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fiara r .••ludiar lo." grupos de ,••imdría de una red cristalográ/ica ('TI prl'!>f"Jo

cia dC' 1111rampo magll(:ticu dc!Jo] considerarse las represenlaciollcs pro)'('ctit'as

dC' dic¡'ü'j gru.po ••, d£'!Jido al C(lm!JifJ dI' /ase qul' su/rl'll las /,mcirmes de mula )'

qul' ¡"ol'i£'';£' tic la,,, Irau,••/ormacirml's de 'lorma que acumpa,ian a las siml'trías geo.

HIl:trira ..•• Esta." rl'('TI'.'i£'lltaciolll's f'ru)C'ctit'as son reprl'selltaciolll's (A'diuarias dI'

/11Igrupo 111£'1'," i.••omrír/ico a los grupo, •• ge"f'raiizados de f)irac. /.a,,, rl'prl'sC'f/ta.

cirml's irred"ci!Jll'.'i )' la." /wu:iollC's adaptadas a la siml'tría dC' dichos grupos SI'

pUl'dl'lI o!Jtl'lIcr mrdiatlt£' t¡:ulicas quc rl'.'illltau dei métrxJo dI' rl'/'Tl'sl'ntacirJtlrs in.

dUíida'i para lo," grupo .••qur sr plll'de" exhibir como productos srmi-dir('ct() .•••

Presenled al Ihe Cangress af Ihe Saciedad Mellicana de Física, Mérida Oclaber 25.29 1965.
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Sll,\I,\IA,Rl'

1'1 -,.tlld)irJg thf' spnm('tr) grrmp,<; 01 a CT)stallaltiu' in th(' pr('s('1I(:(' 01 a

magllf'tie liek/. Jhe projeetil'(' re/IT('s(,lItatirms o/ t"e,<;e groups must h(' Cfm,<¡ido('d.

heca'H(, (j/ the phose ehang(' ;'1 tl,(' tNlr'(' /tmctirm.<; II'bicb is du(' to Jh(' gat~g('

tra7l,<;/ormations Il'hich oeeompan) tl,(' g('om('trie .<;)'mmetries. Tb('s(' proj('eti,'('

rf'/IT(',<;('r¡tathms are ordinar)' r('pre.<;elltatirms o/ o grrwp I¡,hieh is isomorp"ie to th('

gerJoalized J)irac groups. "l"he irr('ducih/e T('/'T('senJaJio{J,<; o/ tM s}mmetr)~ldapted

/unc/ivtl,<; o/ Ibese groups can he obJoinf'd hy m('ons o/ Jeehniqll(,s aris iUI{ ITom th('

mf'Jhod 01 induct>d Teprt>snlJotirms 1(" Ihos(' groups Il"í,ich car¡ b(' ('xl,thit('r/ as ,<;('mi.

dirrcl producls.

REPRESENTATIONS OF THE MAGNETIC SYMMETRY GROUPS

If we transfcrm the vector potential of a magnetic field in such a way that

..\ ' A ¡V/I', l. z) (1)

the wove functions of the stationary states of a particle in such a mognetic field

are nol the SOrne as for the original Hamiltonian, but differ with respect to a phase

factor 1 ; that i s

0-~0rjF/(.\,,"¡¡:); f"= .•. r/¡'c (2)

Thus, while such a transformation alters the Hamiltonian fI = (p- ('/cI\)2 ¡

\'(x, )', z) and thus is not a symmetry of the problem, it nevertheless does not af-

fect any observable quantities which depend upon the absolute value of the wave

function. A symmetry operation for such a Hamiltonian thus consists of fhe gauge

Ironsformation (1) together with the corresponding phose chonge (2).

Also we know2 that coordinate transformotions such os fronslotions. ro-

fotions or reflections, or combinotions of fhese. induce chonges in the vector oo.
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tentiols that in sorne cases can be gauge transformations of the form (1), so that

these transformations are not strictly symmerry operations even in the presence oí
a symmetric potential, although it is possible to compensate their effect with en

appropriate gauge transformation.

Such trensforrtlations change the wave function in such a way that

i~f(-"li:¡:) '. (J ! I )(' •... ',,)' v...,\' (3)

where,' is the transformed position vector, 6A = 'V¡(x, y, z) is the gauge transfa'"-

motion induced by the transf~mation of coardinates, and c{)., is the matrix that

represents the mix ing of stetes caused by the transformation.

The most general symmetry in the case of a uniform magnetic field consists

of a genera 1 trans lation together w ith an arbitrory rototion about the íie Id direction

and a possible reflection perpendicular to the field axis.

To prove thls jet us remember that Harper3 proved that any trans lation ¡s a

symmetry and that the corres pond ing gouge transformation 15

"'A, = \7[,1(1). ,]

and let us consider that the magnetic field is given

(4)

in an orthogona I coordinate system. Then we can take the vector potentia las

that is

r%]l)'x
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Now if u is the matrix that represents a transformation of coordinates fcrmed

by a rotat ion together w ith a ref lect ion, the vector potent jo 1 that a ppears after s uch

a transformation is

A' u.1 A.(ur) u.¡ M N r (7)

where u.¡ has to appear due to the ad¡ustment of the local system of coordinates.

Then,

DA A' - A [/I-'.\III-MJ, (8)

Now, the integrability conditíons for 6.4.. that is the conditions which must

be satisfied so that we can write (8) in the form of (1), are

(9)

or ín other words thot the matrix coefficíent defíning.6.A is symmetríc. o,serving

that for rotations and reflectíons,

11

we can write (9) in tf->eform

(9')

Now breaking M into íts symmetric and antisymmetric fXJrts, ,\1== M
S

+ M
a
,

(9') reduces to

a
M R

a
R M
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So we see thot the integrobiilty condition ¡s thot the ontisymmetric port of

the vector potentiol motrix commutes with the transformotion matrix, which means

thot they hove o common set of eigenvectors. The real eigenvector of .\If~,

[

O <1 - y]
-<1 O f3

y-f3 O

[f]
which is the direction of the mognetic field. Thus the integrability condition is

that the axis of the field should be parollel to the axis of the operation.

NO'W, introducing the integrability condition (10) in (8), we see that

and hence that

il

eP 1 Kr • r2"
where

Rol \j,s R _ ,\j .,K

, 1 (.11 + .11'),11 2"

O <1 Y, 1 O f3M = 2" <1

"Y 13 O
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and as a consequence we cen write:

1) For a trensletion the wove function transforms as

<p)(,+t)= (12)

2) For a rotation (reflection) the wove function transforms as

(13)

Now, under the some conditions, let uS consider o rotation or reflection

fallowed by a tranS lation. By the some method we find thot

I
6,1 = [RO ,IIR - M] d Rol MI

In this case the integrobility condifion is obviously the some, nomely thot

the axis of the ratation ()t' reflection is parallel to the axis of the field withaut ony

restrictian an the trons lations. Hence

'V [ ( ~ ¡;, . , t Rol ,III) • , ]

ond in this cose the wove function tronsforms os

,1, (O> +1) _ iF(!¡1\.r' + ~.I ,\tl)' r ~ (' ,1, ()
'1). n.' _ (' k ').).t '1-).' ,

(14)

Now let us consider the group af tronslations {t}. We see that the

matrices
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form a representation of this group; furthermore beca use

we can wrjte

observing that

V(t) V(t)
, 2

V(t+t)
, 2

V(t) V(t)
1 2

i£M(t + t ) • r t + t
n 1 2 (" 2
~. ').).'

• i£Mt • t
(' 21f)(t+t)

, 2

(17)

(18)

t + t i£Mt. t t t
C,12 e 12(;2(;1

so that this representation is proiective. Moreover, using (lB) we can see that

(19)

so thot the representation is not commutative. The commutation rule (19) 0150

tells us that, os we shall see in detail loter, we are deoling with on induced

representotion in the sense of reference 4.

Now let us turn our attention to the group of tronsformations whose matrices

obey the integrobility condition (lO). This group is formed by rotations about the

ax is of the f ie Id and ref lect ions perpend icu lar to the f ie Id ox is.

We see thot the matrices

i£ ~ Kr • r I R I
V(R)= e en'

form o representation of this group, and furthermore becouse
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1£1[1\ 1-1' ,'/o? r+}\ ,O,] R R
{)(U)I(U) f' 12 2 2 iC.1,IIC.2,1

, ¡ , o ,¡ "

•• 1
1

.u, u, I
()/'

we COn write

observing that

(21 )

u Ue I 2
u ue I c: 2

We could then rewrite (21) as

where J\ = R' I 1\ R •
I 2 t 2

Thus it is seen thal this representatían is olso projective. We moreover

see thal

exp [;£2.-(R K r' U r - R K r' R r + K r' r - K r' r)] IJ(R,)IJ(R,)
2 1""'2 I 2 2 2 I 2

(23)

so fhal Ihis representation is nol commutative, even though the ratationS are about

Ihe some oxis, Ot possible refJections Ore compJtible with them. Q, the other hond,

in fhe sorne manner os for Ihe translarían group, os outlined in reference 4, Ihis

rule permits one fa deduce thol rhe representations ore induced.

Le' IJS nO'W turn our ottention toward the structure of the generalliY'flmetry

group. If;ore apply o rotafion or reflection to o vector r, followed by a translation,
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tlle resulting vector is

r' = R r + ,, ,

If we opply to this vector r' another rototion or reflection ond yet onother

trons lotion we obta in

which is the Some as o rotation U2 U1 followed by the tronslotion R
2

'1 + '2 = /
1
,

In view of this, we notice thot the group is o semidirect product of the

group of trons lotions ond the group of rototions.reflections, considering the Iatter

group os an outmorphism group for the first.

Returning to (15), we see thot

() (R,I • R I ), "

exp (i£ [ 2- K (R , + I ) + RO' MI ] (R di) - 2- (K d Rol "11) . ,]
221122112222

x() (R 1) () (R I )
2 2 1 1

which shows thot the representotion of the entire group ¡s olso projective.

Since the semidirect product group os o whole is non.commutative one

COnnot immediotely deduce a commutation rule for the elements of the type which

defines o "Dirac group" (ref. 4), but beoring in mind that we hove a projective

re presentot ion,

lJ(a) lJ(b) \(a, b) IJ (ab)

we can indeed find a rule of the form



lJ(a) lJ(h) Í\(a, h)

Í\(h,h'lab)

_I

lJ(b) lJ(h ab).

which is 5tHl sufficientJy of ,he form of en exchonge rule fhat it is possible to

determine the representotion os on induced representation. In out present case

this multiplier lutnS oul fa be a la , wifh
I 2

a = exp(i£[~K (1{ r ti) j R~I,\IJ)' (R r+i)- !..(K r+R~l.\li) .,J)
2 221122112111

(25)

In summory, we hove loid the groundwork fa show fhat when the change of

phose due fa gauge transfermation is token info account, one obtoins o proiective

representation of en oppropriate IWo"¿imensional Icttiee group as the symmetry

grcup of a porticle moving in o perioclic potentiol in the presence of o uniform mogo

netie field.

Given such a projective representation, one can proceed fa determine the

possible irreducible represenlations towhich it might correspond by dedueing

appropriate exchange relations and applying the theory of Dirac groups.
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