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ABSTRACT

Using relational algebra, certain transformation properties of automata are
examined, both under external stimuli and, in general, under endomorphic mappings,
An isomorphism is shown to exist between the lattice of endomorphs and the set of
relations generating the endomorphic images, by virtue of which it is possible to
associate to each lattice operation a corres ponding operation of relational algebra,

The lattice of an automaton can be interpreted as a program showing the
manner by which the automata realizes a given operation, according to a process
of abstraction or description. Along this process, according to the direction in
which the lattice is described, the steps can be interpreted as association or classi-
fication processes leading to the formation of the "concepts" required for the oper-
ation.

Outputs can be considered as properties of the state and by adding the con-
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dition that endomorphisms should retain the output, one arrives at a sublattice of
"acceptable® endomorphisms having a universal lower bound which corres ponds to
the minimal form of Huffman, It is to be noticed that the whole set of endomorhisms
has a meaning inde pendently of output properties and that the concept of redundant
states with respect to an operation has a meaning only when the outputs are speci-

fied,

RESUMEN

Usando el dlgebra relacional se examinan las propsiedades de transforma -
cion de los automatas bajo los estimulos externos.y, en general, las transformacio-
nes endomdrficas., Se muestra que existe un isomorfismo entre la latiz de endomor-
fos y las relaciones que los determinan, siendo posible asociar a cada operacion
del dlgebra laticial una correspondiente operacion relacional. Ia latiz de un autc-
mata se interpreta como un programa que corresponde @ una operacion realizada
por ésle, de acuerdo con un proceso de abstraccion o de descripcion a lo largo del
cual se forman “conceptos® por asociacion o clasificacion, segin el sentido en
que se describe la latiz.

Las salidas, consideradas como propiedades del estado, restringen los en-
domorfismos, cuando se impone la condicion de que la salida se mantenga invari-
ante. Queda una sublatiz cuya cota universal inferior corresponde a la forma mi-
nima de Huffman, Se bace notar que el conce pto de redundancia de estados solamen-

te tiene sentido en relacion con un sistema de salidas.

1. Introduction

In a previous paper! an automaton A was considered with an input aiphapet
X consisting of m symbols X g%, eeeeX,;0 phase space || formed by # inner states
Yy 1 YgreeeeVy and an output alphabet o) of p symbols Z %, e0eeZy If %, y,z are

variables over the sets ], ||, 7) respectively, A was assumed to fulfill a set of
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canonical equations

= [(x,7)

-~
|

z = g0y)

giving the next state y as o single-valuved function /(x, y) of the previous stimulus
x and state y, and the output symbal z as a single-valued function g(y) of the state,
Further, f(x,y) is assumed to be defined for all x € X and for all y € |} with valuves
¥, €+ Again, g(y) is defined for all ye | with valves z ¢ 2.

As it is well known, (1) defines for each x 0 many-to-one transformation

y-Zay, )

which we translated into the formal language of logic, by a relation, x(3,,y)
meaning, y, is the x-sequent of y. The relation itself,x, is the set of all ordered
pairs of states, ¥, i ¥, inwhichy is a x-sequentof y. The inverse relation
fj()")g ) means that y is o x-precedent of Y.

With the aid of these relations, one can transform classes of states. Thus,
if K is an arbitrary set of states, x* K, the projection of K by x, is the set of all
states which are x-sequents of the states of K: the x of the K's. X" K the retro-
jection of K by x is the set of all states being x-precedents of the stotes of K. In
particular, if K = |} is the whole phase space of A, x* |} = x* are the x-sequents,
¥"|} = ¥* the x-precedents. Again if K = | y is the unitary class of y, the class
having y as its sole member, x" | y are the x-sequents of y, ¥" { y ore the x-pre-
cedents of y. Because of the single-valued character of (1}, x* ( y contains one
element, ¥, s the x-sequent of y. This element is denoted by x'y: the x of y.

Finally we recall that from any relation such as x, two relotions can be

formed:

#x : a coreference relation holding between two states when both have the

same x-sequent

57



x¥: a corelation relation holding between two states when both are

x-sequents of the same states,

XX

x X
Fig.1

Now, single-valuedness of x, means that two states cannot be corelate, un-

less they are equal:

() ) [+ %0, 4%,) D+ 4 (3, 43,) ]

where d is the identical relation, rmrnely,&(yl +¥,) means y = Y, and could be read,
y, is a equalof y, .
The above property we trans late into the formal relational language by
1%
*x Cd.
The above mentioned assumptions upon the nature of the canonical equations

(1) can be translated into owr language by saying that A is

I) defined: x

N
o

(@)

II) determined: X

%
z
#
o

(b) @)

II1) causal: xX

N
=3

(c)

By defined, x" ¢ u we mean that any x-sequent of any state of u; is again
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a state of |}.

By determined, X" = |} we mean that every state y is, for any x, a x-pre -
cedent,

By causal, x}’g& we mean that for any x, each state has a single x-sequent,

Graphically, in the kinematic diagram of A, (3a) means that all arrows end
on circles of the diagram. There are noarrows leaving the diagram to end in some
unknown place. (3b) means that each circle of the diagram is the starting point of
m orrows, one for sach x. In other words, that we know what the automaton willdo
under any circumstances, i.e. when placed in any of its possible states is subjected
to any possible stimulus. Finolly (3c) means that from each state emerges only
one x-arrow.

For convenience we shall call the coreference relation X x, the x- partner-
ship relation. Two stotes related by ¥ x, i.e. having a common x-sequent, will be
called x- partners.

Cleorly, each state is, for any x, its own x-partner, This we farmallywrite

as § (¥ x, which, when combined with (3¢) yields the result,

x¥CHC ¥x )
x=partnership is obviously
reflexive: Jg¥x (a)
symmefric: (¥x)"= ¥x (b) (5
transitive: (¥x)? ng {c)

It should be observed that transitivity, (5c) can be shown to be a conse-
quence of causality. In fact, the latter states that x ¥ C 8. Multiplication of this

expression at left by ¥ gives ¥x ¥ C ¥ and now at right by x yields ¥ x¥x _C_\ix or
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Moreover, reflexivity § gijx implies, as it is seen multiplying by ¥x thot

¥x C(¥x)?. Hence we get the stronger form
(¥x)? = ¥x (6)

#x is therefore an identity relation and os such effects a partition of the phase
space |} of A in x-equivalence classes: two states belong to the same x-class if
and only if they have the same x-sequent, States be longing to different x-classes
have different x-sequents,

We recall from! the sequence relation

$=X1Ux2U°"'U"m=ka (7)

the /'th degree sequence relation

sI=ka Xy eeenXp (8)
12 !
the succession relation
o:#s:&UsUSZUSSU....= Usl (9
I=0
and the connection relation
c=0N& (10)

reflexive, symmetric and transitive, determining a partition of the states of A in
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equivalence classes which we called groups of states. A group { was defined as

a set of connected states

Group: "G =1(n 0 =G an
Groups were classified as
initial ; S"GCG or a"”gg
final : s"
transient: (' NoG B
passing:  G'norG#Boand oG
isolated:  (© Y)"GCG
In general groups fullfill

o GnoG=na G=4 (12)

All initial as well as all passing groups are transient, An isolated group

is simultaneously initial and final.

Groups themselves can be related by sequence:

$(3,0G) =.s"Gn G, +B (13)

by {*th order sequence S/ and by succession:
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= JUSUSTYS Y -eee= U St (14)

We recall that T fullfills

v

*NZ=0 (15)

and that groups are organized in famil ies in a tree-like manner defined through the

tamily relation
0o U
r- Jesudt-(Euz)” (16)
Each such family is a sub-automaton of A .

2. Endomorphisms and their construction.

As in (I) we denote by ¢ a transformation of the phase space |} of A into
itself, In general we want to think of £ as a many-to-one transformation assigning
to each y € |} a unique transform 7 € | so that the entire |4 is mapped onto a sub-

set § of itself,
We are to consider ¢ as a relation, #(7),y) meaning that 7 is the transform

of y. The assumptions concerning ¢ are that

[} the transforms are elements of |},

tmClY (17a)

II) the transformation is defined for all states of YU,

foo Y (17b)
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HI) each state y has a unique transform
t?’g& (17¢)

These properties are formally identical to those we found exist among
x-relations. Hence, their formal consequences are the same: we can introduce a
v
t-partnership relation ¢¢ holding between two states when and only when both have

the same transform. This relation fullfills the analogues of (4) and (6), namely

t?g_,\\g}lt (18)

(]

(F1)2 = it (19

The unique image 7 of a state y under ¢, is 7 = #'y, the ¢ of y. The sub-
set H ={n}of images of | will be denoted by H = ¢"l/. Conversely, each 7 may
have several t-inverses. The set of all t-inverses of the same 7) is the class i L7

This is one of the equivalence classes of ¢, whose elements are z-partners, For bre-

rety we designate these classes as 5_ . Namely

b, = U= FHMm) = 3E0, ) (20)

;t(n,y) denoting the class of y's such that 1 is a 7 of y.
Each transformation ¢ determines a partition ﬂ‘ of | linto equivalence

classes bn , the members of the partition. This we represent by

m, - [ (7= (5] @
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We recall now thot o transformation ¢ of A was called an endomorphism of
A, if ¢ preserved all sequence relations x of A, that is if the commutator of x and

t vanishes;

[x,2] = xt A tx =8 . (22)

It was shown in' that an endomorphism fullfills

X =18X  ceee. ceos (0)
Y S verenes ()
(23)
t;"’C_?rJt teeeeees (€)
xPChx el (@)
Multiplying orderly (23c) by (23d) one gets
x;)t;fg;}x;)t
but, by virtue of (3¢),
[CRNV] V]
txxtgtt
hence
Uy v
xttx C 4t (24)

that is, x-transforms of ¢- partners are - partners,
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Because of the fact that the four expressions (23) are symmetric in x and ¢,

one may interchange x and ¢ in (24) getting

tx;"';}g})x (25)

which states that t-transforms of x- partners are x-pcrtners,
Again, since&_c_?t, multiplying at left by ¥, a1 right by x and using the
commutativity properties (23a) and (23b) one obtains

¥x g_i')?tx = }),\")xt
thus
}r)x_(_:_ ;)f\‘)xt (26)
Interchanging x and ¢: .
it g;:);}tx 27

that is, x- partners are ¢- transforms of x-partners, and ¢- partners are x-sequents
of t-partners.

Endomorphisms then are such that all members of a given f-class undergo
under any x a transformation sending all of them into the same t-class. We state
this property by saying that t-classes are covariant,

Becouse of covariance, the set H = {7} of t-transforms of the y's, can be
interpreted as the phase space of a new automaton, ' A, the t-endomorphic image
of A. Moreover, the image states 7) can be identified with their corresponding
covariant classes £ (1) = b, in the sense that any element of b, can equally well
represent the whole class. In this sense we can interpret the members b’n of the

partition [I, determined by ¢ as states of i*A. The original relation x in |} induces
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a corresponding relation x in H defined through
FMem) = o tMuy) e £(My)e x(y,45) (28)

which by mere reordering of factors is seen to be
x=txf 29)

In tact, paraphrasing a termin ology very common in algebra one might say
)
¢t defines a congruence modulo ¢ between states, so that

y,= =y, ifandonly if 7¢0y,,y,) " (30)

Then, the states of the endomorph ¢! A are merely the states of A modulo ¢:
H={ (mod #) @31)
ond the automaton itself, 1'4, is the original A, modulo ¢:
A = A (mod 2) (32)

Now, the covariance of t-classes immediately suggests a method for
finding endomorphic images of A practically identical to that proposed by Huffman?
in connection with elimination od redundant states of automata. The relation be-
tween the present point of view and that of Huffman will be Jiscussed in the next

section.

For the present purpose we illustrate the method by means of an example.
Exomple 1.

Consider the automaton whose fransition table and kinematic diagram are

shown below :
6%



x
0 1

al| a b

b| ¢ d

c| ¢ e

d c d

e a b Fig.2

First, we try to combine pairs of states to form covariant classes.
Suppose we try a and b. We write down the proposed partition, numbering
its members and writing below the elements of the proposed combination the number

of the class t~ which it goes under each stimulus, using always a fixed order for

'he Sﬁmuli.
1 2 3 4
a b ¢ d e
1 2
1 3

States a and b, because of the different fransformation properties cannot

be combined unless class 2 and class 3 become 1. Hence we next try

Again, because of ¢, one requires to identify classes 1 and 2, thereby
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getting

T 1. 1 1 1 partition (abede)

a and b cannot be combined unless all states are fused.

Trynow aand c.

—
oN
w
£-N

the combination can be made covariant if classes 2 and 4 become the same. Hence

we fry
1 2 3
a ¢ b e d
T 1 11
2 2 3 2

Now, the combination ac: becomes of course satisfactary, but we still need test
the new combination e « It is seen that this can be made covariant if ¢lasses 2

and 3 are combined. We then try

1 2
a ¢ bde
1 1 m partition (ac, bde)
22 222
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The partition (oc, bde) corresponds to on endomorphic image.

Now one tries a2 and d :

1 2 3 4
a d b c e
1 3
2

requiring the fusion of 2 and 3 with 1. However, in so doing one gets abcd, e .
The first member contains ab which is known to require the fusion of all states,
Hence we get (obcde ).

Try now aand e :

1 2 3
a e b c d
1 1 partition (ce, b, ¢, d)
2 2

This portition leads to a possible endomorph.
Calculations are better performed in a table, as shown below. On each row
there appeor the different steps of combination. The last partition appearing on

each row is the simplest endomorph containing the states combined,
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1 2 3 4 1 2 3 1 2 1
ab c d e abed ° ‘T abcde
12 m mmn
13 1n21 mn
ac b d e ac be d ac bde v
1" n 1N n m
24 22 32 22 222
ad b c e abed ‘ e abcde
13
21
ae b c dy
1}
22
a be d e o be de abcde
22 22 2t
34 33 32
a bd ¢ L4
33
22
o be c d ac bde
31
42
o b cd ° a b cde abcde
33 331
43 332
o b ce d abce d abcde
3
32
a b c de ac bde
3
42
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1 Z 3 1 2 1
aeb c d abcde
aec b d abce d abcde
m
y73
aed b c abcde
ae be d aed be abcde

22
31
ae bd c¢g
33
22
ae b ed acde b abcde
abd c e abcde
ac bd e ac bde
ge bd c
a bde e abede
a bde c ac bde
a bd ce abede
aebd c abede
aec bd abcde
ae bdc abcde
ac bde abede
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Each new endomorph is marked with a sign ¢/. One takes next each of
the 4-state endomorphs trying to combine pairs of states remembering, however,
the limitations imposed by the different degrees of combineability, in order to re-
duce the amount of work.

In our example, we work on (ae, b, c, d) and (a, bd, ¢, e).

Next one tries the 3-state endomorphs, in our case being (ae, bd, ¢) and
finally the two state endomorphs whose treatment is, however, trivial.

The set of all marked partitions is the set of all'endomorphlc images. In

our case, including the original automaton, the set consists of :

>
"
>
»

(a, bl <, d' e)

>
]

(ce, b, ¢, d)

A =(a, bd, c,e)

A, = (ae, bd, c)
A‘ = (OC' Me)
As = {abcde)

Kinematic diagrams can be directly obtained from that of A, by carrying on

the required combinations.
In our case, one obtains the results shown in Fig. 3




The general method should, by now, be quite clear : from an n-state A, by
trying pairs of states one obtains a set of endomarphs. One works now in a simi-
far fashion with the (n=1)-state images, then with the (n=2)-state images, and so

one.

3. The Lattice of Endomorphs

We have seen that to any endomorphism #'A of A, there corresponds a
covariant partition I, of the phase-space |} of A, and conversely, to any covariant
partition [T, there corresponds an endomorphic image #*A. There exists a one-to-

one correspondence

1A (—yﬂ,«—;;)t (33)

between endomorphs and covariant partitions.

Consider now the set [[(A) of all endomorphs of A. This corresponds to
the set ' (|4} of covariant partitions of |}, which in turn is a subset {(}) C £ ()
of the set Co(u) of all possible partitions of |}.

Any automaton A has at least two trivial endomorphisms : First, the
identical endomorphism, 3, sending each state onto itself, 7 = 'y = y. Its as-
sociated partitions [I&.—_ | has as members the states of A. Further, the endo-
morph J'A = A is A itser,

Second, the total endomorphism €, sending every state of A onto a single
state | = O'y. The associated partition [I@ consists of a single member 1, con-
taining all states of A, and the image 'A consists of a single stater

Hence, the set {(4) is never void. It will contain at least the improper
endomorphisms , and Q.

A, however, may \possess other endomorphisms ¢ which we might call

proper. In order to study their mutual relations, it is convenient to remind the

'For detailed proof of these statements, see Appendix | .
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reader some well known properties of partitions® which we illustrate with our

covariant partitions II, .

A partition [T, consists of a number of sets biybyyecens bq, its members
such that
I) each member is a subsetof |f: 5 C Y (r=1,..... q)

II) each element of }} belongs to one of the members;
hUb U .co. Uby=1 (exhaustive)

III) two different memhars have no elements in cuinnun;
b b =0 if igj (exclusive)

The partition is represented by

M, =1[4,5,....5,]

and is said to be of order g.
A partition [T, = [p.l, Koo oves ,up] is said to be included in a partition
1
II,2 = [y, Yypeone Vq], in symbols l'[,l 'C'ntz , if, given any member 1y of H:‘ ,
there exists a member 1, of I'I,2 »suck that 11 C 1« In short, [I,1 g_.[Il2 means
that every member of [T, is a subset of some member of I, . Inclusion is obvi-

1 2
ously reflexive and transitive.

Two partitions are equal, I, = [T, , if each is included in the other, i.e.,
1 2
if both i, ¢ I, and I, C I, are trve. This requires that both be of the same
1 2 2 1

order and have the same memoers.

Given again two partitions

H,1= (ptyo bgoenee ppy] and H,2= (v, Vyreeea ],
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the partition whose members are the intersections
Aio= o 0 Y =1, c00p;j=1,.0..9)
i

of the members of TI, and I, , is the intersection of [I, and ﬂtz .
1 2

1

I, n I, =[A R §
1 2

11! 12 Pq]

Now, [T, NI, is a lower bound (l.b.) of I, and I, , i.e., is contained
1 2 1 2

in both ;

mcm, m,

1 2

then [I, M, N M, . Thisiswhy I, N I, is called the greatest lower bound
1 2 1 2
(GoL.B.) of [T, andTI, .
1

2 .
We recall the reader that two sets a and [ are conjoint, if they have common

elements, i.e., ifa N 2 # B

Now, two sets a and 3 of a given class ( of sets are said to be chain-con-
nected, in symbols a @ 3, if there is a finite number n, say, of sets
Yo Yy eeesVy of C , such that V= @y V= Band for every k(k = 1,2, n=1), v,

and 7, ,, are conjoint.

Chain-connection is illustrated in Fig. 4.
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Chain-connection is obviously
reflexive : acla
symmetric: if a [, then Seda
transitive : if a 3 and B0y then a wy.

Hence, if one has an arbitrary collection of sets, chain-connection effects
a partition of the sets in classes. Two sets belong to the same class if and only

if they are chain-connecteds Two sets belonging to different classes are not chain-

connected.
Now, given two partitions II, = [n , p, ... p,]and
1

l'l,2 = [Vl', Vyseess vq], form the class of sets (Hyo Bproveepe Voo Vyroses Yl

consisting of the members of both partitions. Let now >‘1 ' }\2 ceee X, be the sets
formed by chain-connection of the sets of the class. The partitioti whose members

ore A, A, eee A,y is0y [)\l, Ay s+ee A, is the union

LT A S SRR

of I, and I, .
1 2
[, U M, is an upper bound (u.b.) of I, and II, ,.i.e., contains both,
1 2 1 2
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1!

t
1

and I, :
2
m,cmutm , o, ci, ym
1 1 2 2 1 2
and further, it is the least upper bound (l.u.b.), i.e., if II, is any v.b.,

ntl C 1, and th cn,
then

m ymcu, .
1 2

What we want to show now, is tuat these relations and operations of par-
titions are beautifully described by corresponding relations and operations of endo-
morphisms. In fact, that the whole algebra of partitions can be translated to the
algebra of relations in a rather simple manner.

To begin with, assume that ' and t, are two endomorphisms and {1, and
1

[, their associated portitions. |t is easily seen* that
2

Locin o
if and only if
m, cn, (34a)
1 2

Moreover, in this case, A and t) A are such that they are not only endo-

morphs of A, but £) A is in turn an endomorph of A, We thus write

*
For a detailed proof of these statements see Appendix |.
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HAC HA (34b)

meaning now that £} A is an endomorph of t! A. That is, there exists now an endo-

morphism 7 of tl' A such that

NA=THA (35)
where
)
TOL Y (36)
Conversely, if ¢! A is an endomorph of A and 7 an endomorphism of £! 4,
the image

TA= 1A (350)
is an endomorph of A given by
t =T (36a)

and 1A C A
Endomerphic relation C is then fransitive: an endomorph of an endomorph
ts an endomorph. It Is frivially reflexive since every A is an endomorph of itself.

On the other hand every endomorphism ¢ fullfills (*)

83 cric\éo (37)

*(*) See Appendix |.
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and every partition [I,

with the corresponding property for endomorphs:

ACIrACC'A (37b)

The one-state endomorph (' A is endomorph of every endomerph of A .

Hence, A and (@' A are universal bounds for the set of all endomorphs of

A series of successive endomorphs

(38)

in which for each j(j=1,....n), Ajis an endomorph of Ajy s will be called an

endomorph chain .

In such a chain,

A.= 1A = TI.‘A. (39)

is an endomorph of A and of all A, with £<j. s; maps A onto A; and 7, maps

A onto A; . Clearly in a chain

i-1

i~ .1 21
ot > (40)
=1 )
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1
and included in Aj-

We may say that A s maximal in AL if A CA; and there is noendo-

morph of A containing A’._1

An endomorphic chain (38) starting with A, ending with the one-state endo-
morph €'A and such that for each j, A; is moximal in Ajye will be called a
composition series of A .

An automaton will be called simple if it has no composition series other
than the trivial 4 C Q'A.

Operation with portitions can be described by corresponding operations with
relations and provide corres ponding operations of automata.

Thus, if ' and t, are two endomorphisms of A, the relation

describes a partition

it ¥ (41a)

m, =1, nn, (41b)
1 2

TA= AN BA (41¢c)

#'A as given by (41c) has both !4 and #2A as endomorphic images and is an endo-
morph of every other endomorph having the same property, in other words it is the
G.L.B. of A and nA. Formolly

rACHA PACHA

‘See Appendix |
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HACHA rACHA
and if 7' A is any endomorph of A such that
TIAC A TIAC A
then TYACtA .
Again, let 2 and !, be two endomorphisms of A and form the ancestral
AATERN

¥ 11, andTI, ore the partitions determined by t, and t,, itcan be shown*

1 2
that this ancestral determines a partition which is precisedly

m oy,
1 2

and that there exists an endomorphism ¢ of A such that

- #(71:2 U 72:2) (42a)
o, -0y, (42b)
(42¢)

) '
fA= £1A 1A

this last expression being a definition of the union of two endomarphs.

*See Appendix 1.
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t'A, as defined by (42c) is the l.u.b. of ‘:A and nA, namely,
PACHA HACHA
and if 7'A is any other endomorph such that

HACT'A NACT'A
then

PACTA .

The set [(A) of endomorphs of A and the set C(g) of covariant partitions

of |} have in common the properties
I) of being partially ordered through a reflexive and transitive relation C ,

II) being such that any two elements

I'I,l ' l],2 e {(Y) o 1A, #/A € [{A)
hove a GchBo
rl,1 N II,2 o HAN KA
Ofda !.Uobo

!It‘ U rI,2 o BAUHA

which properties define a special type of set called by mathematitians a lattice .



Thus, £(Y) and [ (A) are lattices, and in fact isomorphic lattices. More-

over, since these lattices have the further property

IV) there exist two elements

H&. EI@ € £(Y) A, (0'A € 0(4)

such that for every

I, [y 1'A € [(A)
one has

n&gn,g% ACtrACGA
£(}}) and £(A) have vniversal bounds and consequently are bounded.
The foregoing arguments suggest the simultaneous treatment of ((}}) and
{(A) as an abstract algebra of endomorphisms themselves. Thus, corresponding

to (34), (34a), and (34c) we define a new form of inclusion as

o

. J
t Ct, if and only if 14 Ct, (43)

In accordance with (41a), (41b), (41¢) we introduce a new form of intersection by
. e V) (&}
t=t ¢ Ifond only it £t Nt (44)
and a new form of union through

=1 ()1, ifondonlyif 7= #(2 s Ui (45)



Clearly, under relation (43) and operation (44) and (45) our endomarphisms
form a lattice {{, isomorphic to [(A) and [(l}). L is bounded since (37) implies

4C:C O (46)

From lattice algebra we know that (| and 0 are idempotent, commutative,
associative and satisfy the laws of absorption and coherence, Distributive law,

however, has to be substituted by the weaker semidistributive law :

A EAIARIN AN ES
(47)
LU A 08 A0

with similar expressions for partitions and endomorphs.

The possibility of extending (43), (44) and (45) torelations in general,
whether such relations are endomorphisms or not, should be apparent by now. A
detailed discussion of this matter as well as some interesting consequences, will
be treated elsewhere,

For the moment, we shall avail ourselves with the graphical representation
of lattices well known in the literatwe. The diagram of ' is formed as follows :
One draws a small circle on the top of the diagram, representing the one-state au-
tomaton G*A. Then, on a row below, one draws small circles representing endo-
morphs in which ('A is maximal. This row contains certainly all two-state endo-
morohs. and all endomorphs having no endomorphic images other than G'A. One
draws now a line from §' A down to each of the small circles of the second row. Then,
one examines the endomorphs of the second row and draws small circles on a third
row, representing endomorphs in which the endomorphs of the second row are maxi-
mal, drawing a line between two circles when one endomorph is included in the

other. One next forms a fourth row in a similar fashion with endomorphs in which
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those of the third are maximal, and so on. At the bottom of the diagram appears A

alone joined with lines to all small circles of the previous row.

Example 2.=

We illustrate the method by showing the d.iogrcm of Example 1.=  This is
shown in Fig. 5

As

A2 Al

Fig 5 Ag

All lattice relations can be read from the diagram. Thus, an endomorph
A; is included in A; (4; s an endomorph of A; 1) if there is a path going always
up, from A, to Ai « Further, A will be maximal in A; if the ascending path con-
sists of a single segment.

The intersection A; Ajis obtained by finding the highest possible point
in which a descending path from A; can meet a descending path from Aj . If
A;C A,clearly, A;NAj = A;itself, Further 4,0 4; = A,

The union, A, | A; of 4; and A; is obtained by finding the lowest point
in which an ascending path from 4; can meet an ascending path from Aj . Again,
ifA;C Ay

AU A; = A and A;UA; = A;

:

Composition series are represented by ascending paths going from the

bottom to the top circle. In Ex. 2 we find three, namely,
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Example 3.«

Consider the automaton whose fransition table and kinematic diagram are

shown in Fig. 6

x

0 1

a a b
b c d
c c d
d a b

Fig.6
fts endomorphs, found by the method of section 2, are ;

Asg
A, = (a, b,c,d)
A = (@d, b, c) Ag 4 &
A, = (a, be, d)
A, = (ad, be) A2
A, = (ac, bd) <

A = (abed) Fig 6a
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We obtain the following composition series :

A, CA CA CA

The considerations of this section can be easily extended to automata
having no input lines. Such automata have a phase space Y = {yl, an output alpha-
bet 7 = {z}] but their input alphabet is void X = B.. Nevertheless, the operation of
the automaton Is governed by means of a rule specifying ‘or each state y, which
state will be the next. The rule'is usually exhibited in a fransition table, or a kine-
matic diagrat. .,

In our formalism, the above procedure amounts to define the automaton A
by o sequence relation s, so that s(y, +y) means that y 1is a sequent of y. If A

is to be defined, determined and causal, s must fullfill |

st Y
s'= Y (48)
sSC 3§
and satisfies
3¢ 8 (49)

Ss being reflexive, symmetric and transitive. Indeed

(85)% = Ss (50)

is idempotent,
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Now, an endomorphism ¢ of A is @ manysto-one mapping of A such that

[s,¢] =0 (51)

the endomorph is ' A.
Having s the same formal properties as external stimuli, the whole theory

can be applied to the present situation. The set J(A) of endomarphs of A is a
bound lottice; these endomarphs con be found by the procedure outlined in Sec. 2.

4. Interpretation of Endomorphs.

In order to introduce ourselves to an understanding of the meaning of endo-
morphisms in automata, we shall start by studying first, a few simple cases.
Consider the automaton illustrated in Fig. 7. It is assumed to have an

input x capable of assuming the values Oand 1. Its purpose is to recognize the

sequence Ol .

O Aq
A=Ag Fig7 1
The original automaton appears at the left of Fig. 7, its two endomorphs
being shown at right. The endomorph lottice as shown at the left of Fig. 7a, is

seen to consist of a single chain giving the composition series
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(a bo) 49)

@a,bo (N, V)

(a,b.o (N, F, K

The single state of A2 always present irresective of what the input might
be, can be interpreted as a concept of the universal event I, as shown at the top
right of Fig. 7a. InA_, sfo‘fe a is always reached after a 0 appears on the input,
whereas state b responds toa 1. These states then, can be considered as concepts
of the events x = 0, which we shall call N, and x = 1, denoted by Y, as shown on
the second « uw of Fig. 7a. Finally, in A, state g is reached whenever a 0 appears
in the input, state b is the result of a sequence 01 and state c responds to the
sequence 11, Again, the states correspond to the concepts of the events N: 0,
F:01 and K: 11, as shown on the third row of the figure.

Consider now the state of affairs represented by the bottom line: concepts
of three objects appear, namely the events N = no, F = fires, K = keeps firing.
Then, as we asce nd to the middle row, we find that N appears again, but F and K
have been associated to form the more general concept Y = yes, common to F and
K, a property of F and K. Finally, in reaching the uppermost level, we find N
and Y associated to form the most general concept | = is. Ascension up the chain,
corres ponds then to a process of abstraction or association which, starting irom
the bottom with certain objects, abstracts common properties each time more geaer-
al.

Let us follow now, the opposite process starting this time from the top of
the diagram. In so doing, let us keep in mind the idea that our. purpose is to recog-
nize the sequence 01. [n order torealize such purpose, as a primary requirement,
we need, first of all, the ability of perception, the capacity of perceiving an object.
This state corresponds to (I). Then, we have to distinguish two kinds of objects,
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and recognize each one separately as such: Oand I. 115 1s the second stage,
(N,Y). In the next step we do not find necessary to refine our know ledge of 0,so
we just leave it as it is. As to the 1 howe ver, we can use our previous knowledge
of 0and 1 in order to distinguish between two types of 1's: those preceded by a 0,
and those preceded by o 1. This is how we separate 01 from 11,

Descending down the chain, amounts then to a process of description oy
distinction, by separation. Moreover, out of all the possible events, we have ef-
fected a selection with a view to the attainment of an end. We have developed a

scheme of operation, a program whose instructions read:
I) perceive objects.
II) Distinguisha 0 froma 1.
HI) Distinguish a 1 preceeded by 0, from o 1 preceeded by 1.

in following such a program, we find that in spite of the fact that our sole
purpose was that of detecting the sequence 01, we were forced (by the program),
todetect alsoa Oand a 11. Thus, we end up with a knowledge of three objects,
0, 01 and 11. Since nobody is asking us about anything other than 01, we keep
the extra information we possess for ourselves, and produce a signal for the
outside world, only when a Ol appears. Consequently we assign an output to each
state, for ex,, 0 toa, 1 to b, 0 to c. In this manner what we really do, is merely
to specify the overt behaviour of the automaton.

As a second illustration, suppose a machine, having an input x and an
output z, is to operate as follows: all things being considered from a certain in-
itial moment onwards then, if x has never fired, z does not fire. |f x has fired at
least once, z fires whenever x is not firing.

A kinematic diagram for such a machine is shown on Fig. 8, together with

its endomorphs.



0 (0 (O

The lattice of endomorphs is shown in Fig. 8a.

O

(abc)
/ \ (N Y) ¢ H)
(ac, b (a,bo)

(B,Y, A)

@bo
Fig.8a

A3 corresponds to the universal event I, represented by the compound state abc.
Al performs the familiar distinction between a 0, event N represented by ac, and
1, event Y represented by b, This time, however, a new feature appears, corre-
sponding to A2 . From the kinematic diagram of A2 one sees that a corresponds to
a situation in which no change in the state of the line has ever occurred, whereas

bc represents the situation after a first change took place. Consequently a repre-
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sents the event B = before, in the sense of “nothing has hoppened®, whereos bc
represents the event H = something happened. On the bottom of the diagram ap-
pears Ao. State @ stands again for the event B. This time, however, because of
the fact that a proceeds also from state ac of Al , the same B appears under a new
light: the notion "before®, included in N, appears refined in the sense that “nothing
has happened* means the same as "x has never fired", Next state &, as derived
from A, stands for the event Y, x = 1. However, because of its inclusion in be,
it is related to H. "Something happened" refers now to the appearance of a first
1 on the line. From there on, the 1's possess a new meaning, approximately con-
veyed by expressions such as "while x is firing", "during the time x is firing" ¢
Then comes the third state ¢, corresponding to the event we were looking for: it
is included in the notions of *no* and "happened*®. Indeed it could be translated
by A = ofter, meaning “after x*,

The reader will have certainly noticed, that the requirements on the machine
were such that in order to perform the desired operation, a mere distinction between
0's and 1's was not enough. Two more general notions corresponding to "not yet®
and "already", or to "before* and "after", were required. This is reflected in the
lattice structure which shows now two branches representing two different types of
notions, two types of associations or distinctions: one refers to the kind of symbol,
whereas the other refers mainly to periods of time. In this branch, the particular
shape of symbol is irrelevant, symbols being merely taken as time-marke rs. Each
branch of the lattice represents a different point of view and a different set of
concepts.

Besides the processes of abstraction and description, or association and
distinction represented in the lattice one can formulate a formal language whose
primary symbols are the members of the partitions appearing in the lattice and
whose theorems are syntactic truths concerning facts shown by the lattice.

To illustrate the point, let us treat the symbols on the right of Fig. 8a as
classes of elements, the elements being the states 4, b, c.

The composition of such classes is shown in the following table:



Examples of syntactic truths are;

From the bottom line partition,

Bty tA=1 BY + BA + YA =

|
o

From A1 partition:

Y +N=1 Y.N =0

From inclusion relations in the lattice we have abstractive associations:
N=B tA H=Y +A
descriptions:
B=N.B, Y=Y.H, A=N.H
inclusions (implications):
BC N, ACN
Y C H, ACH

and so on.

In general now, if we consider the behaviour of an automaton A following

its canonical equations of motion, we can associate each state y to some event Ey.
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The set of internal states can be interpreted as a set of names for events. Phase
space of A, § = {y} can be interpreted as o universal class or universe U, - {Ey}
of events, the universe of A. U, is the set of all events E, that A can recognize
or distinguish. This set can not contain more objects recognized as different,
than internal states A has,

In the diagram of {(A) these objects appear on the bottom or first level,as
states of A=A If one follows a path ascending up the lattice, as one reaches
higher levels of {, what one finds are endomorphs having less states but whose
states are classes of the original objects, formed by association. Events repre-
sented by these states are associations of primary events and thus of a more gener-
al character. One may then consider ascending paths as abstraction processes,
whereby objects that from some point of view or other possess common features,are
put together in the same category.

On the contrary, if one follows a descending path, as one comes to lower
levels in the lattice one finds that events that appeared as individual units dissoci-
ate in two or more events, necessarily of a more particular character. This corre-
sponds to a description process by refinement or addition of distinctive features,
that is, of distinction.

Abstractional ascending paths terminate when one reaches a stage such
that the only common feature is that of being an event, the identical event I corre-
sponding to the one-state endomorph 0'A . Descriptional descending paths terminate
when the number of added distinctive features is such as to restrict classes to unit
closses containing only single individuals,

Branching of paths in [(A) corresponds to different possibilities or differ-
ent points of view. Ascending by abstraction one encounters different alternative
associations, and descending by description, alternative distinctions may appear,
Thus, in forming a composition series one has, in general, to make a choice among
the different alternatives,

The partition I, associated to endomorphism ¢ can be cons idered as a classi-
fication of the primary objects into a number of categaries equal to the order of the

partition. Given two endomorphs 2 and t,, then I, ¢ II, means that I, isa
1 2 1
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refinement of [I,z . Again given ¢ and ' [It1 N [I‘2 is the simplest classification
that can be made according to the characteristics used in [I, and the characteristics
1

used in[l, . On the other hand, I,  IT, is the simplest classification in which
2 1 2

the characteristics of I, and I, can be associated as a common feature.
1 2

In this manner {(A) shows the different degrees of associability of the
primory events E_. The higher the level of £(A) in which two events E, and E,
appear for the first time associated, the lesser will be their associability. Now,
according to the point of view of this section one might say that the degree of as-
sociability of E, and E, depends on their nature. Events that under some point of
view (branch) have common features, are rapidly associated in low levels of {(A).
Events of dissimilar nature are associated for the first time on higher levels, even
on the top level 1. On the other hand, from the result of Sec. 2 one sees that as-
sociability of states depends on similarities or differences of variance, that is, of
the kind of transitions undergone by the states under different stimuli. Hence,
variance of states, as shown by the kinematic diagram must be related to the nature
of the events they represent. In other words, the topology of kinematic diagrams
appears to depend on deep laying properties of events.

Another point of interest is that from each lattice one can easily derive a
formal language of events with certain syntactic truths as theorems. In a future
report it will be shown that all formal languages corresponding to different lattices
have common features that allow their inclusion in a formalism of logical operators
involving an algebra of events.

As a final remark to this section we want to call the reader's attention
upon a fact that perhaps has been somewhat obscured in our analysis. When we
have spoken of an automaton A and its endomorphs #* 4, we have presented kine-
matic diagrams of the endomorphs and talked about them as if they were independent
automato separated from A. The unfamiliar reader should be warned against such
point of view, for it would be wrong. As a matter of fact, A contains all the endo-
mor phs, as constituents, not as separate automata,

This can easily be seen as follows: Imagine the kinematic diagram of A

and consider the partition 1, determined by an endomorph #*A. Now, take etich
1
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member of the partition and enclose the states it contains in a closed curve drawn
on the kinematic diagram. The diagram will thus be divided inregions.. These
regions are the states of 'A and the arrows interconnecting them show their
sequence relations. An ascending path in [(A) represents a process whereby one
divides the kinematic diagram in covariant regions, then these regions are included
in larger covariant regions, etc., until finally the whole kinematic diaaram is en-
closed in a curve. The region corresponding to this last step represents the one-
state endomorph. We might thus think of the processes of abstraction, description,
etc., as occurrina within the automaton.

Nothing prevents us, of course, from talking of a separate aytomaton B say,
which behaves in every respect as #*A. Such a B, however, would be called a
homomorph but not an endomorph of A. In fact, B is isomorphic to an endomorph of

A. This terminology corresponds to the common usage in mathematical language.

5. The Qutput Relation.

This far we have considered only the inner behaviour of A as described by
the sequence relations of its inner states. Each such state contains a certain a-
mount of information on the external world of A. This we might call internal infor-
mation.

Since we want A to communicate all or part of this information to the ex-
ternal world, we must provide an output channel and an output alphabet 7) = {z} of
symbols Z o ZypeenZpe

Then we fix the information to be expressed, as well as the manner of ex-

pression, by choosing an output function

z = g(y) (52)

of which we make the following assumptions:

i) g(y) is defined for all states y, i.e., assigns an output to each y,
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ii) g(y) is uniform, i.e., ii ussigns one and only one output to each state,

We con use 'z;' as a name for a predicate, introducing the formula ‘z;(y)*,
meaning "y has the output " thereby trecting the output as a property of the state,

Consequentlv, we can use 'zj' as a name fo' the abstract
-5 5,00 (53

namely, the class of states having the output z, .
Assumptions i) and ii) concerning (52) are rencsred in this language by

1) zZ Uz, U .enes Uzp=u (54a)

2 .
i) <, Uz, =0f ig)) , (54b)
(54) shows that assignation of outputs in this manner effects a partition of |} in

classes of states having the same output.
From each z; a partnership relation z; can be formed, defined through

2y, 0 %,) =20 2i(y) e 7(9,) (55)

Two states Y, and Y, bear to each other the relation z'i if and only if hoth

have the output z;. From (55),
;'i()'r y) = zj(y) (550)

y is z.:,. -related to itself, If and only if it has the output z; .
it is easy to see™™ that é’. has the properties

"*See Appendix [ for detailed proofs.



. g
reflexive z, = z,

7 7
(56)
cas *2 .
transitive } C zl.
and further,
Z.' L:j = & if 1# ]
(57)
L 2 *
2'7. = Zi
Form now the relation
2=z Yz ceeenr U (58)

which we call the output relation. From its definition it is clear that two states
bear relation z to each other, if and only if they have the same output, irrespective
of what the output might be.

z can be easily shown** to be reflexive, symmetric and transitive, its e-
quivalence classes’ being precisely classes of states having the same output.

Let now ¢ be an endomorphism of A. We say that with respect to the overt
behaviour of A, ¢ is acceptable, if it preserves outputs. f must be such that the ¢-

image 7 of a state y, has the same output as y:

t"zi C z; (59)

Classes z; must be closed under ¢. In other words, acceptable endomorphisms

must propagate each property z;, which in turn will be hereditary under ¢.

HSee Appendix |l for detailed proofs.
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(59) implies™* that £ commutes with every z,:
i

(¢, 5:,] =B (60)

and hence, with the output relation:

(£, 2] =B (1)

(61) is, however, weaker than (60). On the other hanc from (59) or (60) one can

derive the equivalent condition

tCz (62)

Taking inverses in (62) remembering the symmetric character of z, one

obtains
f-z
which, multiplied orderly by (62) yields
frci?az
Since ¢ Is an endomorphism, one has
dcrecz (63)

for all acceptable endomorphisms ¢.

**See Appendix || for detailed proofs.



Since (63) can also be written as

NeC
Ne

¢st
N

N
~C
-~

N

by virtue of (43) one may write

Ce>
N
-
iNe
Ne

(64)

where lattice inclusion has been used.

Acceptable endomorphisms can be defined through (64).

It is easily shown™™ that if ’, and t, are acceptable, so will be t d t,
and t O t,. Hence, the set of acceptable endomorphisms, £2 (A),is a lattice,
this being a sub-lattice of {(A4).

Because of (64), .Cz(A) is bounded by d and z. [t can be shown™™ that
Cz (A) contains an absolute upper bound t,, such that

(V=
N.
1Ne

Ne

(65)

opd that for every ¢, fulfilling (64),

tC 1, (650)

tois maximal in z, and unique. [t is the highest level endomorphism that
can be lattice-included in z. The automaton #14 is then the endomorphic image
of A having the least number of states, whose overt behaviour is the same as that
of A

If £*A is an acceptable endomorph of A with ¢ # .4 , an automaton B iso-

**See Appendix Il.
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morphic to #' A can be considered os a reduction of A. If B is isomorphic to 1A
then B, is the minimal form of A . All states of A and its reduced forms B, not ap-
pearing in B , are considered as redundant,

If the reader recalls Huffman's reduction procedure? under the light of these
results, as well as those of Sec. 2, he will rea.ize that Huffman's procedure is a
method of reduction thot leads directly to the obtention of the minimal form of A.

A particular case of interest arises when ecch state has a different output.

Then, except for an unessential coding, one can take (52) as
z=g(@)=y (66)

Then, all the z;'s are unitary classes;
z= |y (67)
partnership relations are unitary;
z = [y 9)) (68)
and the corresponding output relation is the identical;

z=Jd (69)
then, from (64) one sees that the only acceptable endomorphism is

t=Jd (70)

hence t =~ Jand A itself is the only acceptable endomorph,

Hence, in discussing the internal information of A, there is no sense in
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talking about redundancies or reductions.
The results of previous sections are applicable even in case outputs are

considered, since they refer to the inner behaviour of A. It is only when one
wishes to carry on a reduction, that acceptability has to be taken into account.
As a final example to illustrate the point, as well as some other features of

our lattices, consider the neuron net shown In Fig. 9, having three neurons, PrQ, e

x Cl>p——o®q—o<>r——z

Fig9
The states of the net are the following combinations of walves of p, q, rs’

State

pqr , 000 1o 001 'I(X)|

for quiescent initial conditions, all other combinations are excluded.
The kinematic diagram of A is shown in Fig. %a, the lattice of endomorphs
on the left of Fig. 9b and the event version of the lattice, or program, at the right

of Fig. 9b.




(abc d) oD

ac.bd) w0, N

(ac.b.d) o 01, 1

@b.c.d ¢ 9955010, 07,11
Fig.9b

The purpose of A is evidently to recognize the event 010, corresponding to state
c. Fig. 9b shows how this is done. First A can respond to stimuli: endomorph
(I)« Then, it distinguishes a 0 from a 1, this being the function of neuron p.
Then, this information is used on a lower level to separ..2 a 01 from a 11 and
froma 0. This is a result of the combined action of ne:.. pand q. Finally,
on the bottom level, the available information: 0, 01, 11, is used to separate a 0
preceded by 01, i.e., 010 (state c) from a O preceded by either of the other two
known elenents, 0 ond 11, i.e., 00 or 110 (state a), 01 (state b) and 11 (state d)
are merely 1ssed down to this level, This last step is a result of the combined
actions of p,qand r.

Observe the strategy followed by A to do its job, as shown by the program
of Fig. 9b. Its purpose is to recognize 010. First, it observes 0's and 1's.
Then, separates 01's from 11's, and puts them aside of 0's. Finally, when a 0
comes after 01, it recognizes 010 and fires z.

Consider now net A shown on Fig. 10, which has the same purpose. It

also has three neurons, p, n, s. Its states, however are:

Sfote+o|b|c|d|e|

100 lOll l 110 ‘ OIOI

pns I 000
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X P ®n—o s z

Fig.10

Kinematic diagram and lattice are shown in Figs. 10a and 10b.

A
(ace b d) (1)
(ace, bd) (o,n\
(a,cebd) Bb,a) toMo,n/ 0,01.11)
0 00
(a,ceb,d) (ac,e,b,d) (ae,c,b,d) (00,1Q,01,11) (OI0,110,04,11)  (1i0,010,01,11)
(a,c.e,bid) (00, 010,110,01,11)

Fig.10b
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The reader will immediately notice that, in spite of an identical overt be-
haviour: z fires with 010, notwithstanding the fact that both A and 4, have the
same number of neurons, the same number of synapses and terminals, inner behavious
are quite different.

A is the practical sort of fellow that, in order to do his job, collects just
the required information and goes directly to his end. Moreover, he is always pre-
pared having the right information at the right time, z0 that when :the expected event
appears, with a very simple final action reaches his goal,

A on the other hand, decidedly appears as the contemplative type that, in
order to tell about a fact (010), gathers all sorts of information, whether pertinent
to his purpose or not.

This difference of strategy shows itself in the different manner of recog-
nizing the eve- , |

Assume both, A and 4, start in state @ with x = 0. Now, if a 1 comes,
both go to state 4, corresponding to 01. Finally, if a 0 arrives, both go to state ¢
and z fires.

This looks quite similar. But, what happens to neurons? Using the tables

of states, let us compare both actions.

] st. 2nd. 3l'dc
A 000 000 110 001
A 000 000 100 ol
appears 0 1 0

Prevision observed in A's program shows on its actions: after a 01 hasap-
peared, the possibilities for the occurrence of the desired event have increased. A

in state 110 shows its maximum tension: 2 neurons fired which from the table of
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states the reader can verify to be the most A reaches, whereas A appears to have

scarcely noticed the situation: state 100. Finally, when the decisive moment ar-
rives, A, in passing from 110 to 001 seems rather to relox, using just the energy

required to fire z. 4 on the contrary, seems to have been caught by surprise: from
100 goes to 011, a state of maximum tension. The total number of firings is the

same, three in both cases, but they are differently used.

The writer wished to ask the kind reader's forgiveness for this little piece
of fancy, having as only excuses for the dramatization of the tale, his desire to
fade somewhat the sour flavour of a rather long and boresome paper overloaded
with unimportant trivialities as mathematical equations and his desire to emphasize
certain serious questions.

In case of 4, states a, b, d, e have output 0, c has output 1. The partition
corresponding to z is (abde, c). From the lattice of Fig. 10b, one sees that the

lattice of acceptable endomorphs is
(ce, ¢, b, d )
(a, e, c, bl d )

Thus, one might say that states @ and e are redundant. Indeed, combining
states a and e in Fig. 10a, one obtains precisely the kinematic diagram of 4 .

Now, as we already know, in the first place, elimination of the redundancy
does not cause any lessening of the number of neurons.

Next, a given structure of given logical elements, be they real or imaginary
determines a lattice of endomorphs and a corresponding program closely related to
the actual function of the elements.

Then, in the so-called logic nets, there is plenty of more logic to be con-
sidered, than that contained in propositional equations.

Finally, since the structure of the lattice is determined by the logical
properties of the elements of the net and their interconnections, the program dis-

played by the lottice must reflect, in some way or other, the actual functions of the
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said elements,

In this respect a concept derived from lattice considerations. that of
strategy of operation or program, might prove very useful for comparing and iudg-
ing practical nets. Admitted that the net's operation might be satisfactory under
the usual points of view, one still may consider the manner in which the operation
is effected, This is what "program® means. As it may be apparent from our ex-
ample, in carrying on such an analysis one may find striking surprises.

Certain words as "prevision®, *preparedness®, "readyness®, "surprise®,
etc., that were used in the comparison of A and A are very far, indeed, from mere
jokes. There are certain features in the operation of a net that, related or not to
any lattice, have a de finite significance. For example, it is nnt <olely the total
energy consumed in an operation, the only thing that matters. Every engineer will
agree that the way in which this energy is administered by the system during the
process, has a great deal of importance. Again, there is nothing wrong in saying,
for example, that a net devised for the recognition of a certain event acts with pre-
vision, if it spends little energy in working on observations which verv unlikely
lead to a completion of the event, distributes adequately its energy content in-
creasing reasonably its strength when incoming data are such so as to increnca
the probability of completion of the event, relaxing when this is completed, in arder
to wait in a low energy level for the appearance of new significative dota, The
opposite behaviour would undoubtedly be senseless.

It seems that in case of finite, discrete automata, these ideas, intuitively

used by designers, ore displayed in lattices.
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APPENDIX 1
THE LATTICE OF ENDOMORPHS

The identical fransformation & sending each state into its equal, is, trivie
ally, a transformation. But the identity relation commutes ‘with every otner re-

lations
[x, 3] = 0 (A

hence, & is an endomorphism,
The transformation sending every state y onto a single state 1 = §'y will

sent the x-sequent of y, x'y, necessarily onto the same state I. Hence
1= Q'x'y= Ox'y ....(@)
Now the x-sequent of I can not be anything but [ itself:
I=x1=xCy=x0"y....(b)

from (a) and (b) we see that for any y

x0'y= Ox'y
whence
x0 = Ox }
(A2)
or [xl 0l=0
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and O Is on endomorphism.
N
Assume now that t, and t, are two endomorphisms of A T, = [z* 7]
and [, = [;2" | €] being the associated ,artitions, tI‘A and £ A the carres ponding
: )

endomorphs. Assume further, that
£t C ;)2! (A3)

The members of I, are t, -equivalence classes. Ify , v, € }i' (7, both are re-
1
lated by t: t, » But (A3) requires that both be related by ;2 % and thus, belong
to some member, ti' L€ of I, . Hence, for any member ;'1" (M of [, , there exists
2 1

a member to;L§ of [I‘z such that tU:L'r; c ;;" (£« Formally

(M @E) (0 € 1) (Aa)
which means that
mcu, (A.5)
1 2

Moreover, from (A.4) one sees that each class t:" { £ must contain an inte-

gral number (possibly 1) of classes ;:" LM« Let then T be the transformation which

sends each 7 for which ;:" nc ;;" L€ to the same £ . 7 then maps each state 7)
of 1A onto some state £ of nA. We can look at T as a relation 7(£, 1) where
£ = 7'7,. Besides, T effects a partition II, of the states of t!A in T-equivo.

lence classes 7% L€, one for each state £ of $#tA. The -efréjection of ;')" 3

by ¢, , namely, e L€ = }Jx 7% £ is obviously the class (;2" L€, that is,

»RQ

E= 7€ (A6)
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which means that (£)()(1, (£, ) = 71, (£, )

hence
t2 - ’T‘tl (A.7)
rhe definition of 7 translated to formal language is
T(E, M= B ng E
or

(&M= (LMD 56 €)) (A.8)

however, since 1! * |7 = 0, that is, since

@) %,

is true for any 7, by a well known theorem of quantification we obtain from (A.8)

the consequence

@) (Loem. 4(£9)

which amounts to

85 (£,

Consequentiy

) (&M o8& m)
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TC¢t¢t (A.9)

Let now y be any state of A, and les

M=ty =ty (0)
by (A7), for alt y,
tly= Tty (b)
and by virtus >f (a),
£=17'7 (c)

Now, since :‘und t, are endomorphisms, from (a) we get

x'N = xtl'y= tlx'y d)
and
x'f:xtz‘y= Lx'y (e)
(b) however, being true for any y, will be true for x'y,
Hence

f,x'y = TH x'y (f)

Substituting in this expression t, x'y as given by (a) and #'x'y as given
by (d), one obtains
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x'E = Tx' (9)

finally, substituting in (g) the expression (c) for £, one sees that

xXT'N=Tx'n (h)
for every 11, Hence
XT=Tx
for any x. So
[x,7] =0 (A.10)

and 7 is an endomorphism.

Conversely, if A=A isan endomorph of A und"r'A1 = A, ison endo-
morph of AL each state & of A,isaT of a state 7 of A, which in turn is a ¢ of
astate y of A. Thus, £ = THY = 1y where ¢ = 7t is a many-to-one mapping of

A onto A . Moreover, since Tand t, are endomorphisms,

sot Isan endomorphism and A, = 1A,
Moreover, 7 being an endomorphism, fulfills the condition & C :I'T, from

which we obtain

that is
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which allows the conclusions

and

Hence, a necessary and sufficient condition tor 214 to be an endomorph of
14,10, for the existence of an endomorphism 7 of #! 4 such that T8 =t ,is that
v 9

LS.

Méoreover, we have also proved that an endomorph of an endomorph is in
turn an endomorph, namely that C as a relation between automata is fransitive .
Since it is trivially reflexive, it provides a partial ordering among automata.

The total endomorphism O maps every state y onto a single state. Hence

%@ consists of one member, this member containing all palrs of states. Then, any
endomorphism ¢ must. fulfill

frc E)@

We showed (eq. 17.« of the text) that also

~C

¢oC
o
N

combining these results one obtains

3\&g?;g5© (A.11)

thereby establishing the existence of universal bounds.
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In order to obtain the remainding results of Sec. 3, assume t and t, are

two endomorphisms of A, and let for the moment

~N

r and s are reriexive, symmetric and transitive.
We want to prove tirst, that r ) s and #(r,Js) are reflexive, symmetric

and tiuisitives
For the proof consider that reflexivity of r and s means that 4 C r and

&_(; s, so that
dcrns (a)

shows r s to be reflexive.
Multiply now .4 C rand 4 C s by s and r respectively, first from the lett,

then from the right. One gets

s C sr sCrs

rCrs r C sr
so

rCrsisr, sCrs|)sr
and rsCrsysr (b)
From (b)

rAsSArsNsr=rs (c)
Since r and s are transitive,
Pcr and s’Cs

then (rns)zgrznszﬂrsﬂsrgrnsﬂrsﬂsr= rAs by (c) . Hence,
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r s fulfills

(rﬂs)zgrﬂs d)

and is transitive,

. . v X
Finally, since r = F and s = 5 are symmetric,

(rns)u=¥n§=r,’]s (e)

is in turn symmetric,
As to #(r |J-s), by the very definition of ancesiral immediately follows

that it is reflexive.

dC #(rys) (f)
transitive
2
(teus) = #rus) @

and further
(#(rUs)) = #(rys) = #(FUS) = #(rUs)
(h)

Is symmetric.

o J
Hence, rs = L4 N e,

and #(rys) = #(5 1 UL t,)
determine partitions of the elements of |} , in equivalence classes,
Let I, « [;:" L'r)l] ond I, = [;;" [172] be the partitions corresponding
1 . h
to }i t, and ;; t,resp,, 7, and 7, being the states of 1A and t;AU.
For any state y € |}, there exist 7 and 7, such that y € £ (7, and

v
yELM, These classes contain the t, - partners and t,~partners of y.
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v ")
Now, y must fall in one of the eqduivalence classes of f, N #,4, having

as partners those states simultaneously being ¢, - partners and t,~partners of y,

) v
therefore the states contained in 2% |7, N £" (7, . .

e . e Y .
Hence, each member of the partition determined by t ¢ Nt ¢, isan inter-

section of one member of T, with one member of II Thus, the equivalence re-

‘ L]
. 1 2
. v J . oas
lation tr Nt determines the partition ['I,1 N ['I,2 .
From each member of II, 1 I, select one state 7, and let ¢ be the trans-
1 9

formation that sends all states y of each member to state 77, Clearly ¢ is @ many-

to-one mapping of |} onto the subset of 7)'s, the members of [I, N, are the
1 2

classes 7 | of t-partners related by 7.

Hence
ft=4t Nt (A.12)
and
m=1a, nm, (A3)
1 2
Let now
771 = tl.y 772 = t;y ™ = t'y
(a)
where, by construction,
m = 2 N, (b)

Since ! and t, are endomorphisms,

X' = %ty = tx'y (c)
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and X', =%y =1t %'y d)
(¢) and (d) mean, however that
x'y € }jln L(xonl)
o
and x'y e («*n,)
therefore
sy e (') N A Ln,) (e)

By construction, however, 7 itself fulfills (a) since it is one of the states

of class (b). Hence, it also fulfills (e);

en B () 0B L'n,) ®

We can choose the state x*7) as the representative 7 for the class ap-
pearing on (e) and (f) . Then, according to (b)

Flem = 2 lE ) AR LE) ()
whence (e) becomes

0
'y et (x*n)

which amounts to

x'7 = tx'y (h)
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Substituting the value of 7) from (a), we get

xt'y = tx'y

and since this holds for every y, must be

(x,2]=0 (A14)

so ¢ is an endomorphism. The endomorph #*A will be denoted bv

tA=1'AN LA (A5)
From (A.12) one sees that
&) v v Cu
£rC 4t and SN

which according to previous results implies

PACHA, PACHA (A.16)

showing that #*4 Is o l.b. of !4 and £04.

But (A.12) shows 71 to be the G.L.B. of £ £ and 7,¢,. The corre-
sponding property for ' A follows immediately, from which we conclude that every
pair of endomorphs have a G.L.B.

Consider now the ancestral #(;: t, U 72 ‘z)' Being, as shown before, an
equivalence relation, it effects a partition of the states of |} in equivalence classes,

In order to determine what these classes might be, take a state y € |, Its
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aartners are the states
V] O "
Bt e )0 ) Ly

However, by definition of ancestral, this class is the smallest class that contains

(] (%)
y and is closed under the relation ¢ ¢ | A
Hence, besides y, the class must contain tt = i, ~partners ot y, namely the

whole member of II, to which y belongs, b , say. Bt then, it must contain the
1
t - partners of y, i.e,, the whole member of II, to whici y belongs, say k . Since
2
both, b and k contoiny, b N k, # B, are conjoint. Nov, if b = k ,the class

I = b =k is closed under ;,x t U ;;tz and is one of the equivalence classeswe
are looking f~-  But if b ¢ k , the class & J b will not be closed due to the
presence of elements in k N b orinb k) orinboth. Hence we have to add

oll ¢ - partners of the elements of b Nk, that is all members of T, conjoint to
1

b, and all 4, = partners of the elements of kb, that is, all members of II, con-
2

joint to hl .

If the class so obtained consists ot a whole number of members of fl, ond
1

a whole number of members of T, , it will be closed and thus, one of the equiva-
2

lence classes I1 . say, we are looking for. If not, there will be some 1, - partners
lacking t,-partners, and/or conversely. The class must be enlarged by adding all
7, - partners of the lone s, - partners and all #, - partners of the lone t,- partners, 2tc.
The process stops when the class contains o, whole number of tz-members.

Each equivalence class will be then of the form

la= b_‘l'J b‘-zU ceves |J b'.px h/IU kizu seses Y k/q'

with all its component members chain-connected.

The partition corresponding to #(?1 tu };tz) isthen I, y II, .
1 2
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Out of each member of this partition, select a state 7 and call ¢ the wons-
formation sending each state y of the member to this 7. The members of I, U il

are then describable as classes i" | M of t-partners related by tt so that

it = #(F ¢ U 3 ) (A7)
and

m-moyn, (A.18)

Now, as it was shown under (A.13), if a state y lays In the intersection of

0 ¢ -class and a £ -class, namely if

ol Q.
yeL& i, Ny,
‘hen

x'y €1 (') ( 1 L(x'D,)

Hence, if a tl-clcss and a tz-closs are conjoint, their x-transforms are again con-
joint. Therefore, a set of chain-connected t,- and ¢ -classes, transforms under x

is a set of the same type. Hence, if
=ty (0)

the set £ 7 transforms under x into a set i L 7] say, where -77 is again one of the
7's. Then

N=tx'y (b)
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But since 7 itself belongs to 7o LN, there follows that x*7 € i (7 « Henee,

we can choose 'ﬁ'-as xtn,

5: X.T) (C)
Substituting in (b) we get
X' =tx'y
and using (o),
Xf'y = tx'y
for all y, whence
Xt = tx
or [x, t] =0

(A09)

t is then an endomorphism. The endomorph #* A will be denoted by

] - ¢t ]
PA= AU LA

From (A.17) one sees that

Y] v d [v) vl
'1 tl‘_C_tt an tztzgtf

and this implies that

PHACHA PACHA
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showing that ' A Is an u.b, of A and 1A

“ 9] w V]
Any other endomorphism 7 such that 1 CTT and 4,4, CTT yields
v

(v () (W] (V)
tt Jtt, C77. Thenany class closed under T must be closed under te U4,

which means that #(7111 U \:2 12) c k/)‘T, ie€4, it C %7, s0 £'A C T'A. 1A isthen
seen to be the |, u.b. of A and nA.

Every pair of endomorphs has then a G.L.B.and a l,u.b. The set {(A)
of endomorphs of A is a lattice which, by virtue of (A.11) is bounded.

This completes the proof of the statements asserted on Sec. 3.
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APPENDIX 1t

Reflexivity of ;:/ is immediate from the definition, Eq. (55) of the text.

Transitivity, rather obvious, is however formally proved as follows:

i
L]

20,090 = @NE 0,00 5003,

]

[}

3y (Z, () 20y, ) » 24 (3,) )

= ‘:",'(ylo y,) . (3)') z; (¥)

[}

n

Z (5,0 9,)

So ;:; = ;:’. Is idempotent and hence, transitive.
For i$ j

;‘. -:vj(y‘,yz) (Hy)(;,'(y‘:y)-;,'(y. }’2)) =

@0, 50,0 %00 50)) =

0, 20,0« @)z 00+ 5 (y))

Since for i 4 j there is no such y, the proposition is.false for every pair
¥,i ¥, ond

zz =Bif i)
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v (%]

As toz, Eq.(58) since z = U':',,then z= U:v.] = U‘:'I = z is symmetric,

BoUSE AU UL -t
3] i 3

14

is idempotent and transitive.

Then, from (54a) and (550) of the text,
0y = 2200y = ;‘Zz,(y)
is always true. Hence, so it is

0092 800 )

whence .§ C :.', and z is transitive. In short,

\

v
.
z

(A22)

[9=3
Ne

<

J

Let now y be any state, having the t-image

n=12"y (a)

there exists a j such that y € z; « Then, by virtue of Eq.(59) of the text, 1 € z.
Since both belong to z;,

Z;Lﬂz z,"Ly (b)



From (a)
(7 =4"Ly (c)

From (b) and because of closure,
z/"m = tzpy d)
Substituting (¢):

zjt"Ly.—_tz/'Ly

whence zit= 1z, from which Eq. (60) follows. (61) results then readily from
(58) and (60).
Again according to (59),

£ y) e 2;(9) e D 2, (M),
take conjunction of both sides with z;(y) using (55);

£y )+ 2 (y) « D 2 (M, ¥)

take alternation with respect to j remembering (54a) and (58);

t(n, y) D ;(77' y)

for all nand y. Hence

which is Eq.(62).
Assume now that ¢, and t, are two acceptable endomarphisms. Then, by (63),
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Pt oCx and Lt C7(a)

But then ;; t N }; t, C ;, and according to (44),
the e (b)

but also r:Lt’tlU;lt Q;: (c)

however If r C z then by induction one proves that r” C z. For, assuming
% C z, multiplying arderly by r C z, get #* *! C 2% = 2 so the induction is com-
plete. Next, from (A.22), 4 C z.

If.9C zand r* C z for all n, then

fradyryrryry...Cz

from (c)

Q
.

by (45) this ylelds

t Ut Cz (d)

(b) and (d) show the set of acceptable endomorphisms to be closed under EJ and
h , and hence, to be a lattice, ﬂz (A4).

We show that [ contalns an upper bound t,o Let tel . If there is no
t, €L suchthat#zC ¢, #= ¢ isan upper bound. [f there is, take ¢ and repeat
the argument. Since ‘Cz is finite, one must attain an upper bound to fulfilling (65)
and (650).

126



Now, this ¢ must be unique. For if there existed another upper bound

€ .Cz, then toUt, € C2 and t, St U4, contradicting the assumption. Hence,

1

[
o is unique,

Y
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