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RESUMEN

Para estudiar los grupos de simetria de una red cristalogrdfica en presen-
cia de un campo magnético deben considerarse las representaciones proyectivas
de dichos grupos, debido al cambio de fase que sufren las funciones de onda vy
que proviene de las transformaciones de norma que acompanan a las simetrias geo-
métricas, Istas representaciones proyectivas son representaciones ordinarias de
un grupo gue es isomarfico a los grupos generalizados de Dirac. l.as representa-
ciones frreducibles y las funciones adaptadas a la simetria de dichos grupos se
pueden obtener mediante técnicas que resultan del método de representaciones in-

ducidas para los grupos que se pueden exhibir como productos semi-directos.
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SUMMARY

In studying the symmetry groups of a crystal laitice in the presence of a
magnetic field, the projective representations of these groups must be considered,
because of the phase change in the wave functions which is due to the gauge
trans formations which accompany the geometric symmetries, These projective
representations are ordinary representations of a group which is isomorphic to the
generalized Dirac groups. The irreducible representatioas of the symme try-adapted
functions of these groups can be obtained by means of techniques arising from the
method of induced re presentations for those groups which can be exhibited as semi-

direct products,

REPRESENTATIONS OF THE MAGNETIC SYMMETRY GROUPS

If we transform the vector potential of a magnetic field in such a way that
A = A VR, By 2) (1)

the wave functions of the stationary states of a particle in such a magnetic field
are not the same as for the original Hamiltonian, but differ with respect to a phase

factor'; that is

Lg—*dngf(*'av,Z); B =l e (2)

Thus, while such a transformation alters the Hamiitonian H = (p=e/cA ol
V(x, v, z) and thus is not a symmetry of the problem, it nevertheless does not af-
fect any observable quantities which depend upon the absalute value of the wave
function. A symmetry operation for such a Hamiltonian thus consists of the gauge
transformation (1) together with the corresponding phase change (2).

Also we know? that coordinate transformations such as translations, ro-

tations or reflections, or combinations of these, induce changes in the vector oo-

106



tentials that in some cases can be gauge transformations of the form (1), so that
these transformations are not strictly symmetry operations even in the presence of
a symmetric potential, although it is possible to compensate their effect with an
appropriate gauge transformation.

Such transformations change the wave function in such a way that

b () = e*v2) s el () 3)
where r* is the transformed position vector, AA = Vf(x, y, z) is the gauge transfor-
mation induced by the transformation of coordinates, and C.;{?i is the matrix that
represents the mixing of states caused by the transformation.

The most general symmetry in the case of a uniform magnetic field consists
of a general trans lation together with an arbitrary rotation about the field direction
and a possible reflection perpendicular to the field axis.

To prove this let us remember that Harper® proved that any trans lation is a

symmetry and that the corresponding gauge transformation is

:fl,)'
A(r) = ,i(j‘z (5)
rx
that is
0 a0
A(r) = Mr, M= 00 S (5)
y 00
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Now if R is the matrix that represents a transformation of coordinates formed
by a rotation together with a reflection, the vector potential that appears after such

a transformation is
A' = R"VA(Rr) = R"'MRr @)

where R™! has to appear due to the adjustment of the local system of coordinates.

Then,
M=A=-4A= [RT'MR=-M]r (8)

Now, the integrability conditions for A4, that is the conditions which must

be satisfied so that we can write (8) in the form of (1), are
- T -1
[R™"MR -M] =R MR=-M 9

or in other words that the matrix coefficient defining /A4 is symmetric. Observing

that for rotations and reflections,

we can write (9) in the form

R™ (M ] mwilpt = M) = 0 (9"

a
Now breaking M into its symmetric and antisymmetric parts, M = M+ M,

(9') reduces to

R-'Mr=-M" =0,

MR = R M (10)
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Sowe see that the integrability condition is that the antisymmetric part of
the vector potential matrix commutes with the transformation matrix, which means

that they have a common set of eigenvectors. The real eigenvector of M“,

0 a=-vy
el lag 0 A
2 y=g 0
is
B
y
a

which is the direction of the magnetic field. Thus the integrability condition is
that the axis of the field should be parallel to the axis of the operation.
Now, introducing the integrability condition (10) in (8), we see that

VA =R W R (1)
and hence that
A = V¢
if
¢ = ]_ Kr*r
2
where

s 1 t
M =_ (M+tM
5 ( )
0 a vy
w1 a 0 8
2 |y 50
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and as a consequence we can write:

1) For a translation the wave function transforms as
-

; ¥ e il
iy (rtn) = oM 2 Gy (12)
2) For a rotation (reflection) the wave function transforms as

b (jr) = 2EET0 g 0B (R (13)
—’\.l

Now, under the same conditions, let us consider a rotation or reflection

followed by a trans lation. By the same method we find that
a1 |
A = (R MR=-M]r+R™ Mt

In this case the integrability condition is obviously the same, namely that
the axis of the rotation or reflection is parallel to the axis of the field without any

restriction on the translations. Hence

A = V{Lkrer+R™ Mt} +r] (14)
2
and in this case the wave function transforms as

y w1
W I ie(% Kr* +R M) *r i
), (Rr H=e 2z C}}.I ‘r}I (r)
Now let us consider the group of translations {t} . We see that the

matrices
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form a representation of this group; furthermore because

0y _ GEE[ME c(rer )+ M cr] 2N B
D(tl) D(tz) =~ e 1 2 2 Cise € g

A
(a7
iE‘,M(ll+ t2) Trott
+ =
Dt MET G,
we can write
- iBM!z . 11 !
D(II)D(I:Z) = @ D¢ t¢e) (18)
observing that
Lw iEMt "ttt
C.l 2 — e 1 2 C2 Cl

so that this representation is projective. Moreover, using (18) we can see that

iE[Mt "t =Mt *¢
D(fl}D(IQ):P [ 2 T 2]

D) D 1)) (19)
so that the representation is not commutative. The commutation rule (19) also
tells us that, as we shall see in detail later, we are dealing with an induced
representation in the sense of reference 4.

Now let us turn our attention to the group of transformations whose matrices
obey the integrability condition (10). This group is formed by rotations about the
axis of the field and reflections perpendicular to the field axis.

We see that the matrices

il

D{R)=e |Cn'-

form a representation of this group, and furthermore because
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we can write
observing that

We could then rewrite (21) as

D(R R ):eiF:[.RZKN-R{-K]’.r]D(R)D(R) (22)
1.2 1

2
= -1 4

where Ll - R2 .'\l RZ .
Thus it is seen that this representation is also projective. We moreover

see that

D(Rl)n(k) =

7
exp [iel & Ko Rr=RKreRrtKror=Krn]DR)DR)
(23)

so that this representation is not commutative, even though the rotations are about
the same axis, or possible reflections are compatible with them. On the other hand,
in the same manner as for the translation group, as outlined in reference 4, this
rule permits one to deduce that the representations are induced.

Let us now turn our attention toward the structure of the general symmetry

group. |f we apply a rotation or reflection to a vector r, followed by a translation,
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the resulting vector is

= RrtE .
1 1

If we apply to this vector ' another rotation or reflection and yet another

translation we obtain

Wiz G = + +
T _Rzr tz’Rler thl t2

]

which is the same as a rotation R, R, followed by the translation Rt t,= 14

In view of this, we notice that the group is a semidirect product of the

-

group of translations and the group of rotations-reflections, considering the latter
group as an autmorphism group for the first.

Returning to (15), we see that
D(R2t2 P thl) =

7 1 -1 - =1 %=
exp(;e[,xz(er+tl)+R2 Mrz](R1r+rl) .(}E(Z:r-f.l{'2 Mtz) r]

1

2
xD (R2 :2) D(Rl zl)

which shows that the representation of the entire group is also projective.

Since the semidirect product group as a whole is non-commutative one
cannot immediately deduce a commutation rule for the elements of the type which
defines o "Dirac group" (ref. 4), but bearing in mind that we have a projective
representation,

D(a)D(b) = Ala,b) D (ab)

we can indeed find a rule of the form



D@)D(k) = _Mab)  paypeab),
A (b, b ab)

which is still sufficiently of the form of an exchange rule that it is possible to
determine the representation as an induced representation. |n our present case

this multiplier turns out to be a /az , with

_ pas ' i $ pil % £34 o L= o7
a _exp(:kt_le(Rzr :2) R, "’“1) (R,7 ’2) (KlrrR1 M) »r])

1
2

N —" -~ -1 -~ I .l -~ 4
= | B ] . + w4 W
a - exp(ie _EKZ (er .r:) 1 ‘Ire2 urz] (er 11) 3 (K1r+ R, .ml) rl)

(25)

In summary, we have laid the groundwork to show that when the change of
phase due to gauge transformation is taken into account, one obtains a projective
representation of an appropriate two-dimensional lattice group as the symmetry
group of a particle moving in a periodic potential in the presence of a uniform mag-
netic field.

Given such a projective representation, one can proceed to determine the
possible irreducible representations to which it might correspond by deducing

appropriote exchange relations and applying the theory of Dirac groups.
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