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ABSTRACT

A design method for Markou generators is described using as design parame-
ters the elements of the Markov matrix defining the process which characterizes
the output signal. Constructing the generator as a probabilistic automaton, the
formal analogy between the logical equation system of the automaton and the alge-
braic equation system of the corresponding Markov process is used to expressalge-
braic conditions for probabilities of the signals in terms of logical conditions for
the signals themselves, It is shown, that by establishing an adequate corre-
spondence between the elements of the Markov matrix and the elements of the exci-
tation matrix of the automaton, the equation system and the circuit diagram of a

generator corres ponding to an arbitrary chosen Markov matrix can be deduced.
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RESUMEN

Se describe un método de disesio de generadores Markoffianos usando como
pardmetraos de diserio los elementos de la matriz de Markov que caracteriza la se-
nal de salida del generador. E I generador se construye en forma de un automata
probabilistico, aprovechando la analogia formal existente entre el sistema de equa-
ciones logicas del automata y el sistema de equaciones algebraicas del proceso
de Markov corres pondiente, para expresar las condiciones probabilisticas de las
senales, en forma de condiciones ligicas vdlidas para las mismas.

Se demuestra que, estipulando asignaciones adecuadas entre los elementos
de la matriz de Markov y los elementos de la matriz de excitacion de ' autémata, el
sistema de ecuaciones y el diagrama del circuito del generador pueden deducirse

a partir de uni matriz de Markov arbitraria.

In the last years the usefulness of signal generators for stochastic signals
with well defined statistical characteristics has been recognised in various re-
search centers in different countries. Apart from the already well known method
cf computer generation of stochastic signals, the construction of special labora-
tory devices has been undertaken, first for well defined Poissonian signals with
adjustabie probabilities, afterwards for different classes of continuous and dis-

crefe type Markoffian signalst*? 34

where the methods of design differ, in general,
as widely as the purposes, for which these instruments have been constructed.
The design method developed in the Laboratorio de Cibernética de la Comi-
sion Nacional de Energia Nuclear is based on the general mathematical theory of
finite Markoffian processes®*®, and the theory of finite automata of A, Medina’ ,
as well as on the generalisation of this latter for probabilistic automata®. Having
been applied, some years ago, to a special case of a 3 symboll generator?, its
application to the general case of Markov signals of » discrete symbols character-
ized by an arbitrary Markov matrix, will be discussed in this paper. The de-
scription of a device, realized in our laboratory, will illustrate a possible form of

use of this design method.
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The generator is considered as an automaton characterized by a system of
logical equations which determine its transitions between its internal states.
Making use of the formal analogy which exists between this equation system and
the system of algebraic equations which determines the transitions of d stationary
Markov process of the same finite number n of discrete states, it is possible to
deduce the design parameters of the automaton from the characteristic parameters
of the Markov process in such a way, that the output signal of the automaton will
be a statistical replica of the Markov process.

The correspondence is complete, that is: Starting from a given Markov
matrix, one can obtain a system of logical equations of an autematon of the same
number of states, whose output signal follows the process determined by the
Markov matrix, And, starting from a system of logical equations as characteri-
zing a given automaton, one can obtain the Mcrkov matrix corres ponding to its
output signal. The circuit diagram of the generator may, finally, be deduced from
its system of logical equations by well known methods of logical design.

It will be shown that the correspondence between the design parameters of
the automaton and the elements of the Markov matrix can be established in a quite
general manner, introducing only the general conditions holding for every finite
automaton, as well cs the corresponding general conditions holding for every

stationary Markov process with the same number of discrete states.
THE STRUCTURE OF THE AUTOMATON
The system of canonical equations of the automaton has the form

y(r+1) = Fy(t), x(£) ] (M

1}

z(f)

G [y(n] (2)

where y are the state variables at time zand £ + 1 respectively, x the stimuli and = the
output variables. Equation system (1) represents the state variables at every

quantized time interval (or *“moment”) ¢, t+ 1, 1+ 2, ....as functions of the state
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variables of the immediately preceding moment and the stimuli occurring at it,
whereas in (2) the output variables are expressed as functions of the state varia-

bles occurring at the same moment.

Equation system (1) can always be written as
El = X 0B (1a)

where £' and F are logical state vectors at time ¢+ 1 and ¢ res p., whose com-
ponents are the internal states of the automaton at the corresponding times, while
X, the so-called excitation matrix, is a n x n logical matrix formed by the stimuli
governing the transitions between the n states. The operation “o” of symbolic
matrix multiplication is defined by the following rule: Proceed as with ordinary
matrix multiplication, but substitute every product by the corresponding logical
conjunction, and every sum by the corresponding logical alternation.®

As an illustration of (1a) suppese an automaton of # binary states
(/IllA2 -++A,), whose transitions A, — A; are produced by a set of binary stimuli

x;(,7=1,2...n). (1a) can then be written formally as

{ A 5 ¢ 3 /
1 *1n "1 **in A1
,42 21 Fapce e %y, Az
p = | s : 0 | (3)
+ ‘ :
Arz t+1 ‘xnl x"2 e xm: ) An f

where the state vector at the ieft side corresponds to E', that of the right side to

E of equation (1a). if we designate the components of £! with A:, A; o Aln , the

components of E with A,A ... A ,equations (3) are written out by application

of the rule of symbolic matrix multiplication “o” in the form:
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meaning that the automaton will be found at time £+ 1 in state A; whenever it was

at time ¢, one moment before: |n state A, and being stimulated by X; 4 OF in state

A, and stimulated by Xi,1 O ..oou.., instate A, being stimulated by Xin (Note 1)
This statement is illustrated by the flow-diagram of Fig: 1.

The general invariance conditions’, holding at every time interval for every

finite automaton, take the form:

Al v A2 Vo ome ¥ A”=‘1‘

(5)
A!-'Akzﬂfor I‘+k(i,k=],2--.ﬂ)

which means that in every quantized time interval the automaton has to be found in
some state, and can not be in two different states at the same time.

If we apply conditions (5) to the states at ¢ + 1, and substitute from (4) we
get analogous conditions for the columns of the excitation matrix X, that is, for the
transitions which are possible, starting from the same state A; at moment ¢,
(i=1,2...n):

X W M. N oawe M i
1 21 ns

(6)
X ® Xpi= Q for j4 k(fk=1,2...1)
expressing the above conditions in a dynamic form: Starting from A; , the automaton
has to go in the next moment to some of its states and cannot go to two different
states at the same time.
As to the output equations (2), we introduce the following convention:
Suppose an output signal composed of # simbols a.,4a,...4,. Whenever the

automaton is in state A, , the symbol a; appears in its output (= 1,2...%). In

Note 1: Logical conjunction is designated here by *.*, logical alternation (inclusive “or”)
by ®"uv", tautology by “+”, antitautology by “B", whereas the truth values of binary
variables are written simply: 0,1.
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this manner the output sequence foilows the state sequence and need not to be

treated separately.

GENERALISATION FOR PROBABILISTIC AUTOMATA

Equations (la) and (3), valid for deterministic automata can now be written
formally in an identical way as the system of algebraic equations, which determine
the transitions of a stationary Markov process of a finite number n of discrete
states, or the symbol sequences of a stationary Markov signal with a finite number
n of discrete symbols @ , a ... a,. The difference between the probabilistic and
the logic equation system=apart from the different algebra involved in each case =
lies in the fact, that the elements of the X matrix are in the probabilistic case the
conditional probabilities of the transitions A; = A;, caused by the stimuli x;; .

The Markov signal of » symbois a , a, ...a, is governed by equation

2
system

B = XE (1b)

where the operation to be performed beiween X and E is, this time, ordinary matrix
multiplication, and the elements of the X matrix are the conditional probabilities
p(a’./’ai) of occurrence of symbol a;, when symbol a; has occurred at the moment
immediately before. The components of the state vectors are here the absolute
probabilities p(a,) of the ind ividual symbols, independent of time for the stationary
case,

|f we assign now fo every stimuius %@ certain probability of assuming the
valve 1, p(le. ~ 1), as well as a certain probability of assuming the value 0,
p(x;; = 0) =1=p(x;= 1), we can establisha 1:1 corres pondence between the
stimuli Xiie which induce in the output of the automaton the sequence @, — 4

]’
and the elements of the Markov matrix p(a]/’al.), setting

plxy; = 1)

ji P(aj/’“,')

=

0
i

=
1

o P("j/“,‘}
162



Writing, for brevity

P("j,' = [f= P(-"’j,')
(8)
plxii = 0) = plefy)
where x;'. is the negation of Xiia (7) becomes
P("j,‘) = P("j/“,‘)
(7a)

p(xﬁ) =1 -p(a?./a‘.)

Assignment (7a) introduces for the stimuli x;; O series of new conditions
to be satisfied, in addition to conditions (6) deduced from general automata theory.
It can ba shown that this restriction leads to no contradiction. Moreover, the %
can be selected in such a way, that conditions deduced from the theory of Markov
processes are automatically fulfilled, if the i satisfy conditions (6), deduced

from general automata theory.

CONDITIONS FOR THE INPUT SIGNALS

By definition of the Markov process we have

p(a/a e, ...a) = pla;/a) .

for any sequence of symbols @ , a ...a; of any length i > 1. That is, the con-
ditional probability of the occurrence of symbol a; depends only of the symbol 4;,
which had occurred immediately before, and not of the past history of the latter.
The so-defined Markov process is called also “first order Markov process”.
Moreover, the elements of the Markov matrix have to fulfill the so-called

marginal conditions:
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Zl-',p(a]-/’a‘-} =1 =1,2 cunett] (10)
1
To satisfy condition (9) the n? stimuli xj!.(j, i-1,2...n) have been organ-
ized so that every stimulus acts only on one single state of the automaton and has
no influence on transitions starting from any other state. The n" stimuli of the X
matrix are partitioned in n sets of » stimuli each, every set (x“, X .x,.) being
assigned to one state A (i = 1,2...n), and are effective only when the automaton
is in state A;. Figs.2and 3 illustrate this distribution of the % for n = 3 and
n = 4. This way, the fransition A; — A, depends of A;, but not on the manner,
how the automaton entered in state A, .
As to the marginal conditions (10) they are fulfilled automatically in this
case, due to conditions (6) holding for the stimuli assigned to the same state A, .
Since for every state A; one and only one of the stimuli xji(j =1,2...n)is acting

at any time, we have

Plx, v %, Vv x,) = :.?,p(xfi) an

so that

Lp(x;) =2 pla/a) =1 (10a)
i i

Besides, to be able to equalize the probabilities P(";,‘) to the corresponding
elements of any given Markov Matrix, the p(x].,.) have to be constant and adjustable
in the interval 0 g p(x}.‘») £ 1. The device, constructed to this purpose, will be
described in a later chapter of this paper. For the moment, let us assume, that
this has been achieved. e

Having thus transformed every condition to be satisfied by probabilities of
signals into the equivalent logical condition to be fulfilled by the signals them-
selves, the design problem is reduced to that of a special automaton and can be
solved by standard methods of iogical design.

The so introduced probabilistic X matrix can be considered, in a way, as a

generalization of the logical excitation matrix in the sense, that the latter has

164



elements capable of assuming only the values 0 and 1, whereas the former can,

within the marginal restrictions, assume any value between O and 1.

CONSTRUCTION OF THE X MATRIX

Every set of n stimuli x:; (i = 1,2...n), assigned to the same state 4,
will be formed by the terms of the Alternative Canonic Form (ACF), the so-called
“minterms” of a certain number r of binary, inde pendent, noissonian signals
m ,m ...m . The minterms 1, are logical conjunctions of the m; or their ne-

1555
gation

tLo=m o m ... (12)

where ";k stands for my or m .
The 2" minterms of the my(k=1,2...r) are mutually exclusive and ex-

haustive, so that

Lrh,=B F g4 p

and L N OB W e P = (13)

It can be shown that for 2" 3 n, the n stimuli x;; can always be represented by combi-
nations of the minterms so that conditions (6) are satisfied. To this purpose the
t, + o logical alternations of some of them, have to be distributed over the set of
the X in such a way, that these latfer are exclusive two by two and centain, in
conjoint, all the minterms of the m,. This problem can, in general, be solved by
various possible distributions of the I all of them fulfilling conditions (&) for the
Xii but not all of them being adequate to reproduce with the probabilities of the
%;; the elements of an arbitrary given Markov matrix.

To this end, the number of independent signals my , cannot be smaller than

the number of independent parameters contained in each column of a Markov matrix
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of order n. With n elements in every column, satisfying 1 equation derived from
the marginal restrictions, the number of independent parameters is n=1, forevery
column.

r=mn=1 (14)

will thus be the smallest number of independent signals m,, necessary, to repro-
duce the stimuli of the ith column of an X matrix, which corresponds to an arbi-
trary chosen Markov matrix. For the automaton this means a minimum of »n (n=1)
input signals m, . (k= 1,2....n=1; i=1,2....n). |t can be seen, that it is
always easy to find one or more distributions of the minterms 1, over the column
elements X which satisfy the logical conditions (6). But not all these possible
distributions permit to reproduce the X with the probability values determined by
an arbitrary Markov matrix.

The signals m, . being poissonian signals with probability
plmy;=1) = p(my,), their 0and 1 valuves are uniformly distributed and the p(m, ;) can be
considered as constants, Because of their independence, no extra correlation is
introduced by them in the generator signal apart from that determined by the Markov
matrix. [heir values have to be deduced from a system of » algebraic equations
tor each set of n=1 signals m,, assigned to the elements xili = 152 cou'n) lof
column i of the X matrix. These equations are non linear in the general case and
will not always have a solution for real, rational and positive values of the pmy,).

Remembering that the m,,; are independent by assumption, it follows that
the p(r}.i) will have the form of products of factors p(;ki}, where p(mp;) = p(my;)
for m,, t ™o and p(m,;) $ 1= p(my,;) for my; 4+ my.+ The number of factors of
every product depends of the particular combination of minterms chosen for every
X

ji+ The system of n algebraic equations for the n=1 unknown p(m,;) will have

the form
p(x}.’.) = Ig p(;”-k,) (ji=12...n)
To solve it for acceptable values of the p(my;) the following combination
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rule has been adopted for the Xiio making use of the circumstance, that the x; of
every column of the X matrix are exclusive and exhaustive, so that at every moment

one and only one of them can assume the value 1:

1 1
L
3 = m.,*'m
2: 11 21
. L]
X, = m,"m. "m, 1
3 11 pi 3 ( 5)
L] [ | T L]
Koo = M " “m. i sies . Note
ni Ty H Mhe1, i ( 2)

For the probabilities this makes:

p(x,) = p(m)

2(x,,) =[1=p(m )] p(m,)

p(x,) = (1= p(m )= p(m )] p(m,) (16)
Plopr) = =2 1 =pm )] (1= p(m, ., I 2(m, )

the equation for p(x .) being satisfied due to the marginal condition X p(x].l.) =l
i
From (16) the p(m;.) can easily be calculated from the known values of

p(%:)e Progressing gradually from j = 1to j= n=1, only some simple algebraic
operations have to be performed, as every following equation contains only one un-

known variable more than the preceding one.

Note 2: The Veitch and Karnaugh diagram of Fig.74 illustrates the combination rule (15) and
show that the resulting x:; satisfy conditions (). Using ordinary logic circuitry,

the le. can be mecanized from (15).
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Making use of the marginal condition the p(my;) take the form:

p("k,‘)

(17)
P(xkl')+ p(xk+1' z‘)+---- ¥ p(xm.)

b (’”k,') =

It can easily be seen that each p(my;) so obtained, is a real rational and positive

number between Qand 1.

Simplified Models for Special Markov matrices.

In special cases the number of independent signals m,; €an be reduced.
Introducing, f.i., the extra condition, that the automaton can make only two al-
lowed transitions from every state, these can be reclized with a single signal and
its negation, x; and x! (i = 1,2 ... x), reducing the total number of independent

input signals from n(n=1) to n. Conditions (6) are reduced in this case to
x; v x=\ Ei i (6a)

which is always true.

This special case has been discussed in an earlier work?.

Considering the rapid growth of the number of elements with the number of
symbols #, the practical limitations of the method are quite serious, especially as
long as only traditional electronic circuit elements are used for construction. But
even the use of integrated circuits would not alliviate the difficulties of the high
number of input signals necessary in the general case, so that realizations for
simplified special Markov matrices are to be taken into account whenever ihe
number of symbol is higher than 3 or 4. These cases have been solved in our

laboratory.
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Input Signals with Constant and Adjustable Probabilities.

For the independent input signals m,, we used poissonian pulse trains, each
one derived from the output of a Geigercounter system mounted around a radicactive
sample adequately shielded, in order to obtain only a single kind of radiation.

Each one of these signals was fed into a device designed to achieve proba-
bility adjustment in steps of 1,/10 between O and 1.

The device consists mainly of a 10 stage ringcounter and a bistable multi-
vibrator. The ringcounter stages are switched “on” one by one, as the pulses of
the Geigercounters reach the input. The sequence of the “on” stages follows
thus a poissonian time series. The outputs of the 10 ringcounterstages are con-
nected to the multivibrator inputs in such a way, that the multivibrator triggers to
its “1” state, whenever the ringcounter has reached the first of its 10 stages,
while the multivibrator triggers to its “0” state with the one of the remaining 9
stages of the ringcounter, which has been selected by a rotary switch placed ir
the instrument panel, and moved by hand. In this manner the relative time interval,
during which the signal assumes the value 1, is adjusted on the instrument panel,
where it can be read off from the switch scale. The readings of all the switch
scales permit to evaluate the elements of the Markov matrix of the generated signal
or =for the simplified case - coincide with them. Block diagram and panel view
of the device are shown in Figs. 5 and 6.

This simple solution of a rather complicated problem has been proposed by

Ing. Fernando Camarena of our laboratory.

Design process forn = 3

As an example the design method will be illustrated for the case n = 3. The flow
diagram of the automaton is shown in Fig. 7. The automaton has 3 states

A A LA and an output signal of 3 symbols a,a,a,,cores ponding to the
states designed with the same letter.

X

To each state A. 3 stimuli are assigned: X1 %y

%, (= 1,2,3)
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The 3 stimuli assigned to the same state A; are built as combinations of
n-] i 2 (]4')
independent binary poissonian signals: moem (f=1,2,3), so that we need 6

input signals for the automaton.

Applying combination rule (15) we get:

X =

1z mlz

X '. . ]

28 = M My (157)
- ] F [ 1

Ry =Ty Wy (159

The probabilities of the stimuli P("ji)' equal to the corresponding elements
of a given Markov matrix are substituted in equations (17) to obtain the probabili-
ties p(my;) for the adjustments of the 6 input signals :

?x,)

plm ) = plx . o T T . AN
m . (xu) p( 2,) P("zi)"'f’(x_,,-)

(i= 10213}

(17"

The remaining steps correspond to ordinary logical design methods:

From (3) and (4) we get in our case:

= %X _" v % " L .
1 11 Al 12 AZ 13 AS

1]

w v x *A voxt A
21A1 3

2 2 A 23
o ‘A A A @'
y =¥yt 8y X Syt iy Y XpoHy
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(1)
where A, represents state i at the moment £, A; the same state at ¢ +1+ The3
states are represented now, in the usual way, by 2 binary state variables, called
9, and q, for the states at moment 7, Q and Q, for the states at t + 1. Combi-

nations of the state variables are assignated to the 3 automata states as follows:

A“) '

L]
Ay = y =40,
A . i . (18)
: =471 2 - Q"9
Lo (1) LAl
o st ' A, = 2, 2

while the combination ¢ * ¢, and Q: 2 O; resp. does not occur so that

B= q"q' B= Q;' Qz

1 2

Substituting (18) in equations (4') and resolving the resulting logical equations

for 9, and Q,, we get

- 'l - - - -
Q1= {x21 Y x31) 9 9,V (xzz v xn) 1,4, Vv (xzs 24 xsa) 1, 9

{ - '. - - - II
sz W v x21) 9% v (xl2 v xzz) "9 v (xls bt xzs) 9, 9

If the state variables are represented now (see Fig. 8) by j= £ memories, we get:
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Q2 Py, = (le v xn)'t

k =(4:]1':cl2 v ql"xm)'t (19)

where ¢ are clockpulses fixing the duration of the symbols. Substituting from (15)
we get the equations for the j= & memories in terms of the input variables My
the state variables 7 and the clockpulses ¢, from where the logical circuit diagram
(Fig. 9) may be drawn:

]

a3 % _ 5 ¥ el (R W
Q :hy=(my v m) k=g mmy v g m LA
» Y - = L .
Q% dy=m, 4 kz = (ql m, Vo tm.)"t
(19a)

For the correlation function practically the same result has been obtained as in
the simplified case analized in a former work?, |ts form depends exclusively of
the Eigenvalues of the Markov matrix which can be controlled with the adjustable
probabilities of the input 'signcls, corresponding to Fig. 10 if the Eigenvalues are
real, and to Fig. 11 if two of them are imaginary. In case of two complex Eigen-
values, the more or less oscillatory character of the function depends of the re-
lation between the real and imaginary part of the complex roots. Correlation is

appreciable up to sequences of 4 symbols.
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