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ABSTRACT

Previous work on the strong coupling between potential resonances and
compound nucleus states suggested the possibility od appearance of anomalies in
the resulting phase shifts. Such anomalies could result in a modification of the
shape of the resonances, or even give rise to additional peaks in the cross-secton
In this paper this possibility s explored in the frame work of the Dirac model of

resonance scattering,
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RESUMEN

En un trabajo previo sobre el acoplamiento fuerte entre resonancias de po-
tencial y estados de niicleo compuesto se sugtrié la posibilidad de que aparecieran
anomalias en los corrimientos de fase resultantes, Estas anomalias podrian dar lu-
gar a modificaciones en la forma de las resonancias y mds ain bacer aparecer picos
adicionales en la seccion de dis persion. En este trabajo se explora esta posibili-

dad dentro del marco de la teoria de dis persion resonante de D irac.

INTRODUCTION

Extended shell model calculations include very often single particle con-
figurations whose energy is larger than the particle emission threshold in the corre-
sponding channel. These configurations are either potential resonances such as
lp,/z'1 la’,/2 in 016, or virtual bound states such as lp,/2'1 ls,/’ in 0'°. They are
nevertheless treated as discrete states instead of resonances in the continuum
spectrum. .Ina previous paper! it has been shown, using a schematic Brown model,
that indeed the positions of the actual resonances may be obtained by an vequivo-
lent" bound state problem, justifying therefore the usual shell model procedure.

In the course of that work it was noticed that the exact treatment of the
continuum allows for the possibility of appearance of anomalies in the phase shifts
due to the strong coupling between potential resonances and actual bound states.
Such anomalies could result in a modification of the shape of the resonances from
the Breit-Wigner form, or even give rise to additional peaks in the cross=section.

With the purpose of understanding how these different types of configurations
interact, we have considered a simple model where this situation takes place.
This model is the Dirac model? of resonance scattering.

We consider the case when there is only one scattering channel and one
bound state, and restrict ourselves to some eigenvalue of the total angular mo-

mentum of the system so that the scattering is described by a phase shift,

1. F. Prats and M. Bauer, Nuclear Physics (in press).
2. P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford University Press,
4th Edition, 1958, p. 201,
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2. DIRAC'S MODEL OF RESONANCE SCATTERING WiTH STRONG COUPLING.

A particle is scattered by a target in its ground state, this situation being
described by a state vector l’/’é+)' where E, the total energy is positive, The parti-
cle may also form o bound state with some excited stote of the target ot some
€, > 0, described by a state vector ¢. The states (,-’;éf) and ¢ are assumed to be
orthogonal: ((/;bf"), @) = 0.

If some interaction V acts between the states e and ¢, the state of the

system becomes ‘PI(:_*), which is a solution of the equotion

() _ (4 1 (+)
Ve T g, Y i

in Dirac*'s model y_, o, H, and V are chosen such that the only non-vanishing
matrix element of V is (([/é_*), Ve) . Then this equation can be solved immediate-

ly and one finds

)
E E E” E+ie-g’ \'E"' )

(2)

where

d(E):E-el—A(E)w‘i;_F(E) 3)

with the definitions

| (g v ?

A(E) = P [dE’
E-E’

T(E) = 27 | (¢, "‘/’é")) |2
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and we have assumed the normalization

(42, i) = 0% B) (9,0 =1 .
5

Application of the formula of Watson?® gives the scattering amplitude

o298 L(E) _ e"nsinn

= ei8 i - ]_
T(E) = sin § ; 76
(6)

where § is the phase shift associated with the state z/;éf*) andp = 5+ 67, with

8'___ - ]/21_‘(5) 7
tg Fec-AE) 7)

is the new phase shift, associated with the state ‘I‘I(;) .

These are well known results and have been used previously in the situ-
ation when one assumes that A and I" are nearly independent* of E.

We are now interested in the situation when there is a resonance in the un-
coupled energy continuum, that is, when the phase shift § goes through 7/2 at, say

E = € + Then the pole at E = € = i 20 of the scattering amplitude e®®sing is
2
also a pole of the matrix element (¢, V(//éf)) and consequently I'(E) will show a

maximum at, or near, E = € and A(E) will oscillate in that region. «s shown in
Fig. 1a,b. For purposes of illustration, we have assumed that the interaction V

and the states o, ‘/IE are such that

(@ - LvE VB

3. M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 (1953).
4. See for instance B. Zumino, Research Report No .CX-23, Institute of Mathematical
Sciences, New York University, N. Y. (1956); U. Fano, Phys. Rev. 124, 1866 (1961).
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(The %_\/E factor comes from the normalization of L’/éf) « The remaining factor is

only a function of E). One can then find out easily that

2 2
AE) = yB o 1 E-|?]
4 sin{/\‘i 2

(E-e)? + @,

o :

2

(9)
where
w
A= + € +4i_0

0 2

The width function, ['(E), and level displacement function, A(E) are plotted in
Fig. 1a, b for the values of the parameters

€0 = 2.6 MeV
W, = 1.0 MeV
B = 6.5 MeV

In Fig. 20, b,c,d, the phase correction 5§’ obtained from Eq.(7) is shown
for the vaiues of B8 indicated as well as the total phase shift , obtained, assuming
the same "potential” phase shift 5 in all cases.

In cases a,b,c, € = 4.6 MeV, in
case d, 6‘ = 500 MeVo

1

Figs. 3,0,b,c,d show the respective curves for sin’y, which is proportion-
al to E times the corresponding partial cross-section. One can observe one or

more maxima between the two resonance maxima.

In Fig. 4 a case is shown when the compound state is below the potential

resonance and the interaction is strong enough to push it into a negative energy E,
becoming a bound state.

One can obtain different sets of curves by changing the shape of the po-
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tential phase shift 5, while letting it go through 772 at the same point €, and with
the same slope w0/2 . They exhibit the same features as the curves shown,

It should be remarked that the possibility of non-resonance peaks in cross
sections between two resonance peaks has been already suggested by Teichmann

from the Wigner-Eisenbud theory®,

3. DISCUSSION

The examples presented in the figures are typical of the different situations
possible. We can start a classification of these different cases bv studying the

function

R(E) = E~- € = A(E) 10)

which has the behavior shown in Fig. 1b. It has always a zero at some value E
and has the straight line E = € as asymptote. Changes in the interaction strength
while maintaining w, constant merely change the amplitude of its oscillation
around €, For weak interaction the oscillation is of small amplitude and R(E)
has only the zero at E . This implies that the phase correction §° goes through
7/2 only once, at E . This is the situation in the first case, Figs. 2a, 3a.

On increasing the interaction sufficiently the maximum of R(E) touches the
E-axis and we have a double zero at the point of contact. The phase correction
7/2 at that point, This corresponds to the second case, Fig. 2b, 3b. Further in-
crease of the interaction makes R(E) have three zeros, the one at about €, with
negative slope. Correspondingly 5° goes through 71/2 three times and ot about €
with negative slope. This is the situation in the third and fourth cases, Fig. 2¢,d
and 3¢, d.

The different cases illustrated above are entirely analogous to those dis-
cussed by Fonda and Newton®, As in their work, the resonance at E,in Fig.2b,

3b is not of the Breit-Wigner type.

5. T. Teichmonn, Phys. Rev. 77, 506 (1950).
6. L. Fonda and R.G. Newton, Annals of Phys. 10, 490 (1960).
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It is also possible to increase the interaction so that the lowest of the
three zeros moves into the negative energy region yielding a bound state of the
system.

An index for classifying the interaction according to strength is provided

by the ratio

- | 2
p = 2 _JdEi(QPIVL//E)( /6,- 60 k V rmax (4)0/51‘ 60

p< 1 corresponds to weak, p> 1 to strong interaction. Thus for the cases a, b, c,
d illustrated above, p is respectively equal to 0.4, 1.0, 1.7, 2.9,

As in the case of the interaction between two discrete levels, the levels
srepel" each other, this "repulsion" increasing with the strength of the interaction
os a glance ot Figs. 3a, b,c,d shows. In going from ¢ to d the effective strength
has been increased by moving the level € down from 6.6 to S5MeV.

These figures show also a natrowing of the lower resonance as the inter-
action increases. This is simply due to the level repulsion pushing the lower reso-
nance closer to become o bound state and therefore the phase shift n tending to
become 7at € = 0, just as in potential scattering. This effect has been observed
by Lemmer and Shakin in their work on O'°,

It is interesting to note that in all cases the scattering amplitude has two
poles, but that whereas for weak interaction one is the pole of the potential
T, = e’®sin 5 and the other the pole of the resonant term (from the higher root of
R(E)), for strong interactions both poles come from the resonant term. In the
Jotter case the root of R(E) at, or near, € does not yield a pole of the scottering
matrix but, as Figs. 2c,d show, makes the cancellation of the original pole in the

potential term.,

7. R.H. Lemmer and C.H. Shakin, Annals of Physics 27, 13 (1964) .
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Figure 1. @) The width function I'(E) and b) the level displacement function A(E)
for € = 2.6MeV, o = 1.0MeV, B = 5.5MeV. Inb) itis also shown
E-¢€ - AE) for € = 6.6 MeV .

335



2n r
€e22.6 MeV
wez 1.0 MeV
mr (0 085
€,26.6 MeV
e
0 10
(b) {87°+5.165
€,26.6 MeV
ann -
\
mt Bt SNy AT X
(e) .- 6.6 Mev
et ’
0 5 10
n r
Vi 2153
€,25.0 Mev

Figure 2a,b,c,d. The "potential" phase shift §, the phase correction §* and the

total phase shift 5 for various values of 3.
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Figure 3a,b,c,d. Sin?y for the same parameters as in Fig. 2.
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Figure 4. The compound state below the potential resonance, €< €y
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