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RESUMEN

Partiendo de las suposiciones usuales relativas a la operacion de automa-
tas finitos, se bace un andlisis con medios formales puramente logicos,de sus con-
secuencias. Los estimulos externos se asocian a un conjunto de relacsiones entre
los estados y con el auxilio del cdlculo relacional se muestra que, re lativamente
a un alfabeto de estimulos, los estados pueden agruparse en sclo dos tipos de uni-
dades de mds alto orden. El mismo farmalismo se usa para un andlisis pre liminar
de los automorfismos y endomorfismos de automatas. Se introduce el conceptode
conmutador logico y se hace ver que toda trans formacicn endomorfica, tratada co-
mo una relacién, debe satisfacer ciertas propiedades de conmutacion que la carac-

terizan como una constante de movimiento.



conce ptos fundamentales, asi como para facilitar la lectura al investigador no fami-
liarizado con la logica formal, se ha introducido, en las seccivnes 2 a 6, un cortc
sumario de algunas definiciones y algunos teoremas bien conocidos de los cdk ulos
predical y relacional, que pueden encontrarse en cualquier buen texto de logica.
De la seccion 7 en adelante, se muestra la aplicacion de €stas disciplinas al and-
lisis de automatas.

Partiendo de la nocion de autdmata finito definido por medio de sus ecua -
ciones candénicas, se hace notar que éstas pueden describirse mediante un conmun-
to de relaciones. la aplicacidn sistemdtica del cdlculorelacionala este conjun-
to, permite obtener por medios puramente logicos y muy simples, un cuadro general
de la organizacion posible de los estados de un automata, en unidades de orden
mds elevado, demostrandose, que son posibles solamente dos: el grupo y la fami-
lia, Cada una se puede definir mediante una relacion adecuada, cuyas propiedades
reflejan el caracter mismo del grado de organizacion descrito.

FElmismo formalismo se emplea en las idltimas secciones para efectuar un
exdmen preliminar de las propiedades de transformacion del automata que dejan in-
variante el sistema de relaciones inducidas.por los estimulos externos. Tales son
los endomorfismos y los automorfismos. Se introduce la nocion de conmutador IG-
gico y se demuestra que toda trans formacion que conmuta con todas las trans forma-
ciones inducidas por los estimulos, es, en general, un endomorfismo que puede ca-

racterizarse como una constante de movimsento.

ABSTRACT

Starting from the usual assumptions concerning the operatson of finite automa-
ta, an analysis of their consequences is carried out by formal, purely logical means
External stimuli are associated with a set of relations among the states, and with
the aid of the relational calculus it is shown that, relative to an alphabet of stimu-
the states may be grouped in only two kinds of bigher-order units, The same formal-
ism is used for a preliminary analysis of the automorphisms and endomorphisms of

automata. The concept of logical commutator is introduced; it is shown that every
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endomorphic trans formation, considered as a relation, must satisfy certain commu-

tation properties which characterize it as a constant of motion,

1. Introduction

This is the first of a series of papers devoted to the study of the theory of
finite automata under a purely logical point of view.

Just as the well-known method of propositional calculus proved to be a
valuable tool for onol)}s is, design and general understanding of digital machines,
one finds that a logical treatment incorporating other branches of logic such as
predicate and relational calculus seems to be a powerful weapon, not only for re-
formulating known facts in a simple systematic manner, but also for penetrating
into the deepest properties of automata which are not so apparent nor easily ana-
lyzed, when handled by ordinary algebraic metheds.

The least advantage that can be argued in favour of the logical methods to
be considered is their extreme simplicity. This is probably due to the constant
use of a formal language in which the process of deduction and inference appears
explicitly exhibited in a precise manner, thereby leading one, so to say, by the
hand, to the consequences. The formalism contains in itself the machinery re-
quired for demonstrations and obtention of conclusions. Once the elements of the
analysis are formally written, in many cases the conclusions practically spring off
from the formalism by themselves.

In dealing with stimulus-induced transitions in automata and with certain
of their transformation properties, relational calculus was used throughout. This
not only allows a clear understanding of the structure of automata, and the nature
of many of their not so obvious properties but, as will be shown in the third and
fourth paper of the series, leads naturally to simple design and synthesis procedures.

The power of relational calculus for dealing with sutomata problems proba-
bly depends on a very basic characteristic: Structure and behaviour of automata
are mostly dependent on transformations of sets of states, These transformations

generally have no inverse in the ordinary algebraic sense, most of them cannot be



describe d by group operations, nor by anything similar to the femiliar type of linear
algebras. This, it is believed, prevents in this type of work the use of mathemati-

cal systems which in other branches of applied mathematics have shown to possess

beautiful possibilities for penetrating very deeply into the fundamenta!l nature of
things,

The inability of group-thecretical methods to deal with general automata
toblems is offset to a great extent by relational calculus. Here one naturally
deals with every type of fransformation, one-or many-valved, uniform or multiform,
Nevertheless, where transformations gannot be algebraically inverted, they can be
logically inverted. In fact, we shall see that one can use formal logical inverses
in o way very similar to ordinary algebraic inverses. This is perhaps, among
others one of the main characteristics that make relations so useful in the formal
treatment of these problems,

Since this work will be shown in future papers to have some practicalappli-
cotions, the author considered that it would be convenient to make the whole
freatment accessible to the practical engineer working in the field of cybernetics .
To the author's knowledge, one does not often find engineers having a previous
working experience of relational calculus or lattice algebra, On the other hano
the whole freotment becomes so simple, once the general foundations of this mathe-
matical system are grasped, that it appeared convenient to introduce this and
future papers by a short summary ot predicate and relational calculus, This is the
purpose of sections 2 to 6 of this work.

These sections are included only for the benefit of readers not acquainted
with the formalism used, to fix, once and for all futwre reports, the notational con-
ventions that are used in a field in which unfortunately there is no universally ac-
cepted symbolism, Besides, it was the author's purpose to bring out the important
facts, saving the unacquainted reader the trouble of digging them up from the huge
existent liternture on the subject. It is hopea that the learned scholar who will
not find anything new in this brief summary, will patiently endure this, for him
boring, exposition of well-known facts on behalf of the less cons picious reader,

Since the material is contained in current text books on the subject, no proofs are



offered, but reference to standard texts are given, without explicit and overloading

mention of individual papers,

2. Classes and properties !+2

Suppose we have a class or collection 1 of things and let x be a variable
on that class, that is, x designates an indeterminate member of the class, We write
1 = {x}, meaning that 1 is the set of elements that x can designate. In our dis -
cussion, whenever we talk about subsets, it will be understood that we refer to
subsets of our fundamental *universal class* 1.

let f,2,b, «oeee denote properties of the objects of 1. Each such proper-
ty determines o subset of 1, namely, the subset of objects of 1 which possess the
corres ponding property., The symbol "f(x)" means that the indeterminate object
x possesses the property f, and will be read "x is f*. When specialized to indi-
vidual objects, the formula "f(x)" becomes a proposition that may be true or false
according to whether the selected particular object does or does not possess the
property f.

1 by itself is the nome of the property, and as far as the universal class re-
mains fixed, can be understood as a concept of the class of objects possessing

the property. Thus, we identify f with the abstract
f=%[(x) M

that is, the class of objects x which are f. In our discussion "f(x)" and "x € f*
shall have the same meaning, and every formula or proposition of the predicate
caleulus, can be franslated into a corresponding expression of the algebra of
classes.

A list of symbols of the predicate calculus, their meaning as well as their

equivalence in the algebra of classes is offered.



Predicate Calculus Algebra of Classes Meaning
[(x) x€f xis f
~f(x) o f'(x) x€f! x is not f
(3=} /(x) I\ there is an f,
there are ['s
~(3x) /(%) /=8 there is no f
(x) f(x) f=1 all are /
~(x) f(x) f¢l not all are f
/(%) *glx) cefleg xis fand g
f(x)tg(x) xefy g xisforg
(x) [/(x)Dg(x)] fCe all f*s are g's
(=) [f(x) = g(x)] /=¢ the /'s are pre-
cisely the g's
* (f(x)n g(x)) Ing the f's thot are

not g's and the

g's that are not f's

Here as usual " . * denotes conjunction, " + " alternation, " D " the conditional,

* = " the biconditional, " 5 * the disjunction orexclusive alternation.

For a finite class 1, having e lements X oXoeeaaas x,, the existentia
and universal quantifiers mean
(3x) /(%) = f(x)) + (=) + i ¥ f(x,)
()

(5) £(x) = f(x)) * f(x)) " *flx,)
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3. Relations'+2

From any two elements of our universal class, x and y, we can form an
ordered pair x;y, namely, a set containing the objects x and y only, in which an
ordering has been introduced, whereby one considers x to be the first and y the
second element of the set. The collection {x;y} of all ordered pairs of element~
of 1 is the so-called direct or topological second power of 1 and denoted by
1x1 =12, A relation r is a property on 1°, namely a subset of ordered pairs of
elements of | . The ordered pair x;y belongs to r if and only if x bears the re -
lation r to y, which we write r (x,y) and read for simplicity "x is a r of y*. In
symbols

r(x,y) = (x;y) €r

3)

r = ;yr(x,y)

x is the referent and y the relatum.

Because of the fact that relations are subsets of a certain class, they posse
ess all ordinary properties of classes, that is, they form a Boolean algebra under
the relations of equality and inclusion, and the operations of complementation,
intersection and union. Thus two relations are equal if and only if they contain
the same ordered pairs,

If rand s are relations, r = s means

(x)()') (r(x,y) = s (x,%)) (4)

r Cs means

(x)(y) (r (x,%)D s (x,¥)) (5)

r', the complement of r, is the set of ordered pairs not contained in r, that is,

= xy~or(x,y) (6)



The union r (J s of two relations, is a set of pairs in which the first member

of the pair is a r, or a s, or both, of the second:
rUs =xy(r(x,y) +s(x7y) (7)

The intersection of rand s, r()s, is the set of ordered pairs in which the

first member bears the two relations to the second:
'ﬂs=;;'(f(x:y)55(x,y)) (8)

Under these operations, relations obey the theorems of Boolean algebra.
In particular one defines a null relation V. denoting the empty class of ordered
pairs and a universal relation i = 12 being the collection of all ordered pairs .
These two particular relations are the universal bounds of the Boolean algebra of

relations. Every relation r fulfills
Bcrcl 9

Due to the circumstance that the elements of a relation are pairs having an
ordering, it is possible to define operations on relations which depend precisely on
this ordering.

We define the inverse r of a relation r by
F(x,y) = 1(y,x) (10)

that is, the ordered pair x;y belongs to 7 if and only if the inverse pair y;x be-

longs to r.

¥ (x,y) will be read "x is a r inverse of y" cr, perhaps better, "y has x for

ar",



Further, the *relational preduct® rs of two relations r and s is defined

through
rs (x,y) =(32) (r(x,2) « s (z,5))

that is, "x is a r of a s of y".

In abstract form

rs=x )7(3:) (r(x,z) . S(z')')!.)

Relational inversion is obviously invelutory:

“C
]
~

The relational product is associative

r(st) = (rs)t= rst

but in general not commutative

rs # sr

)

(129)

(12)

(13)

(14)

The relational power r” of a relation r can be recursively defined through

k+1 k k

(15)



We shail denote by I the identical relation, that is, the relation that any
object bears to itself

I=%y(x=y) (16)

I is merely the collection of ordered pairs x;x and the farmula I(x, y) has
the same meaningas x = y. We shall extend our definition of powers to zero ex-

ponent by adopting the convention

0. (]50)

A relation s is said to be symmetric if

s=3 a7
that is if

() (y) (s (x,5) = s (y,x)) (17a)

A relation r is said to be reflexive if

ICr (18)
which means
(Y3 (x =y« D 7(x,9)) = (x)r(x,%) (18a)
A relation ¢ is transitive if
12Ct (19)
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that is if

(X)) (1 (x,2) . £(z,5) 0D t(x,5))
(19a)

An operation which will be important in our work, is the so called "an-

cestral", defined by

fr=1yryriyry .....= U +* (20)
k=0

#r(x,y), "x is a r ancestral of y", means that x is identical to y, or x is a r of
y,orxisarofarofy,of cue

The operation

hr:r#r:rUr’Ur’U.....:G r* (21)

is called the "proper ancestral® .

4. Graphical Representation of Relations

In a finite universal class 1, each element can be represented by a dot or,
still better, a small circle, in which the name of the element is inscribed. A
property / can be pictured in this representation by drawing a closed curve en-
closing all elements possessing this property and writing somewhere along the
curve the name of the property (or a symbol for it). In-such a diagram a relation

r can be represented as follows:

n



Whenever r(x,y) is true, one draws an arrow, named r, from the circle

representing the element y to the circle representing the element x (Fig. 1).

r r
Representation of r(x,y) Representation of r(x,x)
Fig.i

1t x bears the relation r to itself one draws a loop going from x to x.

The set of arrows named r is a graphical representation of the relation r,
The purpose of labelling arrows with the name of the refation is that of allowing
the simultaneous representation of several relations on the same diagramme, |If

only one relation were involved, such labelling could of course be omitted.

The representation of the inverse relation 7 is the same as thot of r, ex-

cept that all arrows are inverted. For this reason r ond ¥ are not separately repre-

sented,

It r(x,y) and r(y,x) are true, two arrows are used (Fig. 2).

r

O

r

Fig.2

If x bears to y relations r and s, that is, if x is a r N s of y, one may use

separate arrows for r and s, or use a single arrow with both names on it (Fig. 3).

r ns
: OO
Fig.3
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The graphical representation of r |J s is the set of all arrows bearing r or

s or both,
The relational product appears automatically represented in our diagramme
because rs (x,y) will be true whenever one can {ind a z having x for an r, and being

an s of y, that is, whenever one can find at least one path from y to x consisting

of two pieces, the first named s and the second 7 (Fig. 4).

r S
rsix,y)
Fig.4

Two equal relations would be represented by exactly the same set ot arrows

If #C s, then every arrow named 7 will be paralleled by an arrow named s.

S. Projections

If fis any class of Y and r a relation an b, the formula r(x,y). f(¥),

*x isarofyand yis f*, gives rise to a property of x:

(2y) (r (2, %) f(y))

namely, that of being an r of an f.1
The set

/= 2(3y)(r (5 9)e f)) @2)

TSuch a property is very common in everyday language in expressions such as "wife of o
soldier”, "fother of o pupil®, "friend of o politician®, etc,
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of all x which are r's of at least one f, namely "the r's of the f's" is called the
projection of class f by relationr.
In a relational diagramme such a class consists of all circles which are

terminal points of r-orrows, whose starting points are in f (Fig. 5).

Fig.5

The projection of a class f by the inverse relation 7, namely

Frf= 2 () (6) e r(x)) (23)

the set of all x having an f for an r, is called the retrojection of class f by re -
lation r. Graphically 7 f is the set of all circles which are starting points of
r-arrows terminating in f. Since 7" fand 7" f determine certain classes in ¥, both

can be used as predicates in the formulas.

" f(x)

x€rf
(24)

Pf(x) = x €S

If one uses as f the universal class "M, one obtains the classes:



~

=
—
"

*(Fy)r(xy)

r"

ces (25)

71 Fr o= ;(ay)r(y,x)

rv is called the direct domain of r and represents the set of all elements whichare
r of some element. 7", the inverse domain of r, is the set of all x having an 7.

Again, r* and 7" can be used as predicates in the formulas r*(x}, x is anr,
and r*(x), x has an r. Another important type of projection is obtained when / is
a unitary class. By unitary class we understand a class consisting of just one
element. Thus, the unitary class of x is the class containing the sole member x,
and is denoted by [ x. It is convenient to distinguish between the element x and
the class | x. For example, if x has a property /, we write x € f, but | x C f. In
the first case we talk about an element of /, in the second we refer to a subset of
f. Everyclass fis the union of all unitary classes of its elements.

The projection and retrojection

™y = P r(x,y)
(26)

oly= %er(yx)

describe the 7*s of y and the elements having y as an r respectively. Once more,
both expressions can be used as predicates, but in this case such use would be
trivial, because " | y{x) and " L y(x) mean exactly the same as r(x,y) and
;‘)(x, y)e

A very important particular case arises when there is a unique x fulfilling
the condition. For ex., the unique x being an r of y is called the 7 of y and de-

noted by: ' y. If y is'r of a unique element, this element is described by #'y.

Tln conversational language such classes aore widely used as "the wives", "the fathers",

"the friends", etc.
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This particular type of projection is called a relational description.

ry= (1) r(x,y)

;-)'y= (]X) f()’,x)

(1x) is the description operator meaning "the only x such that",
In case of uniqueness, one still must distinguish between r' y and 7" | y.

One is related to the other by:

ry = (10 (" Ly(x)

...... (28)
™ ly= (r'y)
and the same for ¥ .
A class fis said to be closed under a relation r if
mfc/ (29)

that is, if all the r*s of the f's are f's, |f fis closed under r one says that
property f is hereditary under r, or that r "transmits" property f.
It can be easily shown that if a class is clgsed under 7, it will be closed

under any power of r.

efCf (2%a)

and under both ancestrals

16



grnfCf

30)
Brrcy

that is, if the r's of the f's are f's, then all r-descendants (or cnccstdts) of the

f's will, in turn, be /'s.

6. |dentity Relations and Equivalence Classes.

Any reflexive, symmetric and transitive relation in mathematics is called
an identity relation, because ot the fact that it can be used to define some kind of
equivalence between the elements of a set and because it is closely connected
with the fundamenta! idea of a group of transformations.

In our work we shall find a wide use for such a type of relation, in particu-
lar with the formation of the so-called "equivalence classes".

Let r be a relation over our universal set 1, which we assume to be:

a) reflexive 1Cr, b) symmetric: r = 7, ¢) transitive: r2C ¢

Let x € } be a specified element of 1.
The set
U,
r

R(xl) = 7" |x = "X, (31)

is the set of all elements of 1 which bear to X4 relation r. Because of the transi-
tive character of r any two elements of this set bear to each other the same relation,
Thus, if x!, x" € R(x,), then r(x', x) and r(x‘ ¢ %), are both true.

But transitivity requires that

1] ]
as stated, rlefox) o rle,x) oD rlx, X0
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Evidently,R(xl) C Yis a subset of T, If R(x)) = ‘¥, then the whole set
T consists of a single class of elements equivalent under 7. Suppose, however,
that R(x ) # '}, then there exists an element x, such that x_¢ t but x, € R(x).
Again, x, cannot bear relation r to any element of R(xl). Let now
Y

R(xz) = (x,=r1" 1%, (31a)

be the set of elements related to x, by r. Clearly R(xl) n R(xz) = B. The two
classes thus formed have no element in common.

Now, R(x,) | R(x,) C Y. The process can be continued and one finds a
numerable set of r-inequivalent elements X g Xy X3, and a numerable set of

r-classes R(x), R(x,), R(x,), ..., notwo classes of the set having common

elements.
If our universal class '} is finite, one can find at most a finite number of
such closses whose union will eventually exhaust the whole set +. In this manner

P will be decomposed in a finite number of r-classes

Y=R UR,U... UR, (32)
any two being disjoint

R,.nR,.=ﬂ, ifig (32a)

ivi = ],2, eee 2

Such a decompos ition is exhaustive, namely, any element of ™ belongs to

a certain class, and exclusive, that is, an element belongs to one and only one

class.,

It is also clear, that the same decomposition is obtained irrespective of

18



the particular r-inequivalent elements X . % .. x,, originally used for its con-

-
struction. Any set of elements x, (i = 1,2,2. ..n) such as x; € R; will lead tothe
same decomposition. The r-classes R, are completely determined by r itself and
depend only on the nature of the relotion, with the proviso that it be reflexive,
symmetric and transitive. A decomposition of the sort just described, is called a
partition, Because of its origin, we shall denote it as o r-partition. The classes
R, are the members of the partition,

As an example of this type of process, consider a property f defined on T
We can define a relation on \ with the aid of this property, by considering that two
elements possessing the property f are f-related. This particular relation we de-

note by f, and define through

f(x,9) = f(x} o fl¥) ...oe (33)

f(x,y) can be read: "both x and y are f*. Similarly, from the negation of the
property one defines }'. }' (x,y) means that neither x nor y are /. Now the re-
lation / U ;" is reflexive, symmetric and transitive, and can be used to effect a
decomposition of '\ of the type just discussed, In this case, however, the gener-
ated partition is particularly simple. It consists of two members: class / itself,
containing all elements possessing the property, and its complement f' containing
all elements that do not possess the property.

The decomposition

LENATNA (330)
effected by
fus (33b)

is the simplest type of non-trivial partition, namely a dichotomy. It is permissi-

ble to assume that any dichotomic identity relation is a concept of a property.
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Let now r be an arbitrary relation on }. Qut of this r, one con clways form

two relations, r# ond ¥r, illustrated in Fig. 6.

r¥(x,y) frixy)
Fig.6
Two elements x and y bearing relation r# to each other are such that both are
referents of the same element; that is, co-referents. [f x and y are connected by
#r, both are relata of the same element, that is, correlata, The first relation is

called co-reference, the second is called correlotion, We sholl find frequent use

for both types of relations.

7. States and Relations in Automata

A finite automaton A (Fig. 7)

Fig.7
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will be pictured according to the usual conventions: We imagine a finite set of
input lines that at any time may present any of a finite set of states. Each such
state is an input symbol, the set itself is an input alphabet ) and x is a variable
on X . The automaton possesses a finite number of output lines, which in turn
are capable of presenting any of a finite number of possible states, each such
state being an output symbol, the totality of symbols being the output alphabet of
A, 7, and z a variable over this alphabet. Finally A can be found in any of a
certain finite number of internal states, the general state being represented by y,
whose totality is the so-called phase-space |} of A.

We further assume that an adequate unit of time has been adopted, in such
a manner that during the interval of one unit of time only one state or symbol can
be present and any possible changes can occur only from one unit of time to the
next, No changes of states will occur within a unit of time. In this manner our
time variable £ will assume discrete integral values. We want to think of these
values as names for the intervals themselves, selected after a first interval has
been arbitrarily specified, We shall not interpret the values of ¢ as hypothetical
sampling instants,

The behaviour of the automaton will be characterized by the so-called

canonical equations®, which will be assumed of the form

yt*l = /(}’,r*,)
)
Z, = g(yg)

The first uniquely determines the next state at interval £ + 1, in terms of
the inner state y, and the stimulus x, prevailing at interval £, This equation (or
rather set of equations), as is well known, determines a sequence of transitions
of A, caused by a sequence of input symbols, starting from some initial state,
The second equation relates the output symbol or decision with the inner state,

For reasons which will be apparent in our analysis, no immediate dependence of z
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on the input symbol x need be assumed. It is clear that the overt behaviour of A,
as represented by z, will depend on the stimuli x, but it will be found that it is e-
nough to assume that this dependence occurs through that of the inner states of A.
In order to simplify our notation, the variable z, which we shall trans late as
“the moment ¢", understanding by moment our basic unit of duration, will be tacitly

assumed. Thus equation (1) will be written in the form

! f(y,x)

-
]

(1a)

N
[}

g(y)

The input symbols of X will be labelled as X 4 Xyp 00 %, those of |} as
Yy 1¥yr -+ ¥, and those of J as Z Z,4...%pe Let the reader be reminded that
x,y,z are variables over the corresponding sets and .designate a not specified
symbol of their res pective domain.

If at some moment A is in a state y, under the stimulus x, according to the
canonical equations (1), it will undergo a definite fransition to some state y!.
This transition can be represented as usuwal in a kinematic diagram® as shown in
Fig. 8.

Fig.8

We can assume that the input symbol x defines a relation among the ele-
ments of the phase-space of A, whose graphical representation is provided by the
kinematic diagram itself. If under symbol x, A goes from state v to state y!, we

say that y! is an x-sequent of y and bears to it the relation x. Consequently, we

22



write x(y!,y). Fig. 8 is the graph of this relation.

As with every relation, we can define the inverse X. If y! is an x-sequent
of y, then y is an x-precedent of y!, which we can write as 20y, y‘))r

The inpuf alphabet I can be interpreted as a set of sequency relations in
phase-space of A. The complete kinematic diagram of A can be interpreted as the
graphical representation of this set of relations according to the conventions previ-
ously established {pég. 11).

It is convenient for our purposes to explicitly state certain assumptions
contained in the canonical equations, because we want to explore the consequences
of the logical content of the equations themselves, without specific reference to
their formal expression.

We assume A to be determinate . by which we understand that, given any
state y and any stimulus x, we know the particular transition experienced by A
under these circumstances, Determinateness in the sense we have just defined,
can be conveniently expressed by either of two synthetic expressions, one in the
formal notation of predicate calculus, the other in the notation of relational calcy-

lus;

()N y)x it y)
(2)
or ¥ lcy

A is also assumed to be definite, by which we understand that, for any x

and for any y, the x-sequents of y are all in |},

)@y ) (=0t y)D yte )

(3)
s cy

1’No?a: In order to be rigorous it should be necessary to distinguish between "x" as o vari-
able over the symbols of an alphabet and the corresponding induced relation in the phase-
space of A, This we could do by using for this concept the notation "X*. However, as
long os there is no danger of confusion, the same symbol "x" will be used, the concept
being clarified in all cases by the context.
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Finally, it will be assumed that A is causal, thot is, that given an initial
stote y and an input symbol x, there is a unique y! to which A goes, when in state
y is stimulated by x. According to the theary of relations, we can speak of the
x-sequent of y, designated by the relational description y!= x'y. In other words
the class k" | y of x-sequents of y is a unitory class containing a single element,

Causality can be expressed by the formula

() (N x* Ly = ((='y)
(4)

or xxCl

According to the forgoing assumptions, in the kinematic diagram of A there
will be m lines starting from each node y, one for each symbol of the input alpha -
bet. Each line will go to one and only one y!. In pasticular this y! can be the
ou'igino‘l state y itself, in which case, the line loops around y. When this is the

case, one says that y is stable under x . Condition of stability is then that

x'y =y (5)

or that x (y,y) be true.
A state yj will be said to be a sequent of y, if there exists a symbol x

causing a transition from y_ to ;e This relotion of sequence we denote by s and

define by
5()’,’:)’,’) =(3X)x(y"l)’,’) {6)

Since on a finite set such as X the existential operator (3x) amounts to
on alternation of the operand over all elements of the set, the fargoing expression

merely defines relation s as the union of the m individual relations corresponding
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to the particulor input symbols,
»
s=x UJs,U veeeUXp= U”h (7)

In short, a state ¥ will be a sequent of y, if there exists an arrow in the
diagram, going from y; to ¥jo irrespective of the nome of the arrow. Sequent, in
this sense, could be translated as "possible sequent®.

The inverse relation 5 is that of precedence and from (7) corresponds to
m
=X U¥U..... Us,= U % (7a)

A sequence of / input symbols will be called a word of length /. Thisword
can be interpreted as the name for an external definite event of duration 7.

Within the automaton, this word will cause a set of / transitions from o
given initial to o definite final state,

Just as each individual symbol can be represented by a relation or set of
ordered pairs of states, whose first member is an initial and whose second member
is the final state of the transition, each /-word can be equally well represented by
a relation over the phase-space of the automaton, this relation being again the set
of ordered pairs, whose first element is the initial state and whose second element
is the state attained by A as a consequence of the word (Fig. 9)

Xkl Xk Xiel

word W= Xyt X2 Xkl
Fig.9
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If the word consists of the symbols x, ,x, ,... %, in this order, we
1 2

write

W =X X e X
kl kz k,

The associated relation can be denoted by w(yl.,y‘-), meaning that y is a
w-sequent of y, . However, it is clear that in arder to be y; @ w=sequent of y;,
one should have o chain of / + 1 states storting from y, and ending in y; connected
by arrows which, in succession correspond to the letters of the word, This, however,
means that one has to take a series of x-sequents as indicated by the word itself,

Starting with y. one goes to the ‘kl'”q"’"" then to the x, -sequent of

2

this sequent, etc. Now then, this is precisely the definition of the relational

product,

X, X ceeXp X .
k%R, hz k

Word relation corres ponds then to the relational product of the letters of

the word in inverse order. We can define this relation by
w=x, x N T 8
Y MRERE TS (8)

According to the definition, the symbol of the word itself will be used to
designate the relational product in inverse order,

A state Yj will be colled o sequent of order [ or shortly a I-sequent, of a
state y ., if there exists a /-word relating y, to Yir that is, if there exists in the
kinematic diagram a path of length / going from y to Vi

As in the definition of sequents, it is clear that the relation just derived,
is the union of oll the m’ relations corres ponding to the m’ possible different wards

of length / with our m=symbol alphabet, This relation, however, has a very simple
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expression in our formalism: it is merely the Ith. relotional power of s, nomely,

m
S = U
L 3 3

X X vee X
L k,
1 * 2...-1

9

s!is then the sequence of order I, or /-sequence relation. Similarly, 5 represents
the relation of precedence of order /.

With the aid of s and its powers, we can define a more general type of re-

lation among the states of automata, that of succession. A state y; is said to be
0 successor of a state y, if there exists some word leading the automaton from y;

to Yir that is, if for some /(7= 1,2,3...) ¥ is a /-sequent of Yje This relation,
then, will hold if y;isasora storsi. . ofy ,i.e.,if yjisa s-ancestral of y,

t{s: sUs2UsiU....= Us!

(10)
1=1

For our purpose, we shall include in our succession relation the identity
term I = s° by using the improper ancestral

U:#s:ths:
l

IICX

sl
o

I
which means that we consider any stote as its own successor, whether it has o

. . Q v ,
looping branch or not. The inverse & = # s represents precession. O can be

easily shown to be reflexive and transitive, that is, it fulfills
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It is clear that, in a finite automaton having n states, one does not have to
consider sequence relations of orders greater than n-1, as far as the possibility
of connecting one stade with another by a series of transitions induced by words,
is concerned. In this sense one could limit the unions in equations (10) and (11)
up to terms of order n-1. However, in considerations involving words as names
of external events, we shall find convenient to retain the totality of terms as de-
fined, in order to be able to translate events .of indefinite duration into the

languoge of relations within the outomoton.

8. Connections and Groups

Two states of the automgton will be said to be connected, if each one of

them is a successor of the other. The connection relation is then

¢,-hsnh? (13)
ond can be easily seen to be symmetric and transitive.
c2 Cc, (14)

If y is any state of the automaton connected to at least another state, it will be
true that:

Ey') e (7y") = Ey)(Hs(nyh) < Gsyhy) = Gshsy oo @

But O s as an ancestral is a transitive relation, that is,

SHINS

Then, ququ(y,y).D.t]s(y.y)
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and further
Hsrny = B30y (c)
From a) b) and' c) we conclude
(FyD e, (¥ D t{S(y,y) . t]g(y.y)
and, remembering the definition of c_ given in (13),
(1) o (3,54 Du ¢4 (3,9)
or in relotiona! notation

cf&eD.iCc, (150)

Whenever c, is non void, it is reflexive. By this reason, in defining con-
nection relations in the automaton, we can use a connection defined through the

improper ancestral as
Q (]
c=HfsN¥s=0 o (16)

Remembering that #s = I |) hs we can write
c=uulhsonuulgH-rygsnhy
c=1Jec, e (17)
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This connection relation is

reflexive I1C ¢
symmefric c=¢ (17a)

transitive c¢2Cc¢

and therefore, is an identity relation. As shown before, all relations of this kind,
determine a portition of the elements of their domain into a set of equivalence
classes. Thus, for any state y the set c* | y is the set of all states connected to

y. This set we call the group of y.
G(y) = "y (18)

Every state y' € G(y) is connected to y, i.e. is both a successor and
precessor of y. Two states ¥, +¥, € G(y) not only are connected to y, but, be-
cause of transitivity, are connected to each other, The set of states of G(y) is
a class of states having the property that, any two states of the set are successars
of one another. It may happen that G(y) contains a single state y.

We can associate to each state y of Y a group G(y). If y, ond y, are two
different states, the relation between the associated groups G(y,) and G(y,) is
evidently

G(y) = Gly,) if cly,y,)
G(y)NG(y,) =0 if ~cly,y,)
It is possible to decompose the phase-space |} of A into a finite set of equiva-
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lence disjoint closses, G, G, (;g such that

u=GIU G,UG,U ... UG,
9

GaNGg=0 if aygp

The decomposition or partition induced by the connection relotion ¢, being
exhaustive and exclusive: each state belongs to some G, for one and only one
value of a.

Let now GC |} be any group of states, and Yo € G an arbiteary state of G .«
Consider now the set 0" | y, of successors of y . If y # y and y, € G, is another

state of G, because of the definition of G, y, will be a successor of y, that is
)'l eo"” { Yo

L]
13, oL,

but then

TR COT @ y,) =TT Y, = o LY,
Ty, Caly, ()
Repeating the argument, starting with ¥, » We can similarly show thot

T ¥,C oLy, {b)
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From a) ond b) we derive
o™ ¥,= "1y, (b)

that is, any two states of G have the same set of successors,
Again, the whole argument can be applied to & and we can conclude that,
for any two elements ¥,0Y, €6,

"y, ="y, &y, = 5" 1y, (20)

But since the group G itself is the union of the unitary classes of its ele-
ments, the set of all successars of all the elements of G, that is, the set o" G will
be the union of the sets of all successors of the elements of G. By (20),all these
sets being equal, their union is merely the set of successars of any of them. The
same can be said about precessors, The conclusion is then, that for every state
y € G the successors of y are the " G and the precessars of y are the "G, in

symbols :
(MN{yeG.D 20"[y=o'G.’.3"L)’=8'G) @n

Consider now the sequents of G: s*G . This is a set of states completely
determined by G itself and by the sequence relation. There are two alternatives:
either the set s® G is contained in G in which case all sequents of G are G's them-
selves, or some sequents of the G's will be outside the group G. By using the
complement G' of G, namely, the set of states not contained in G, the two alterna-

tives can be formulated as:

A) 6'Ns"G ="

B ¢'ns"G#+W
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Case (A) will occur, if and only if, the s"G CG. This, however, implies
that for any /, s** G C G and thus, "G C.G. But since for every group G it is
always true that G C 0" G we should have G = o"G.

That is, the set of all the successors of the elements of the group is the
group itself. Such a group will be called a final group. Clearly, a necessary and
sufficient condition for G to be a final group, or in other words, for the fulfillment
of the condition G = c"G is, that s"G C G .

A final group can be characterized as a hereditary property of the states of
A under the relation of sequence and, consequently, under the relation of succession.
Both relations transmit the final group character,

Case (B) occurs if some y € G possesses a sequent outside G. Such a
group will be called a transient group.

It can easily be seen, that a necessary and sufficient condition for a group
G to be fransient is, that some state of G possesses a sequent not belonging to G.

In symbols
(IN(Fy) (yeG . y' €6 . s(y'yy)) (22)

Suppose that y, is a state of G having a successor not contained inG. Ify, is
any other state of G, since G is a group, both, y, and Y, have the same set of suc-
cessors. Consequently, Y, will have also a successor out of G. In other words, in

“a fransient gr oup each state y of the group has at least a successor outside the

group:

() y€G.D(I]y)(y4y) . y1ZG) (23)

The totality |} of states of A can thus be decomposed in a set of groups,
the states of each group interconnected among them, and the groups themselves
can be classified as final or transient. Whenever the automaton enters a final

group, it will remain within the group for all future times: This is the reason for
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the name final. In a transient group, however, the automaton may leave the group
through a proper combination and timing of input symbols.

It can be easily shown, that every automaton A, possesses at least one
final group. The proof is os follows:

If Y = G consists of a single group, this group is evidently final and the
assertion proved,

Iy = G, UG,U ..... UG, contains a number ¢ > 1 of groups, consider
G+ Ifitis final, the assertion is proved. I[f it is not, it will be transient and
there exists at least one successor of G, outside G, . This successor must belong
to some of the remaining groups, G, soy. If G, is final, the assertion is proved.
It is transient, it will have o successor outside G, This succesor cannot belong
to G , because if it were, all elements of G, would be successors of the elements
of G, and since the elements oi’.G2 are themselves successors of the elements of
G, , the states of G, and G, would be connected, contradicting the assumption that
they belong to two different groups. The assumed successor must then belong to
a group different from G, and G,i89yG,. And the argument can be repeated
anew. By induction, since the number of groups is finite, one will eventually ar-
rive ot some group, all of whose sequents belong to the group, that is, one will
find at least one final group.

These arguments can be reproduced using instead of s and o the inverse
relotions s and . In this manner, considering the set $* G of precessors of the

G's, there are two alternatives:

A) ¢'ns"6=10

B) 6'n3* 640

Incose A ) "G = G. All precessors of the G's will be G's themselves.
A group G having this property will be called an initial group. A necessary and

sufficient condition for a group to be initial is that "G C G .
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Incase B) G will be called a non-initial group, Sucha group h(os the
property that all its stotes have a precedent not belonging to the group, However,
in order to show the non-initial character of the group, it is enough to exhibit a
single state of G having a precedent outside G .

Just as with the direct relotion, one can show thot every cutomaton A pos-
sesses at least one initial group.

A group, which is at the same time initial and final, will be called an iso-
lated group. If | consists of a single group, this is, trivially, isolated.

Although the automaton will always possess ot least an initial and ot least
a final group, it may not have any isoloted group, except in the just mencioned

trivial case,

9. Inner Organization of automata.

For the purpose of the present discussion, it is convenient to imagine a
group diagram of A, obtained from the kinematic diagram as follows:

For each group G, draw a line enclosing all the stotes of G, . If this is
done for all groups, the kinematic diagram will be divided in g regions, each
region corresponding to a group. In this diagram, final groups will be characterized
by the fact, that no lines leave the corresponding region. Initial groups will corre-
spond to regions having only outgoing lines, Isolated groups will have neither in-
coming nor outgoing lines.

We sholl now show, thot the relations of sequences succession and their
inverses, induce corresponding relations among the groups themselves.

Let G be a transient group. We know that there exists a state y belonging
to the succession of G but outside G : y, € o"G. Y, €G. y, then, will belongto
some other group G # G. y, is o successor of every state of G. Since it belongs
to G , every state of G, will in turn be a successor of ¥, » hence, a successor of

every state of G .

Groups have then the property that, if one element of a group is a successor

of one element of another group, every element of the first group will be a suc-
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cessor of every element of the second. It is natural to say then, that the second
group, as a whole, is a successor of the first, introducing in this manner a relation

of succession among groups. This relation we call 3 and define by

2(6,,6) = (5)(N, €6, . y€G:D.o(y,y) (24)

A weaker but equivalent definition would be

2(6,,6) = (Iy)NIy)y, €6, . yeG:D.0(y,y) (24a)

We can think of S as a relation defined over the group-space of A, under-
standing by this, the set whose elements are the groups of states of A,

It is possible to define also a relation of sequence among groups, under-
standing sequence as immediate succession, by saying, that G, will be a sequent

of G, 5(G, 6), if there is in G, a sequent of some state of G .
$(6,6) = (Fy, M y)y, €6, - yeG « s(y,,9)) (25)

Of course, in this case, every state of Gl will be successor of every ele-
ment of G, but the fact that one state of G, is a sequent of one state of G, causes
this relation to be of immediate character. Whenever this happens, we cansubsti-

tute the set of individual arrows in the group diagram, by a single arrow, going

from G to G, . (Fig. 10)

Fig.10
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Just as with states, once a sequential relation S has been defined, one con
introduce sequences of various orders by means of powers s’, and the ancestrals

t]S, # S, the last, meaning in this case, the succession X :

Sa#s=71ysys*ys’y.....= Us’ (26)

l=9¢

In spite of these similarities, there exists an important difference between
the ways in which states and groups can be interrelated. We shall presently show
that, among groups, there is no such a thing as a connection relation. On the
confrary, if G = G, are two groups and (G, . G) is true, that is, if G, is asuve-

cessor of G, then G cannot be a successor of G,:
26,,6)>.~ 2(G, G,) (27)

The reason is quite simple, |f G, is a successor of G, every state
¥, € G, is @ successor of every state y € G. |f besides, G were o successor of G,
the states of G would in turn be successors of the stotes of G . Then, every state
of G would be connected to every state of G, , and that would be possible only if
G = G, were the same group, but not different groups, as assumed.

Graphicelly, this means that in the group diagram of A the relational arrows
can never farm closed paths. Sequential relations among groups show then a sort
of irreversible character. Once the automaton leaves a group, it will never enter
the group again,

We sholl try now to establish the most general type of relation existing
among groups and determine their organization,

For this purpose, we pick a certain group G, and look for groups that might
be possibly related to it by £ or gﬁ, within the limitation imposed by equation (27)

which can be conveniently written as :
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scs’ scs (27a)

or S0E-0 @27b)

with identical properties for § .

Starting from our selected G, one may have sequents S, or precedents §
which, together, con be considered as the first degree relatives of G. As a whole,
these are denoted by the relation § U':S) . Next, one may have second degree rela-
tives, namely $2 sequents, $2 precedents, sequents of precedents s§ and prece-

dents of sequents ?s « All of these are related to G, by the second degree rela-

tion
STYSSyUSsy$t= sy

Next, one could consider third degree relatives, all of which would hold with G

the relation
[0} o] (0]
s3Iys2sysSsyssrySs2yssSyStsyse= sy H?

Proceeding in this manner, one can define forall k= 1,2,3, ...relatives
of degree k by the relation (S |y E) k, which we want to extend by introducing the
0'th power (s $)°-1, meaning that we consider any group as 0'th degree rela-

tive of itself, The relations

£, - Uesy9t (28)
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include all relativec «in ta de aree 1, and
F= U syt 29)
k=0

confains relatives of any degree,
Remembering (26) it is not difficult to see that by a mere rearrangement of

terms, (29) can be written in the equivalent form

cuHt- sy (290)

0

!
]
L i

We illustrate a few connections of the sort being discussed, (Fig. 11).

Ist Degree 2nd Degree
. < ” 5
L] /SS\ \SS/
3rd Degree
s>

Fig.il
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The type of organization one encounters among groups, resemble very
closely that normally found in living populations, when their individuals are ex-
amined by their ancestry and descendence, in order to be grouped in families, ac-
cording to their genealogic tree.

In fact, the type of graph one obtains when no closed paths are allowed, is
known in topology as tree-like graph and, when connected, a tree .,

That the relation just introduced allows a classification of the groups of A

into families, follows immediately from the fact that F is

reflexive I CF
symmetric F =F (29b)
transitive F:CF

that is, an identity relation, which, as all relations of its kind, induces o partition
of the elements of the set (groups this time), into exhaustive and disjoint equiva-
lence classes. These can be formed by the usual procedure: One starts with some
group G, , say, and considers the family A = A@G) of relatives of G, If this fami-
ly exhausts the whole set, this will consist of a single family. If it does not, one
takes a 2nd group 62?A1 , and forms its corresponding family A, = A(G2 ), etc.
Eventually one arrives at a partition of the group-space of A into a finite number

of disjoint subsets, AA, . A

Designating the group-space by the same letter A already used for the

designation of the automaton itself, our decompositipn can be expressed as

A=A UAU.... Ua4,

(30)
A, NA, =0 if pygo

Two groups belong to the same set A if and only if, they are relatives.
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Groups falling in different frees have no connection whatscever and will be said
to be extranious. The automaton decomposes into a set of logically independent
entities, each having the characteristics of a complete automaton. These entities
we shall call subautomata.

We can apply now the same arguments employed this far for the analysis of
A, to any of its subautomata, A, each being organized as already shown, except
that it consists of a single tree. In particular we can assert, that each A, pos-
sesses at least some initial group, a "Adam® of the generation, and at least afinal
group. The most general type of A is one containing several initial groups,
fransient, non-initial groups which will be called inner groups or passing groups
and some final groups. The whole automaton can be formed by one or more trees
of this type. Very often it may happen, that the tree contoins onlv an initial group,
and a single final group, and it may even reduce to one single group, in which case
this group is isolated. Agqain, it often happens that a group consists of a single
state,

This picture of the organization of A, throws some light on the nature of its
expected behaviour, The reader will certainly be aware, that the notion of group
depends on that of connection which we used in the sense that Moore S would call
"strong connection*, Qur relations of sequence and succession which in this
fundamental work would be called "weak connections®, were not considered as con-
necting relations, because the word itself "connect® has a cognotion of reciprocity
which as far as the behaviour of the automaton is concerned, corresponds to some
reversibility. As long as A stays in a group, by a proper choice of input symbols,
it can leave and return to any of the states of the group. This is the reason why
we considered these states as connected. When a mere succession or sequential
relation exists, there is an obvious irreversibility in the behaviour of A, Once a
group is abandoned, A will never return again to it. We cannot understand this
sort of behaviour as connected,

Loosely speaking, each group of states represents some mode of repetitive -
behaviour. As long as A remains in the group, repeated identical situations can

arise, and A will show exactly the same type of behaviour under the same sequences
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of stimuli, Some event, however, may cause A to abandon the group. From this
moment on, the mode of behaviour will change forever and will belong to a new type,
that characterized by the new group. Eventually, A will attain one of its final
groups.

From there on, its behaviour and the type of operations it can realize,will
remain always the same. A set of stimuli will produce the same type of response.
(no matter how complicated, and independently of the number of detailed responses).
One can expect at most a finite set of different types of finite behaviour, the par-
ticular one actually attained depending on the past history of A in relation to the
sequence of external stimuli,

As to the decomposition of A in two or more families, it is well known that
as far as behaview is concerned, this situation represents a set of disjoint possi-
bilities. If A starts its life in an initial state belonging to some tree, it will remain
forever in that free, and show the type of behaviour corresponding to ite The re-
maining frees appedr then as situations that might have possibly occurred, were it
not by the fact that they did not, The reader will be aware by now, that we de~
parted somewhat from the terminology sometimes used, in which an automaton or
"machine® is defined through the phase-space and any subset of states is called
a "submachine", The reason for this departure, is to conform to the universal and
accepted usage of prefix "sub". as a qualifier of names for mathematical systems.
Thus, the terms subgroup, subring, subfield, etc., designate not any subset of a
group, a ring, a field, etc., but certain subsets, having themselves the properties
of the whole. This is precisely the case for which we reserved the term "subau-
tomaton", namely, a subset of the totality of states, representing an entity having
the properties of a complete automaton, except for the fact, that its behaviour can

be considered to belong to a single kind.

10. The Structwe of Final Groups.

From the fact that a final group G is a set of connected states, some conse-
quences can be derived as to the nature of its possible structure, and the mode of

behaviour it represents.
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The type of analysis we have in mind, is the one that is used in the theory
of stochastic processes, in connection with Markov chains. |f one substitutes
"sequence relation" by "transition probability # 0" the analysis of Markov chains
can be carried over, literaly, word by word, to the present case. Thus, we shall
give the results, referring the reader to the literature* for details.

Each final group G is characterized by a positive integer m2 1 such that
the states of G can be divided in m closses 81834+ &, having the property
that every state of g,(k=1,2... m)has a successor in g, ., . This is symboli-

cally represented in Fig, 12,

Fig.l12

The relation of sequence leads then the automaton cyclically around cycles
of m values. The ' will be called simple sets. A group G having m simple sets,

will be said to be cyclic with period m.
The mode of behaviour corres ponding to a cyclic group, can be pictured as
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some sort of periodic behaviour with multiple choice in the sense that at each state,
say of g, there is a number of alternatives whereby A according to the stimulus re-
ceived, can go to one of the states of 8 4+, + After a number of m steps, A will be
found again in the simple set of departwe. Hence, one must expect a cyclic be -
haviour with period m, capable of showing different *farms® but finite in number.
In case, each simple set reduces to one state, the behaviowr will be simply peri-
odic.

An important patticular case arises when m = 1. G then reduces to a simple
set, in which case it is called simple group. The behaviour will show some sort

of repetitive character, but without any intrinsic periodicity.

11. Relation between the Automaton and the Medium,

It is not our purpose to examine in detail these matters for the moment, but
merely to point out certain general principles closely connected with the relational
formalism, laying the foundations for subsequent work to be presented elsewhere.

In the first place, we want to call the attention of the reader to the fact
that everything this far said about the way in which states appear organized, de-
pends on the input alphabet. Strictly speaking, when considering organization of
the automaton, one should really say "organization relative to an input alphabete®,
It is clear that, if one assumes that for some reason, some symbols of the original
alphabet will never be present, one might examine the resulting structure of the au-
tomaton under a sub-alphabet, The structure appears naturally modified in an
obvious sense. Some relotions, criginally present, will disappear, certain con-
nections may be broken and, in general, the "degree” ot organization will be
lessened. The general tendency will be to decompose original units, such as
groups and families, in sets of smaller units. This general property, as is well
known, can be practically applied to the design of automata planned for several
different operations. Each such operation is handled through an adequate sub-alpha-
bet through a particular organization of states. Changes from one operation to

another can be effected by a change of sub-alphabet as determined by a set of
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proper control signals.

The overt behaviour of the automaton depends not only on its output alpha-
bet, but on the particular output symbols, as determined by its inner states. This
is the content of the second equation z = g(y) [pag.22,(1)], which assigns one
and only one output symbel to each inner state y. In general, there may be several
states providing the same symbol.

in line with the logical formalism, output symbols can be considered as
properties of states. To each state y, one can assign a property z, namely, that
of delivering a certain symbol, as a result of A being in state y. One may say
that state y has the property z, and write, according to the usual formulation ot
predicate calculus, the formula z(y), which could be read as "y is z",

Each output symbol merely becomes a class of states, namely,

z=yz(y) (33)

in the next report of this series, we shall see that this apparently trivial
manner of considering outputs, has some serious consequences. States can be
separately considered with respect to two properties: external stimulicinduced
transitions and overt behaviour, dependent on output properties. These, however,
are by no means intrinsic properties of the states but represent a conventional
coding which fixes a possible kind of overt behaviour. We shall return loter to

this matter.

12. Endomorphisms and Automorphisms in Automata.

For future reference, we want to apply the relational technique to the con-
sideration of inner transformations in the phase-space of .an automaton.
An inner transformation ¢, is a rule that assigns to each y€ i, o trans -

formed, or image, 7) € |} the transformed of y.

try=m=1t'y M
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Each original state has, under ¢, one and only one image, 11 = t'y, but
severol states may have the same image. This transformation can be interpreted
as a relation ¢ (7, y) between the original states and their images, as expressed by
the statement "7; is the ¢ of y*, The inverse relation ¥(y,n) meaning "y has 7 as

a ¢*, allows a description of the classes

(y,m) = ;”(77!)’) (2)

£ | is the class of all y's transformed into the same 7.  Any two of these,
6] .
Y0¥, € IAl {7 are both ¢ of the same 7, or, equivalently, one is a  of a ¢ of the
(9}
other, that is, each is related by ¢¢ to the other,

It is easily seen that this form of partnership-relation is

Y
reflexive 1 Ctt

O v
symmeftric (22)° = 21

fransitive (0?2

N
i

-
-

and, as an identity relation, effects a partition of the states in equivalence-classes,
each class being that of all states having the same inuge., These classes are

disjoint
1%
?)" tmnem,=0 if n =mn (3)

if H=171} is the set of all images, it is clear that H will be the projection of |
by ¢:

iH=mn(3y)t(n,y) =1} 4)
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Since every imagene |} is also an element of |}, the transformation de-
termined in | by each input symbol x, induces a carresponding transformation £
in H and its associated relation. Since for a given ¢ the relation £ in H is uniquely
determined by x, we shall use for it the saome name x, both for the symbol and for
the relatjon.

Each 7 will have a x-sequent x' 7 = x'(¢'y).

A transformation (or relation) # that fulfills the condition

(x}(y) (x* (2'y) = £ (x*y)) (5)

is called an endomorphism.

If ¢ is an endomorphism, (5), or the equivalent expression

() (y) (x*y = 2x1y) (5a)

are satisfied. The sketch shown in figure 13 illustrates this property.

x'y N =ty

o~
"

n, = "yl = tx'y:

=x'7 = xt'y
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Condition (5) can be fullfilled only if

(x) (xt = 1x) (6)

namely, if # commutes with every x.
Remembering that in general the relational product is not commutative, we
shall define the commutator [x,?] of two relations x and #, as the symmetric differ-

ence or disjunction

[x,8] = xt A tx (7

Accoraing to this definition, a commutator is in turn a relation and thus, a
closs of ordered pairs which, according to (7) contains the x's of the ¢'s that are
not #'s of the x's and the ¢'s of the x's that are not x's of the s's. Clearly, two
relations commute, if and only if, their commutator vanishes. Equation (6), can

then be written as

(=) [x,2] =& 8

A relation such as ¢ commuting with all x's, will give rise to properties of
states and of the phase space itself, which do not change, in the sense of re -
maining the same, when the automaton undergoes any series of transitions pro-
duced by the alphabet of external stimuli, By this reason, a ¢ fullfilling (8) or
any of its equivalents, will be said to be a constont of motion of the automoton.

Because of this character, we can easily show that ¢ commutes with

sequence and succession relations:
A, [S, l] = ‘s\
be- [sht]l =8 (=0,1,2...)
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B

Ce® [hsr‘]

d.- (#s,¢) = [o,] =& 9

a) follows immediately from the fact that s = |] x* because then
k

st= Uspt= Utng=tUx, =15
k k k

b) can then be readily proved by induction, since we know that st = ¢s
and by assuming that s*¢ = ts® , then,

sk*1p 2 sske o sesk = tssh o skt

which shows the commutation to be true for all values of /. The case /= 0 is

trivially true, since s°= I, and the identity commutes with every relation.

¢) then follows from the fact that t\‘s = Us’ and
l

d) is immediate because of the trivial commutativity of I.
o]
By taking the inverse of (6), we can show that ¥ and # commute. In fact,
whenever the commutator of two relations vanishes, the commutator of their in-

verses will also vanish. From (8) we can infer
[%,7) =% (8a)

and similor expressions for the inverses of (9). However, because of the fact
that both x and # are many-to-one relations, the inverse of one does not commute
with the direct form of the other. It can be easily shown that in this case, instead

of the equality appearing in (6), one has, instead, an inclusion relation, namely,
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tx C x¢
(10)
o v
xt C tx
From (6) ond (10) one readily obtains:
xft C Ptx an

Now, #¢ is that relation characterizing the set of states possessing the
same image., Hence, according to (11), the x-transform of a set of ¢t-partners is
alwoys contained in the set of t-portners of the x-transforms. This property com-
pletely characterizes endomorphisms and can be used as the basis for a systematic
procedure leading to the determination of all endomorphic images of a given au-
tomaton, to be treated later,

Because of the identical transformation properties of the states contained
in each set, the 1% {7 will be called sets of covariant states.

Under an endomorphism ¢, the set of images t* G of the elements of a group

G, must be contoined in a group T of the endomorph:

"6 Cr (12)

Then, every group I" of the endomorph, is the image of one or more original groups.

This means however, that ¢ establishes a many-to- one corres pondence
t: 6-I'=1'c (13)

from the original group space to the group space of the endomorph. The tronsfos

mation induced by ¢ in group space, we denote by T and its associated relation
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by T(I",G). Endomarphic mappings have then the property that, each group "
of the endomorph, is the image of a set of complete groups. The sets oo LT are
classes of groups projected by ¢ onto the same group I'. The reader should notice
that again, as with fransitions induced by external stimuli, groups behave as units,
which could be called of second order, if states are interpreted as being of the
first order. The concept of group of states, seems to be of a very fundamental
nature, and appears as the simplest mode of organization possessing the properties
of an entity, In fact, (13) can be interpreted by saying that, under the set of endo-
morphisms, the concept of group is covariant,

Identical considerations concerning families of states, or, as we also call
them, sub-automata, show that under an endomorphism ¢, the images z#A of any

sub-automaton A must be contained in some sub-automaton of the image:
t'4acCq@ (14)

Again, families of states appear as third order units of organization among
states, and represent what we could call the highest coherent type. Higher orde~
units, in so far as the original input alphabet is fixed, appear as mere agregates or
“colonies” of families, but not as organizations possessing a definite inner
structure. It is interesting to observe, that the type of behaviour determined by a
set of canonical equations, allows only two degrees of organized behaviour: first,
what we called mode, as characterized by groups, and a second which could be
called type, corresponding to a family, Modes are determined by an inter-con -
nective relation, whereas types correspond to a generation relation, giving rise to
an organization of ancestry and decendence.

It appears that our logical formalism does not allow the conception of a
complex operation beyond the type, as a unit. Such an operation would be immedi-
ately decomposed into an agregate of types, having no connection among them,

A final woard will be said about another type of transformation which can be
treated with the same formalism: these are the so~alled automorphisms. First,

one may consider a particulor type, that of inner automorphisms. These are one-
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to-one endomorphisms, so that properties already discussed in connection with the
latter kind, can be applied to the former. The main difference lays in the fact that
an inner automorphism being a one-to-one transformation of phase space into itself,
practically effects a permutation of the set of states, Each inner automorphism p
is associated to a permutation of states. As a relation, is a constant of motien

and commutes with every x .

[x,2] = 0 (15)

And thus, with sequence and connection relations.
This time, however, becouse of the bi-uniform character of the relation,the

. Yo,
inverse p is also a commutator of all x's

(x,p] = 0 (16)

And hence, with inverse succession and sequence relations. In particular, every

pwill commute with connective and geneclogic relations:
[e,p) = [y, =0 a7)

Under an inner automorphism p, the automaton remains invariant, The
tronsformed automaton is formally identical in every respect to the original, not
only as far as the structure of its inner relations, but even as to names of the
states. In short, one can characterize automorphisms as transformations leaving
all properties of aytomata invariant: groups go over into groups, families to fami-
lies, etc,

The one-to-one character of inner automorphisms, allows the interpretation
of the inverse ;of any p, not only as a relational inverse, but also, as a formal

inverse in the sense of the theory of transformations. Relational operations such
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as products and inverses, acquire now the usual meaning, and can be dealt with,
according to the well known transformation theory.
In particular, considering that the identical I relation is trivially an inner
A 0]
automorphism, that to any automorphism p there corresponds a unique inverse »
such that

pp=pp=1 (18)

and that the product (associative) of automorphisms is again an automorphism,one
sees that the set © = {p} of inner automorphisms of an automaton, forms a group.
Inner automorphisms, accordingly, represent inner symmetries of the automaton
which determine o particular form of equivalence among its states. in fact,states
that can be transformed in each other by an automorphism of P are indistinguish-
able in the sense of MooreS. More important is the fact that the operations associ-
oted with automorphically equivalent states, are themselves indistinguishable.

A wider class of automorphisms is obtained, when one performs a joined
transformation of phase space und of the input alphabet, requiring that, as a re-
sult of the transformation the whole system remains invariant, We could call

extended automorphism a, a one-to-one correspondence

19)
y*¥=a'y

leaving the whole system invariant, The previously discussed inner automerphisms
are particular cases of (19) arising when that part of @ effecting the input symbols,
becomes an identity.
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