,

For the normalization-coefficients of the raising operators one obtains from

the symmetry-relation (5.2) and Eq. (6.12'), also using Eqs. (3.5) and (3.6),

U
Nl b
L
+ 0
2 Cum

(6.12%)

from which one sees, that the phase-convention (6.11) does not imply that the
normalization- coefficients of the raising operators are also all positive.

From (6.12") one obtains in the same way as for the lowering operators
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X

q# p,é 1(/»1"' ])(‘I;L" ‘IP.:)
N bu = (=)
ql
i
"l.il @)=, tu=2)1 "o oL, e A)] 7 L
oy @ =T 11* (bm_ w FZA) n 73"k, Y= A=1)! |
“ PR T wZh=a BT TR s, 7, = 5, + = A=) ] $Tu=

7. THE MATRIX -ELEMENTS OF C__ .

In I one saw that the normalization-coefficients of the lowering operators

- * . "
con be expressed in terms of motrix-elements of the lowering generators C .

nei
The converse is also true, i.e. that the matrix-elements of C# can be expressed

in terms of normalization-coefficients and hence from Eqs. (6.13) can be calculated

, C

using the commutation-relations (2.2), derive the matrix-elements of all the gener-

1 ne2

” o 2 1
explicitly., From the matrix-elements of C_ o C‘3 ) C2 one can then,

7= !

17
ctors C" o

n
We sholl now proceed to derive the matrix-elements of Cn , rather than

-1
of C:.l . Detfining

bip... ------- .-'bﬂ-
- ;AP 9.y
7
=
q# IR B B B B B R N PP
4
L

iiiii
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using Eq. (5.3) and the fact that C:_ commutes with L’

. eyt and besides using
Eq. (4.2a"), we obtain

b b
H ” H
+
1Y 8141 Cﬂ'l "
' 8 4
p p
-1
" 5 I P¥ ) Ty "ty | Y
- +
=] N 1, 1, SP-’ C 1 =1 (Ln-l) 1
r# 4 qﬂ—
w ] -
1, "ot 7 e b,u ” =2 y Do+ O3y ° 7y . "’ﬁ\
=N " uél(mn ‘?uh) ’ +8P’ h (L“'l Ry 19, y L <m
= 1 =1
4 Ay " q#-/

n”
Now noticing that Cn ., is a scalar with respect to U, which follows

-2 r
from the special case of the commutation-relations (2.2)

(¢, ¢

! “netg

]= 0, ]S_#,ﬂ'<ﬂ-],

(4
one sees that the matrix of CM_1 is diagonal with respect to the basis-vectors of

an irreducible vector-space of U, _,

(see e.g. Ref, 6). Using this fact one then finally obtains from Eq. (7.1) for the

and furthermore does not depend on these

general matrix-element of C:-1 , changing nétation and also using Eqs. (5.1"),
(5.3) and (6.12"), (6.13?),
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-1
-1
” -1 pn =1 Pm ey Sul {b "1
: ( ? bln-l; At =1 ) " b“‘" N b#”'1+8ﬂz N bﬂ”'l
= 1
nf bﬂﬂ'l+8ﬁtl P« \bﬂﬂ-z
— )
7 * 2 ”
iI (ln-l,}\n-2+]) bln-l,')\n
A= A=
== i - > 0, ]S.l<ﬂ,
”net 7neq
(bi’#-l.-?\n-l t) Il Iney1, Ane)
}\:1 ?\=1
I_ AE L AE
(7.2)
where
bﬂv,)u,'v' = bp’ﬂ- b}.L'V' +)LL"'"# !
which fulfil, as seen from the inequalities (2.4),
> >
bﬂ'nn' ,U-r”_l”'l _::: 0 fOl’ ‘LL'!'I — ‘LL” » (703)
< <

Formula (7.2) coincides with the result obtained in Refs. 2) and 3), in-
cluding the phase-factor according to the phase-convention by Gelfand and Zetlin’

for the matrix«elements of the generators which is

C bp_'u> .Z. 0 ! (7'4)

” -1

Py
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so we see that our phase-convention (6.11) for the normalization-coefficients

agrees with the convention (7.4) .

8. THE MATRIX ~ELEMENTS OF C,_.

We shall now show by induction in m that the following formula for the

44
general matrix-element of Cm is valid

nei
' ”
<b#v+8;dy Z Oy Com 'buv>
\“jv'=m
7 o1 - Y
- IO sy -Z)[b (b +1)]
A=m+1 Aet A 17\1' ;)\-1}\-1 l}\?\, 17\-1 A-1
" A
x 1 8,1y 8un ., lCM1 B>
?s=m+1
ne]
= O s -1 [b, ( +l)]
- Ao 1 A - v, 1 A
)\=m+1 )\ )\ 1 % }\-1 1
%
Aol A+l
” o [[ (bl?\‘;\l HA - +]) ]] bl'}\-}\r HA+1
i ¥=1 n=q
X II - —— — P ]_ﬁl}\ﬁ.}\,
A=m A A
11 (bllh J{?\+1) Il bl}\)u XA
H=1 n=1
nE Ly . AN

(8.1")
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where use has been made of (7.2) and

1 >
for x 0,
1 <

and where for m = n=1 the product over A from » to n=1 is defined as unity.

§5(x)

We first note that formula (8.1") indeed is valid for m = n=1, as it be -

comes an identity. We shall now prove that if it is valid for m then it is also

Vﬂlid {:Or ??'I“] »

Using the commutation-relations (2.2) we obtain

n e
<h;1, +8;,le Z Sw' l r:-l' #v>
vi=may
B <h#‘v‘+8#fv(8‘v'n-1 va) lC:-1 , LV * S#ngw>
” e )
X b,ergplv Z Sw' 'Cm bpv>
Ut = gy
” ey
- <bm+8#lv Z Syt {C: ,bju,u,+BJMZW_'1 Svm_1>
vi=maeq

X <b“v+8#lm- S'U??I'I IC:-l Ibﬂ">

1

where we have used that in the summation over all intermediate basis-vectors

only one term survives..
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Now, using Eq. (8.1") to express those matrix-elements whose kets are

different from b, interms of matrix-elements whose kets are equal to b

one obtains also using (7.2), (7.3) and again (8.1"),

i

) blm [ 71 .lmm-1 ] _ [ g m, me1 .
bl 1 mei,l _m bl m, | ﬂl"'].+]
n-l
”e /]
X q’uinsulm-lsvm-l ,("m-]_ ,b‘u\> Qp‘\}-l-sgzv Z SVU' ,CH‘! 'bﬂ'>
V= m
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é
= S(Zm 1-lm) [bl m.lm_lm-l( mm’lm.lm'1+])]
” et
" 7
” <bv+8ﬂ1m 18v""1 lcm'l bﬂ"> <bv+3 v Z Oyy! ,Cm ,bw
vi= m
ne= -‘I’E
= I Ss(@ . =-L)]h P 1
= (}\-1 )\)[l?\k'l}uul %-1(11;\' l}‘_l 1.1 )]
” . \
X )\H <bpv+3p\}3‘d?\-1 IC}\-]_ b#v> ,
= m

which is again of the form (8.1") and which then proves formula (8.1").

As a special case of formula (8.1") we have

N

(8.2)

From formula (8.1") we obtain, for the general matrix-elements of C: '

using Eq. (2.1),

C | 50>
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N

A= A4+l
I 5 I (b - |
_’f_'_ll_. " t}&‘)\' WA -1 = 1( I'A}\. KA + )
H - - )\. — . * . 3 e P ]SJ}S/\ -
A=m
H bl?\)\r )(‘}\ H (bl‘)\}\l K}-])
H=1 H=
}(4: I}‘ }f* }?\

(8.1')

[t should be noted that the matrix-elements of the generators (8.1) have

in this work been obtained in a purely abstract way using only the commutation=-

relations of the generators (2.2), contrary to Baird and Biedenharn® who, besides

the commutation-relations, also used explicit expressions® for the basis-vectors.

l.

2.
3.
4.

Se
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