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ABSTRACT

The classification of states of three particles produced in a single event
has been a subject of much discussion in recent publications'*?+3, |If the center
of mass is taken out, the symmeltry group of the Hamiltonian of three particles is
the rotation group in six dimensions R\‘5 . This group is isomorphic to the unitary
unimodular group in four dimens ions SU, . Use s made of this fact for the explicit

construction of the three particle states in configuration and momentum s pace.

[. INTRODUCTION

In recent publications Kramer!*? and Dragt® have discussed the problem of

the classitication of states for three particles produced in o single event., They

[ =

*
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make extensive use of the fact that the symmetry group for three free particles,after
elimination ¢gf the center of mass motion, is the rotation group in six dimensions R .
In this paper we make explicit use of the isomorphism bétween Rﬁ.and the unitary
unimodular group in four dimensions SU, , to construct the states of the three parti-
cle system,

Before proceeding to discuss our problem we shall review the well known

equivalent problem for two particles in a way that will suggest the generalization

of the procedure to the three body problem.

II. THE TWO BODY PROBLEM

L
L.et us consider a system of two particles whose coordinates are ,;ff ca=1,2

being the particle indice and i = 1, 2, 3 the vector index in three dimensional space.

The corresponding moment will be designated as

The hamiltonian of this system of two particles, assuming for simplicity that their

masses m are equal and choosing units such that m = 1, becomes

where repeated indices will be summed over their range of values. We introduce

the center of mass and relative coordinates and momento

X, = ' (é: t ‘5:): P, = (H: ¥ ﬂ:)

1
; v
2 V2
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(£ =&Y, p= L (0;-0,),

and so

(P; P, + p; b)) (4)

m]—-

We are interested in a solution in which the center of mass had a definite momentum
K, ond the stote of relative motion corresponds to definite energy E, angular mo-

mentum / and projection m. The solution is of course

b = exp(iK, X)r *? I, W2E1) Y, (6,9
2

-l-k

exp (1K, X;)r ][+ ) (‘/25 ) Uf,,,,

(5)

where the u (x is a solid spherical harmonic in the x; .

We want to derive the well known solution (5) in a way in which the groups
theoretical ideas underlying the derivation become explicit so as to be able to ex-
tend the analysis to the three body system.

We first remark that invariance under translations implies that the total mo-
mentum K . is o good quantum number and so we get rid of the plane wove and re-

main with the problem
1 ! >
WY =g hb V) =g o oy V= B9
(6)
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The hamiltonian (6) is clearly invariant under the group of rotations R, whose gener-

ators are given by the antisymmetric tensor

Nij =(i/2)(x; p; = x; ) (7)

connected in a direct fashijon with the components of angular momentum. Clearly
then we could further specify the functions  (x;) by requiring that they would form
a basis for an irreducible representation of R, , which we achieve if we demand that

J also be an eigenfunction of the Casimir operator of R, i.e.

Oy = A Ai; =) (8)

The equation (8) is compatible with (6) as H'and ® clearly commute.
To find the solution of (6) and (8) as well as to obtain tne eigenvalue «,
let us first look into auxiliary problem of obtaining the homogeneous polynomials

of degree / that satisfy the Laplace equation, i.e.

x:. aP = ZP, VZP = a P = 0 (gurb)
Ox. Ox. Ox.

1 z 4

We shall derive these polynomials below, but first we shall show that P satisfies
(8) and that with its help we can immediately determine Y/ (x;). From (8) and the

commutation relations of x., p; we obtain

D= - —3— (x; pi =X Pf)(-"'f by~ x; Pj)
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e V+1) -2V} (10)

It we now apply ® to a P that satisfies (9), we get

OP = > 1(1+1) P. an

F urthermore, we have

1 :
V= V-V - S e (12)
We propose for i (x;) the expression
b(x)=r"f(r) Plx;) (13)

where f(r) is, so far, arbitrary. Substituting in (6) and using (11) and the fact
that from (9a) P (x.)/r! is independent of r, we get for f(r) the equation

y?2

] ("——(-1-—)'(1'_‘{_'”) f- 25D sr2e 020,
(14)

2!
or f=r 2] . (V2Ii r) where | is a Bessel function.
4
2
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We get then that the solution of (6) and (8) con be written as

(15)

where P satisfies (9).

As the polynomials that satisty (9) also are eigenpolynomials of ¢, they
form a basis for an irreducible representation of R, characterized by /. As the
basis for an irreducible representation / has dimension (2/+ 1), there are (2/+ 1)
linearly independent polynomials satisfying (9). We could further characterize
these polynomials if we require that a subgroup of the group R, be explicitly re-
duced, for example the subgroup of rotations R, around the z axis. The polynomi-

als is then characterized also by the equation

A, P=(i/2) mP, (9c¢)

2
which can be imposed on P as A, clearly commutes with r + V.and V . The
parameter m is so far arbitrary.

To determine P we make the change of coordinates

X, = -(]/1/2—)(x1 + fxz), Xqg = X3 0 X = (1/\/2—)("'1 = fxz)
(16)

and the equations (9) become

O +x % +x_ 92 _ ) poupr,
U A N )
2 2
"2 a .__.+ E_ F‘:O;
Bx+ax xg



e, P>
_— - P — P .
(x+ ox, BT ) §
The most general polynomial solution of (17) is

” 2 7
P - z A x +tx 0 X
n, n n n+n0n_ i 0 i °
4+ 0 -

Equations (17a,c¢) require that

ﬂ++n0+ﬂ-=z, ﬂ+-‘ﬂ_=m
and so m must be an integer and P becomes
m [-m )\ "=
P=x=x %An_ (x, %2 /x2)

As r?2 can be written as

r? = -2 x, x. tx

(17a,b, ¢)

(18)

(19)

(20)

(20a)

2
we could replace (x, x_ /x?) by 1 (1-_7_) and as A, is arbitrary we could ex-
2

x [

O n

press P as
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It we now apply (17b) to (21), we obtain straightforwardly that 4 must obey the

recurssion relation

A, 4y (lmm=2n)(lem=2n=1) (22)
A 2(?1‘!‘]) (21"2?1"'])

We have then determined the polynomial satisfying (17) and from (22) it

turns out to be, as we expect, the solid spherical harmonic

P(x;) = ulm (x;) (23)

The wave function i (x;) is then given in terms of a radial function

1
[][+ -~ (V2E a")/'rz"L 2] and the polynomials that are basis for ar irreducible repre-
%

sentation / of R, in which the subgroup R, is explicitly reduced.

How does the solution (5) look in momentum space? We can write it in the

form
5(B-KIQRE) © 3( - Y, (&) (24)

/2

4
as the magnitude of p. in the solid spherical harmonic cancels with (2};)

because of the & function, and the Fourier transform of 3(.]2.. pt =) Y, (a, f3),

. . - ) ,
where a, 3 are the angles in momentum space, gives r 7 1+, (1/5!: r) Ylm (6, ).

We shall now proceed to extend these results to the three body problem.
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lI. THE THREE BODY PROBLEM IN CONFIGURATION SPACE

We consider three particles of equal mass (m = 1) whose coordinates are

o

ffl. , 2 =1,2,3, i=1,2,3, and whose momenta and hamiltonian are

Q)
=~

I, M, I1. (25)

H
H.I ll

Q/
Ny

We make the transformation to center of mass and relative coordinates

X = L (&gl v &) kb g+ N VERE] w2 L (£l £y,
‘/5 1/6_ : /2— { 1

(26)

The corresponding momenta are given by the usual definition

| 3 a 1 e
IJ' _— — — —— F] CI, p— ]'2
] 51\’1 p’- ] axf’
The hamiltonian is then
=1 {p,p,+p*p*} (27)
2 t O}

where repeated indices are summed and from now on a takes only the values 1,2.

The eigenfunction of # can be written as

exp (/K. X))  (x7) (28)

127



where ) (x?) satisfies

Fo U T) = EY ) . (29)

We shall proceed to derive i (x?) in analogy with the method followed for
the two particle system. The hamiltonian ff “is clearly invariant under orthogonal
transtformations  in the six dimensional space of the x:, the generators of this R

group being

A = L (2 pjﬁ-x?.ﬁpia),a, B=1,2,4,j=1,273 .
(30)

Clearly then we could further specify the function  (x*) by requiring that they
form a basis for an irreducible representation of R, which we achieve if we de-

mand that \J should also be an eigenfunction of the Casimir operotor of R i.e,
afl Ba
(RVRES Aﬁ Aﬁ J = kY (31)

The equation (31) is compatible with (29) as ® and H' clearly commute.
In analogy with what was done for the two body problem we can first de-
termine the homogeneous polynomials of degree A thot satisfy the six dimensionol

Laplace equation

(3240, b)
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The polynomial P satisfies (31) as

D - - :1‘_ (£~ 2 p2) (xf p% - xf ij)
-1 {(r VGV +4)-r2V" )}, (33)
where here
re Vo= x? gx:' , rh= xd VA p” pj‘ , (34)
and so
@P:%.)\()\+4)P : (35)
Furthermore we have that
vzz;'j_(g_-V)(;_-VW)-%_@ (36)

Proposing  (v.*) in the form

) =) PeEy (37)

B

a
we see that it is an eigenfunction of ¢ as AI.;. commutes with r , and as from
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(32a) P(x7)/r Nis independent of r we get the equation

1 r d ad _ A{AT 4) e
rz(‘z‘*)("d,”)f A [ TE[=0,

(38,
whose solution is
f=7"2]y,, V2ET) (39)
where J is a Bessel function.
The solution of (29), (31) can then be written as
by = 7R g, VB ) P, (40)

and so we have now the problem of determining the P (x;") that satisty (32a,b),

i.e. the set of polynomials that form a basis for the irreducible representation of

R, characterized by A

As in the previous case, we must find a chain of subgroups that would
help us to characterize the polynomial P (x;")} in analogy with the way the subgroup
R, was used to characterize the polynomial 1 (x.) of the two body problem. We

would like this chain of subgroups of R_ to contain the subgroup

R 0
0 R
3

of ordinary rotations of the reference frame in physical space as then we would

have among our integrals of motion the relative angular momentum of the three

particles.
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To find this chain of subgroups that contains (41) we recall the fact that

the R, and SU, groups have isomorphic Lie Algebras®. This implies that we could

23
construct linear combinations of the generators of Az'j that would have the commu-
tation relations of the generators of SU, . To obtain these linear combinations let

us introduce the coordinates

(/V2) (x} + ix?), x7 = (IV2) (x] - ix?) (42a)

X .+
I

il

and their corres ponding momenta

pf = (WV2) (o} =ig?), 7= (V2 (pf +in?) . (42b)

1

We now define the operators

Co =i {7 p' = p;)-.; (xg 2y =%, 27) 8},

(43 a)
C,u = - €, x; p]f , (43 b)
C“a = - Ek:'j x: pf' , (43 ¢)
Coa = @W2D)p, =52 07) (43d)

where repeated indices 7,j, £ are summed over 1,2,3, and € is the antisymmetric

tensor.
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The 16 operators C,_“, , #v=1,2,3,4, are linearly independent except for

T 7

C44 = = Cif , and from (42) they can be expressed as linear combinations of /\;.j

one obtains immediately that

: +
Furthermore from the commutation rules of p,t, X,
I

]

[(C . Ch v 1=C v 8, =C, & |

pv !t Tuy Ly v S (44)

which shows that Cﬁw are the generators of a U4 group, or rather an SU4 group as

the trace of C#y IS zero,
The set of linearly independent polynomials P satisfying (32) would then
be a basis for an irreducible representation of the group SU, . We could character-

ize them tarther by the subgroup U, of §U, whose generators are the C,.f of (43 a)

and afterward by the subgroup R, of U, whose generators

(45)

are clearly related with the components of the total angular momentum associated
with two particles of coordinates x” and momenta pl.““ .

The procedure of constructing the full set of polynomiais that are basis
for an irreducible representation of U, inthe U, D R, chain from the highest weight
polynomial in U, has been extensively discussed &7, We need therefore only obtain
the polynomials solution of (32) that are of highest weight’ in U, i.e. P should

also satisfy (the repeated index 7 is not summed in (46a).

C;:'P = AP : CI"
H

”P:: O, 3.{]' ’ (Aéﬂ,b)
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where for simplicity, instead of the operators (43a), we take for the generators of

our U, group the operators

Co.=C..+C, &, = ix}pt=xp7) . (47)

L1 ¥ 4 1} ] ] "1

The numbers b; are integers that satisfy bl'?,:. b) > b, but are not necessarily posi-
tive,

The most general polynomial P(x;") can be written as

m ”
2

i
P(x:.i)pz 2.A, o om (x1+) 1(Jc';') 2(.1:;') 3 (xl') l(xz) (x;) >,
17273717273
(48)
If we apply the three equations (46a) we get
) '
no=m =h , n~m, = b; y no=m_ = b,
(49)
so that the polynomial satisfying them takes the form
b b b z m ”m ”m
1 +y 1 +y 2 +, 3 + = 1 + - 2 + - 3
P(x) = (xl) (xz) (xs) o~ Am1m2m3 (xl xl) (xz xz) (x3 xs) .
1723
(50)
We have now that
r? = x; xf = 2 (x1+ x; + x; x; + x; x;) , (51)

133



and so we could express x1+ x, in terms of r? and of x2 x2 , x; x; .

As the A's are so far indetermined, we could write

Pt - e S 2 Ay o O )™

m1m2 m3 1 2 3
(52)
We now apply C;a to (52) and, noticing that
C:‘i ' =0, C13 x1+ = Cls Cu x2 - Cla xs = (53)
we see that
' OP ' + JP
CHP:(axa)Clsxa:xl —é-x_;'_—o
(54)
Therefore P is independent of x" which means that
ﬂls = - b; (55)
The polynomial can now be written as
l _bl' .. m
Ped) = (e 6% (o Z Am m (P) 105057
2
(56)
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We now apply CI; to (56) and as

T N r 'y
Cl:z ro= Clle = Cuxz = C12x3 = 0
we get
' 5 _foP ' 4+ _+ OP
Clzpﬂ-gx—z": C12x2=x1_,5x_2_'__=0
and ds P is then independent of x;, we have
]
so that the polynomial becomes
5 5! .p Z m
- - 2
P - (xl+) 1(.1»'2) 2(x'3) 3 - A (r ) .
L
1
Finally we opply C:; , and as
’ 2 ' 4 ' -
Czsr = Cﬁx1= Czs.x'a: 0
we get
C p- oP C' x" = = x° op
23 B - 23 2 3 QJx°
2 2

(57)

(58)

(59)

(60)

(61)



which means that

-5 -0 (62)

(63)

where bl" must be a non negative and '{)3' a non positive intager,

So far we have not applied equations (324, b), which can be written as

.+ aP + :.- ap — )\P aP - 0 ®
Car T e
(64 a, b)
From (640) we immedictely get thot
bl' - b; *2m, = A (65}
:\
and the polynomial becomes
wh ey e R
xl) (xs) 1 M3
(65a)

If we apply (64 b) to (650a), we get

A -} ' '
l__ (b= b )t A +4) [N= (b= b )] (x") " (x]) 3 Py by 0,
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and as both A and bl' - b; are non-negative, we conclude that

)\. — b‘-b‘ y (67)

1 3

so that the polynomial satisfying (32, 46) becomes

P=(x') ! 2(x]) 2 (68)

where

are the numbers characterizing the irreducible representation® of SU, + As the ex-

ponents in (68) must be non negative integers, we see that k, can take values

kzz)\,,)\_],---;o . (70)

We see then that the irreducible representation \ of R, is reducible under

the subgroup SU, of R, and contains the irreducible representations of SU,
(A.A),(AA--]),lll’(}\-O)l (7])

What is the representation of SU, corresponding to the representation A of
the isomorphic group R ? In (68) we have the polynomial of the basis for an irre-
ducible representation A of R, which is of highest weight in U, « If we require

further that
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ChaP =0, £=1,2,3 (72)

4

we get the polynomial of highest weight in the group SU, « But from (43b) we see
that

. Ak, -1 _ kR
Ck4P= - Ekfl X ()\."kz)(ﬁd‘:) 2 (xa) 2 - 0 ¢

(73)

which can only be satisfied if A= k_ = 0, and so the polynomial of highest weight

2
in U4 becomes

_ A
(xs) .
if we apply C,., C“ to (73), we get the eigenvalues
A A A A
b1=2_,b2=-2..-,ba=-2—, b4= -2- ™
(74)
The representation ofSU4 is given by
bl-b“:)&' bZ-b4= A, b3-b4= 0- (75)

Therefore the representation of SU, corres ponding to the representation A of R, is

[AA] (76)

and from (71) the representations of SU contained in it, satisfy the inequalities’
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A E}kl 2 )\:}kz > 0
The solution to our three body problem corresponding to the highest weight

representation of the subgroup U, of R_is then

— A=k k
Gxf) =2, WENT) ),

(78)

and the full set of solutions in the U DR, chain can be obtained by applying to
(78) the lowering operators ® in the U,DU,D U, chain and the transformation
brackets ® that take us from this chain to the U,DR, one.

What are the operators, and their corresponding eigenvalves, that charac-

terize Y ? First we have the relative kinetic energy

H = L pepe H' Y =EY. (79)

1
'2_, t %
Then the Casimir operator o of (31) with eigenvalye

AN+ 2) Y (80)

Afterwards we could consider the Casimir operator [ of the SU, subgroup whose

generators are (43a), i.e.

[ = (Cff - 31" tr C St'f)(cf" - ;_ " Csf:')
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1] “ji 2

2
= C..o -1 (tr C) ~where tr C = C:‘f "

(81)

The operator [ clearly commutes with @ as the SU, group is a subgroup of R_.

The eigenvalues of [" are”

2 2
o= v Skt R 2k (R - T)

(82)

As k = A, we see that [’ determines the eigenvalue k_ of our wave function.
We now look into the R, subgroup of SU, whose generators are given by the

components’ of the total angular momentum

L, = -2 € i A with A;; given by (45) . (83)
The integrals of motion are then
L*=2A; A, L,==2iA, , (84)

and the corresponding eigenvalues are
L(L+1), M (85)

As is well known 3’ © the R, subgroup does not completely determine the rows of an
irreducible representation of U, in the UDR, chain. The complete determination

is achieved with the help of the operater (2 defined by
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_ _ ] L+ CL -] g
() = Q:‘j L; L;,where Q:‘j = = (C:} C“) > tr C"S:;

(86)

The eigenvalues of this operator will be denoted by w and their determination is
discussed in reference 5. The operators H, ®,[", Q, L2, L, clearly commute

!
among themselves.

The eigenfunction (28) of our three body problem can then be denoted by
the ket

KIFKQIKSIEIKIkzlwlle>
Ak
_ A2 2 (.a
= Ty ,, V2E ) P T (x]) (87)

'}kg . . .
where P < are the set of polynomials corresponding to a basis for an irreducible

representation” of SU, characterized by ()\kz) whose rows are denoted by wliM.

The solution (87) brings out the correlations associated with the creation of three

particles in a single event.

IV. THE THREE BODY PROBLEM IN MOMENTUM SPACE

If we want to find now the eigenfunction ¥ (pf') in momentum space as-

sociated with the hamiltonian H' of (29), the Y must clearly contain the § function

] a ,a_ _ + L.
5(.2_17‘ [7‘, E)*—S(;"i Pi E) ’

(88)
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and in fact, the most general solution of (29) will be
x(62) = & (p] p;= E) F(£°) (89)

where F (pi*"") is an arbitrary function of pf‘ .
The hamiltonian H' of (29) is invariant under R and so we could require

that F (pi‘:") would be a basis for an irreducible representation of R_, i.e. it would

satisty

(I’F = KF ’ (90)
where ® is defined by (33) but now we have

xaz-

1 3
(T oD

To find the F that satisfies (90) we could think first of an auxiliarly

tunction G that satisfies

(92)

which implies that G is an homogeneous polynomial of degree A in p;_'l that further-
more satisfies a Laplace equation in momentum space.

From (33) we have that

¢'=-;-{(f£'_:) [(ipr)=-4]+p* 7}, (93)
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w here

tp I_z"Pa--—;fE- 2 arpEpf&par
3p! op,” 9, ‘
(94)
and so
tbc;:;_)\(hﬂl)a (94 a)

We now could further characterize the polynomial G by the restriction that

it should be of highest weight in the subgroup U, of R, i.e., that it should satisfy
'
(46a,b) where in C:-]. of (47)

xto-L1 9 (95)
. €, ! Bpl_
C.. = -fpr O - 3 : 9
7 (‘t} BP: p;‘ ap;' ) ( 7)

Clearly then we can repeat the analysis of section 3 just replacing
+ - - +
T A PR (97)

and so the F (pl,a) corresponding to the highest weight in the subgroup U, becomes

R =k
F(p.) = (p7) ! ’*’(p;) E (98)



where

b = (W) (;*i0)), b= WWV2Np, - i) -
(99)

All states will be generated from (98) applying to them C:.f with £ >/, and

so the momentum space solution could be written as

“7/2 Ak
S _L a ,a 2 a
@E)"" S(Lpt - E) B2 (5

(100)

where P is a polynomial in the components of the momentum that has the same in-
terpretation that the polynomial in terms of the coordinates in (87). The Fourier

transform of (100) gives, except for a multiplicative constant, *4e configuration

space solution (87).

The authors are indebted to Dres. P. Kramer and A. Dragt tor bringing

this problem to their attention, and for many discussions.
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