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ABSTRACT

A previous paper by the authors described the derivation of recursion re-
lations for the Wigner coefficients of SU, , based on the concept of auxiliary Wigner
coefficient, for which the multiplicity problem does not.arises The coefficients in
the recursion relations are explicitly obtained here, and the polynomials in the.cre-
ation operators which constitute the basis for the irreducible representation of SU,
are narmalised, after a preliminary result concerning the expansion of determinants

in the creation operators is obtained.

KESUMEN

Un trabajo anterior de los autores describic la derivacion de relaciones de
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recurrencia para los coeficientes de Wigner de SU,, basada en el conce pto de coe-
ficiente auxiliar de Wigner, para ¢l cual no hay el problema de la multiplicidad,

Aqui se derivan explicitamente los coeficientes en las relaciones de recurrencia y
se normalizan los polinomios en los operadores de creacion que constituyen la ba-
se para una representacion irreducible de SU,, después de obtener un resultado

preliminar sobre el desarrollo de determinantes en estos operadores de creacion,

1. INTRODUCTION

In a preceding paper (Brody 1945, here to be quoted as II), the authors de-
veloped recursion relations for the Wigner coefficients of unitary groups; the finali
formulae were given in explicit form for the case of the 5'13 group, though the argu-
ments given in the paper allow the straightforward derivation of similar recursion
relations for other unitary groups. However, a number of important intermediate
steps were only mentioned in very brief outline in Il, because of lack ot space.
Since several of these intermediate results are of considerable usefulness in calcu-
lations of this type, their derivation has been collected here,

The argument of Il is concerned with polynomials in the components of
n-dimensional vectors, a:S; here = 1...n is the component indexand s = 1..r
is the vector index. As was shown in another paper (Moshinsky 1963, here cited
as I), such polynomials can be constructed to form bases for the irreducible repre-
senfations of Su". For this purpose, the a;s are considered to be Bose creation
operators, and their properties will be found in I. The corresponding annihilation

operator will be written as a#S and as was shown in 1, if only polynomials are con

sidered,

ans - 9 (1.1

Ga*
us

The polynomials forming a basis for an irreducible representation are most easily

written in terms of determinants formed from the a;s; such determinants will be de-
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noted by

S.S_.e.sS b
AY2TTT L3 (-1 at _ a*_...a 12
Bty eee by p( yoE By Sy HoS, Ky Sy (12)

where b is a permutation of S eeesje If the s-indices run from 1 to j, the determi-

nant may be written

i
Aleee? = 3 ¢ af at ...} (1.3)
ﬂlc-- [L] . si=] slsz...sl slul 52#2 SI“]
or if the y-indices run from 1 to j, it may be written
Asl"‘sl 2’ + + + (1.4)
g2 € a, a )
leseo] “i:l By Hyoos by 51“1 si‘u‘! s’“’

In these two equations, the ¢ are the usual completely antisymmetric tensors. It

S e S +
is, similarly, possible to define determinants A#’ “‘ ) composed in an en-
Ly
tirely analogous fashion from the annihilation operators a**,

The creation and annihilation operators obey the commutation rule

(e at )= 8! 5, (1.5)

from which the properties of the determinants may be derived.
From these two kinds of operators it is possible to construct generators of
unitary groups. Three groups are of importance in connection with the present

work: they ore U U, ond U_; their generators are, respectively,

nr?
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C:: - at a¥t (1.6)

14
ct -3C,, -3a a (1.7)
I u
¢’ -3C-%Zala" (1.8)
L s ns s n

constitute the components of a single vector of dimension nr be-

The a;s

longing to the basis of an irreducible representation of the unitary group which in
Il is denoted by U_; hence the set of all linearly independent homogenous poly-
nomials of degree N in the a/:s forms the basis of the completely symmetric repre-
sentation of this group, characterised by the partition [N] . This set is a basis
for a, in general, reducible representation of U, x U.” of Um. It is from the homo-
genous polynomials of this set which are of highest weight in the twa groups U,
and U," that the scalar products are built up which were shown in 1 to be the Wigner
coefficients looked for. However, in Il it was shown that the scalar roduct (2.17)
of that paper, there called an auxiliary Wigner coefficient, may be obfained through
the recursion formulae derived there in @ much more convenient form. The auxilia-
ry Wigner coefficient contains the polynomials P , P, . defined by II, eq.(2.10)
and (2.14), and os is shown at the beginning of section 4 of II, it is sufficient to
hove available the forms which are, respectively, of highest weight and lowest

weight both in U, and li, . Such a polynomial will take the form

2

h h-q

b ov.. b . h 9, b a,-5
p LY n (\:) 1 2(.\1) 2° "3
‘11...1"_1 ql el "

b -q n
1 r 2 2 T2 2 n
(A2 ) (314) "'(--\u::::)

(1.9)

as was shown in I, eq. (4.14). (Here, for convenience, n is written instead of
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n

h o
2j ¥ 1)« The normalisation coefficient A(q1 ) for this polynomial will

1290

be derived in section 3, after a preliminary result is obtained in section 2 of this

paper.
The last section will describe the manner in which the matrix elements of

the a;s can be obtained and how these can be combined and antisymmetrised soas

to obtain the matrix elements (4.5) of II.

2. A PRELIMINARY RESULT

Let Q be a polynomial of highest weight in U , i.e., one which is a solution

of

I3
CiQ=0,¢>s=1cr=1; Co Q=k;Qys=1...74
(2.1)

The result to be obtained in this section is

+

E= (A0 AL el 22)

A joint expansion of the two determinants in (2.2) may be obtained in the form

+ r
(31...7) Al""— S . (31) + (/\,) +Asl Asr
“leear leeor = 5152"'Sp ‘/"'1 veo .u' #l... n,
Hy'S, = 1
(2.3)

This expansion is seen to be valid through two considerations: in the first place,
the total number of terms is evidently the correct one, (r!)2 which would be ob-
tained by multiplying out the separate expansions of the type (1.3); in the second
place, the sign is given correctly to each term by the antisymmetric tensor

s

s @ if the factors belonging to the second determinant are re-ordered (they
e S,
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commute with each other) so that the upper indices have the natural order, the sign
is not changed, but is now aiven by the permutations of the two sets of lower
indices,

Applying now the commutation rule (1.5) to the innermost pair in (2.3),

there results

s I + -1 + 3' PR + Asl /\, + A52 s,
E = (A‘*l) '“(Au,.;) € ...s, ( 518“1 #l(_#r) ) #2...%'9
Hy Sy
s 1 ¥ ret S, Asr
= (B ) (A7) s s s, D2 eee 80 Q10>
Hy Sy
Y (AL) LY " (A) A% .. AT glo>
us Sl..,s' »ul PR A.u’-l #l 4 \.#2-.. A#'
171

(2.4)

On the right-hand side of (2.4), the indices of the ¢ in the first term may be ar-
ranged in the order s, S, eee§ g7 At the cost of a minus sign, since there must be
r +(r=1) interchanges to achieve this order; furthermore, since the indices are
dummy variables, s, may be renamed s The commutation rule (1.5) may now be
applied again to the second term of (2.4), and after a similar rearrangement and
renaming of the indices, a term exactly equal to the first term in (2.4) is produced.
This procedure may be repeated r =1 times; the last application of the commutation

rule, however, gives

1 +
) ‘s, msr(;\“l) .o (A

S,

+
s S,
re1 re 4
N S
r Hr

S' r .+
“r.l) " Hp o1 * AW(A#’))Q|0>

(2.5)
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The first term in the parenthesis gives rise to a term similar to those obtained
previously, but multiplied by a factor n due to the sum over y ; the second term
will be seen from (1.7) to be Cs' , and because of the fact that the polynomial Q
has been taken to be of highest'weighf, (2.1) shows that all except C: give a zerc

result. Hence, collecting terms,

A! A AL AT (e
S 4., S (‘/;L) "'(",u ) “u""y,r.l( ')Q10>

(2.6)

This process may be repeated; in successive applications, e commutation
rule will be applied r=1, r=2, ... times before the last exchange gives rise to
terms like (2.5); hence the numbers added to C] , S::} ,...willbe1,2,... The

final result will be
E:(r+cf)(r-1+c22) ...(1+C) glo> (2.7)

If now R is a polynomial of highest weight in U, , i.e. one which is a so-

lution of

v p
C#R= O,v>p=1...n=1; C“ R=bh Rp=l...n (2.8)

then the simplified expression for

+

le..n leos
E= (A0 AL R0 (2.9)

may be obtained by means of the joint expansion of the two determinants carried

out in the lower indices
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Loeom o * 1.., i +
(Al...:) Al--.:= u52—1(u1#2 *Hn (Asl) (A22 A ) A'-l Az
15
(2.10)

and the result will be
E=(n+C)(n=1+Cy)...(1+C) R|0O> @.11)

3. THE NORMALISATION OF BASIS POLYNOMIALS

As was mentioned in the introductory section, the typical polynomial to be

normalised takes the form

b "'bn b "'bn l.ql.bz 1 Dl'ql 12 ne] qn-l'bn
P‘I: ...q"." A‘qll...q"_l) (Al) (An) (Au) (Al" (Al --l)
leoonel ne1* Iney 1 ” bn
ol 1 ” ) (Al...n )
(3.1)
so that the normality condition is
b uih b oeuih boviih P b
pr T p1Ttt oy 177 ) R -
(ql...qn.l' ql...qn.l) <0|(qu.,.qn_l ql"'qn.1|0> 1
(3.2)

Here | 0 > represents the vacuum, defined by
a#8|0>=0 v#,s.

Writing now

"'bn b .-.bn 1..." n ’
7 = Al ) (AL, P (3.3)

AEERR: A FEEEX A
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the normalisation coefficient becomes

b veoh, -
Al )= B (3.4)
where
’ leoenm bn ' leoen bn
BE(P (Al...n) ’ P(Al...n) )=

leeen + leeen leeenm 'n

] cee bn-l
(P(Ai...n) '(‘/'\1...'1) Al...tlp(Al...n) )
(3.5)

It will be seen that P’ does not contain n among the upper indices. Hence
(2.7) is applicable, and since the effect of the o perators (: is to count the number

of occurrences of 5 among the upper indices,

b «1 b -1
B leeen 'n B leeen, 'n
B=bh, (b,  +1)(b, , +2).cc(b, ¥n=1)(P (8, . ,) , P (Al_“”)
‘ (3.6)
The steps leading to (3.6) can be repeated, giving finally
" (b, tn=p)1 ' '
B= Tl 4 : (p, P') 3.7)

p=1 (bp'b"+”'p)!

It is possible to write (3.7) in this form, since it is well known (Moshinsky 1962)
that

bp>,bq if p<gq.
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Another factor may now be removed from P’ :

-h
' » leeanel 9 -1""n
pr=P (Al...n-l)
Now the valos « =1 no longer occurs in P", but among the lower indices. Hence

the alternative form (2.11) is used and leads to

0 (b +n=p)1

=-b b, t1)...(q,=h, +tn=
p=1 (by=h, *n=p) 1 Gpe1=Pp) @pey= by ¥1)oeolg)= b, +n=2) x

“h-1 9, ., b -1
» Leson=1 95 -1° " w leeanel n-1""n
(P (AT u) » PUAL T )
Repeating this step, one finally obtains
7 (b, tnep) n-1 -h tn=l=1)1
B - n (p P). (ql ”n ). (P', Pl)

p=1 (bp'b,, tn=p)y U=t (q;-q,., tn=1=-1)1
’ (3.8)
If n = 1 is substituted for » in the lower indices of P” (which does not con-
tain n = 1 any longer), it will be seen to have exactly the form (3.1) for the group

U

».q if one uses

’ [
hi=bi=q,., ' 9 =9:"9, .,

for the exponents of the determinants. The substitution of n~1 for n does not, of
course, affect the value of the scalar product (P", P"), which may now be evalu-

ated by repeating the entire procedure described so far until only < 0| 0> = 1 is
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left, This leads te

S tn=p,)1 ner  (q; =hb,tn=l «1)1
B= 1 Z 1 z x
b, =1 (bp-b tn=p)1 L =1 (q,n-q".l**nol,,-l)!
nr-!x (bpn'l—q".l*Pn-l-p",l)! ne2 (qln,l-bn-l+"-ln-l-2)!
x
by, =1 (b,,n_l-b,,.l’rn-l-p,,.l)! boy=1 @ =gy tr=d=2)!

(3.9)

If one adopts the convention
9y = by, =0 (3.10)

the products in (3.9) may be conjoined into a double product; hence, from (3.4),

%

A(bl'”bﬂ ) =[ n g (bi-bi+i-i)!(q"-qi+j-i)! ]
9 -+ 9., l;gl ,-rzll tb,"q,'+f'i)!(‘1,"bj+1+i'i)!

(3.11)

This is the normalisation coefficient given in 1, eq.(4.4).

A. THE MATRIX ELEMENT OF A:

It was shown in II that the general polynemial P in the a;s belonging to
the basis for an irreducible re presentation of the group U, may be described by

its simultaneous classification in the chains
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UnrD v, e 1"n ’ (4.1)

Using the notation bpq ,p=1...q torepresent the row lengths of the Young dia-
grammes in the subgroup ‘J'q and similorly &, , u=1...vfor U,, P may be de-

scribed by the double Gel' fand pattern

[ b, S
blﬂ-l bnOI"'l k]"l’...“k"l"l
PlO> = = byg s hyy
bll kll

It was shown in II that the polynomials required for the recursion relations

of the auxiliary Wigner coefficients obey the condition

b, 4 f=1l.eeeun
= (4.2)

0 , f=ntl.,.r

where n < r; in fact, r = 2n = 2 is used for the calculations in II. 1t will be seen
that the polynomials whose normalisation was discussed in the previous section

are the particular case

bin::bi; bin-l'_‘qi; biqul' i f=l...m=2

156



In this section the matrix elements

’ +
<hpg v Ryl a5 | Bpg o By >

of A: = a;S will be determined. This quantity will evidently be zero unless
bp'q = by, +1 for some one value of p in every row g with ¢ > u, and similarly for

the ku'u , i.e, for

” r
B! = b +§ S 8, ; kR =k +6 DI
Pq vq plq =4 qp uy Uy ulv p=s vp

vhile all the other quantum numbers are the same on both sides. The Wianer~
Eckort theoram (+-lach 1964, p.210) may then be applied twice,in U, and in U,,

to give

<bp'q v kY a;s| Boo o Ry > = <bp’"|| at|| byp >

' ’ ! ’
byy O | e bhy 0...0 Bpy 0...0
C c
M s
1]
by by k., k,,

The form taken by the last two factors in (4.3) is seen to be justified since,
ntl
. + ..
in the subgrouo U, of U, ., , C# transforms exactly as als does, and similarly

r+1
with C,  in U, . The condition (4.2) is, of course, taken into account.
If the three factors in (4,3) can be determined, the whole matrix element is

determined. This is what will be carried out below, in two steps,
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. n+] r+1
(i) The matrix elements of the operatars Cu and C, ~ which belong to

the set of generators of U 4y 9nd U, .| respectively, have been obtained by

Gel'fand and Zetlin (1950) and rederived by others (Nagel 1964, and references

given there).

”

<h +§ 2z
pa TPl T,

= I s¢

r=m+1 -1

r
and similarly for C

(ii) The reduced matrix element which is the first factor in (4.3) can be

+8

They are

n+]
8ol Con | Bpg > =

Db =k oy ey =)=yt =+ D)

re

r
p% aqr-ll Cr-llbpq>

S(x) =
-1 for x< 0

+1

(4.4)

(4.5)

found if a particular case of (4.3) can be evaluated; for this purpose a;l is chosen,

since then the polynomials $ and T in

Shy s ki tag| b, k> =

uy !

pq !

can be of highest weight and then take the simple form given by eq.(3.23) of I:

1
iR
> = <0 B A, Blo>

bq !

b b b b b -bh leeun
EB:A(}p)Pz A(bp) (Ai) 1 2 (A;g) 2 3"'(Al..-")
% »
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b, + 8 - b+ 8 bk b, ek .t b ok .
a4 2% 5 _ 4 0t 1y 12 Locodety B2 Lot ™ ! cen bn
4 X Pxa (a}) N NS R U
»l Tevon
Rather than evaluate (4.7), however, its complex conjugate is determined, whose
valye is the same since both are real; this is evident from the fact that the value

of the matrix element is built up from the commutation relation (1.5}, Using the

complex conjugate of (4.7) has the advantage that the result (2.7) developed in

: : , -
section Il is applicable to <0| P* (A;) P|0>. Thus, calling this matrix ele-
ment M, (note that it does not contain the two normalisation coefficients in (4.7) )

and writing

1--.'1) bn

leoeen
leoum )

! —_ o
p-pP (A s P_-P (Al“_"

one obtains by repeated application of (2.7)

bhytna-]+1 "
M=t n ’

hj=k tn=1%1 »

(bp+"-p)!

o>
1 (by=b,tn=p)1

' 1 -
<ol Pt (AP

Continuing in this fashion, with

141) htn"’uz 1,,.,,)/’"

n
p=p" (Al S

and analogously for P”, one obtains after simplifying the factorials

n - Lo 1.t —e
. b’-bPol?P‘l*l p=1(bP+" p1<0:P (:\,) P |O>
p=i+1 b,-bp+p-1+1 1 » q-1

b = b +{-p+ -
oI, Gembrertimp ) MW (-8 tq-p)

M=

(4.8)
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Now the last two factors in P” are

"’1-1’}"/" h b + 1

leoolel 1...1
(AI...I-l) (Al...i)

!+
() acts only on the second of these to yield

I ! by=by 1 ) 141
(bl'b1+1+1) (Al...l) (Al.. 1-1)
and thus
Iy * = .
(A) P"=(h-h, *1) P
so that

colp (A Fos . B T (4.9)

4
("1"’”1""’1"’141
Aty op )
1 1+1...bl-b”l

b - b eeoh b
where A( ! +1 o
1

oh +t ) is the coefficient which normalises P”. In this
T+1... b,- b,

+1
argument, [ was taken /< n, if not, the last part is applied directly from the be-

ginning.
The three normalisation coefficients needed to complete the calculation of
(4.7) are immediately obtained from (3.11), since the polynomials to which they

correspond are, in fact, of the form (3.1) with ¢, = b; ; hence

h b oouih ' n
A(b:)=/\(;,t“_bn)= I (bi-b].+,'-,)/i£11 (b +n=1) 1

1£i<j<n

{(4.10)
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b +Sp, L. » ,
Al vg) = I bmhrizitousg) [ L Gen=ite),

~

l
b b vesh, =h
A P 1Tty M (b eh tjeid M (h=h  , +l=j)i
(" by ”1"’1“) 1<,’<,~<;(' i T ) i=l(1 141 Nt

Substituting (4.8), (4.9) and (4.10) in (4.7) there results, after some
simplification ,

<0[%A; o> - 4.11)

. % .
[h-hatt (bx"bi+f"+8il'jl)]2 q achati-it
htnaltl 1<5i<j<n (b; b, +j=i) j=iet Bpabtjeltl

This is a particular case of (4.3); (4.5) will now give the matrix elements
n+1

e+l
of CI and C; in

(4.3), which for this case take the form

hyt8y 0 | el | B 48y 0

. %
C ! —[ ﬁ b= 141”"”1]z
1 = .
j=l+t hyebh +j=]t1
bp+6p1 bp . 1= %
and
bA
by t8p; 0...0 C;” by +8py 0. [ ’”+,'-1+1]’
by +8y; 0..0 AR A A
since hn+1""= , 41 =0

Substituting these two results in (4.11), one obtains straightforwardly
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(hi= by +jmi * 8= 8y

L 15i<jgn i ]
Y | o S =
b ip i £ b ¥n-l+ hi=h +j-
CETETESN S )
- 1 . dlm }7 +6Pl)]
where bytn=1+1 dim 5 (4.12)
h,=bh,+j=i
dim by = @ G TTT (4.13)
1£i<jsn j=1

is the dimensionality of the representation [bp] (Boerner 1955).
On substituting this result in (4.3), the use of (4.5) and of the similar
+1
equation for the matrix elements of C; makes all the matrix elements of A®
available,
From these the matrix elements (4.5) of II, which yield the recursion coef-

ficients for the Wigner coefficients of the unitary groups, are derived by expanding

S
the A matrices in terms of the A#s aJs « Thus, for instance,

< b k, I/\ [ vq "’ kuu>=

.._-: N L L] 2

=b' “pa ¢ R ’A#I}’PZ' ki, > < by ki (AL | By s by > -
s R

pq v

H
- Z <}’P:1'ku'u l-'\ |pq'k~> qu’ uv IA#Iqu’k

" "w g >
hpq ek
(4.14)
The sums in (4.14) extend over all compatible values of the 5 k", b, kT

Pq’ uv ' "pq ! Tuv’
however, if the conditions (4.2) are to be fulfilled, it is clear that the sums reduce

to single terms for all those values of g4 (or v) in which b' and b (or &' and & )
q

differ only for a single value of g (or v). This fact reduces considerably the
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somewhat laborious task of simplifying the expressions of the type o1 ,..14).
For the particular case of su,, the results were given in the Appendix of
i1.

5. ORTHONORMALITY OF THE AW,

In reference II, the authors gave an erroneous expression for the ortho-
normality relations of auxiliary Wigner coefficients AW, of SU,+ In fact, there can

be no sum over the b, since both are determined by the sum rules

’ (2 n "
B v b+ b+ b

bl+b2fb3

bl'+b2'+b2" “ tu tu

il
-~
N

A correct orthonormality relation may be obtained from the fact that the
ordinary Wigner coefficients, expressed in terms of the polynomials (2.15) of 41,

are orthonormal, The AW, may be obtained from them by means of a transformation
bracket :

1 2 1 72 1 2 73
4 u, u, u
14 14 " " ! l 2 3
ql 1, 1 1, 9 9
1 (4 n "
bl bz bl b2 bl bz ba bx hz bs hl b2 bs
[ AN AN A '
= Z ’ X by by By By i X by iy u
. ’ " " ’ " ’
X IR 4 9 q q 1 bz bl
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The polynomials (2.15) of Il giverise to the complete Wigner coefficients,
whereas the depandence on SU, of the AW, has been factored out,as is described
in the argument leading up to (3.5) of II. In order to remove this dependence from
the complete Wigner ccefficients, use is made of the Wianer-Eckart theorem ; a
factor depending on the 9; + q;  and g, remains, due-to the choice (3.3) made in
II for the values of bl'1 and LA

The result of these considerations is the orthonormality relation

Ll L
% bx' bz' by by | Bk by
[ +ql-qz)'(qz 2=97)! ] , gy
- - ! |
q' q' 9 +1) ( ql q2 (‘71 qz), qll q: qr q; 7,4,

r, »,» —'—‘b"
' .- '_ [ n)' % bxbz blbz b1b2 3 -
. [ (ql+ql-q2)’,(q'2 ‘Iz,qz )! ] ) 5
(7~ *1)g=9;) 1 (g] —95) ! vl aral| @ )

S — s (52)
= 8 + & 7 6, 3% 3 8 F
bl bl b2 b2 b3 bS ql ql q2 q!
where
P % b b,

b by by b by by b by by vats
[ ’ ” ” .4
F= z bl'hzlb:b;x by by oty by by By X g ,};2 i s

’ n b

X bl' by bl' bl b .

(5:3)

(5.3)

is a function which no longer depends on any of the ¢'s ; its value might be de-
termined, though in view of the rather particular nature of the operatar whose eigen-

valve is y (see I) its usefulness is limited.
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