GENERATORS OF MARKOFFIAN SIGNALS WITH A FINITE NUMBER OF DISCRETE SYMROLS (ANALYSIS OF A DESIGN METHOD)
 Gertrudis Kurz de Delara
 Comisión Nacional de Energía Nuclear Laboratorio de Cibernética
 (Recibido: 10 junio 1967)

ABSTRACT

A design method for Markov generators is described using as design parameters the elements of the Markov matrix defining the process which characterizes the output signal. Constructing the generator as a probabilistic automaton, the formal analogy between the logical equation system of the automaton and the algebraic equation system of the corresponding Markov process is used to express algebraic conditions for probabilities of the signals in terms of logical conditions for the signals themselves. It is shown, that by establishing an adequate corre spondence between the elements of the Markov matrix and the elements of the excitation matrix of the automaton, the equation system and the circuit diagram of a generator corresponding to an arbitrary chosen Markov matrix can be deduced.

RESUMEN

Se describe un método de diseño de generadores Markoffianos usando como parámetros de diseño los elementos de la matriz de Markov que caracteriza la senal de salida del generador. El generador se construye en forma de un autómata probabilistico, aprovechando la analogía formal existente entre el sistema de equaciones lógicas del autómata y el sistema de equaciones algebraicas del proceso de Markov corres pondiente, para expresar las condiciones probabilísticas de las señales, en forma de condiciones lógicas válidas para las mismas.

Se demuestra que, estipulando as ignaciones adecuadas entre los elementos de la matriz de Markov y los elementos de la matriz de excitación deĺautómata, el sistema de ecuaciones yeldiagrama del circuito del generador pueden deducirse a partir de un. matriz de Markov arbitraria.

In the last years the usefulness of signal generators for stochastic signals with well defined statistical characteristics has been recognised in various research centers in different countries. Apart from the already well known method cf computer generation of stochastic signals, the construction of special laboratory devices has been undertaken, first for well defined Poissonian signals with adjustabie probabilities, afterwards for different classes of continuous and discrete type Markoffian signals ${ }^{1,2.3,4}$ where the methods of design differ, in general, as widely as the purposes, for which these instruments have been constructed.

The design method developed in the Laboratorio de Cibernética de la Comisión Nacional de Energía Nuclear is based on the general mathematical the ory of finite Markoffian processes ${ }^{5,6}$, and the the ory of finite automata of A. Medina ${ }^{7}$, as well as on the generalisation of this latter for probabilistic automata ${ }^{8}$. Having been applied, some years ago, to a special case of a 3 symbol generator ${ }^{2}$, its application to the general case of Markov signals of n discrete symbols characterized by an arbitrary Markov matrix, will be discussed in this paper. The description of a device, realized in our laboratory, will illustrate a possible form of use of this design method.

The generator is considered as an automaton characterized by a system of logical equations which determine its transitions between its internal states. Making use of the formal analogy which exists between this equation system and the system of algebraic equations which determines the transitions of a stationary Markov process of the same finite number n of discrete states, it is possible to deduce the design parameters of the automaton from the characteristic parameters of the Markov process in such a way, that the output signal of the automaton will be a statistical replica of the Markov process.

The correspondence is complete, that is: Starting from a given Markov matrix, one can obtain a system of logical equations of an automaton of the same number of states, whose output signal follows the process determined by the Markov matrix. And, starting from a system of logical equations as characterizing a given automaton, one can obtain the Markov matrix corres ponding to its output signal. The circuit diagram of the generator may, finally, be deduced from its system of logical equations by well known methods of logical design.

It will be shown that the corres pondence between the design parameters of the automaton and the elements of the Markov matrix can be established in a quite general manner, introducing only the general conditions holding for every finite automaton, as well as the corresponding general conditions holding for every stationary Markov process with the same number of discrete states.

THE STRUCTURE OF THE AUTOMATON

The system of canonical equations of the automaton has the form

$$
\begin{align*}
& y(t+1)=F[y(t), x(t)] \tag{1}\\
& z(t)=G[y(t)] \tag{2}
\end{align*}
$$

where y are the state variables at time t and $t+1$ respectively, x the stimuliand z the output variables. Equation system (1) represents the state variables at every quantized time interval (or "moment") $t, t+1, t+2, \ldots$ as functions of the state
variables of the immediately preceding moment and the stimuli occurring at it, whereas in (2) the output variables are expressed as functions of the state variables occurring at the same moment.

Equation system (1) can always be written as

$$
\begin{equation*}
E^{1}=X \circ E \tag{la}
\end{equation*}
$$

where E^{1} and E are logical state vectors at time $t+1$ and t resp., whose components are the internal states of the automaton at the corresponding times, while X, the so-called excitation matrix, is a $n \times n$ logical matrix formed by the stimuli governing the transitions between the n states. The operation "o" of symbolic matrix multiplication is defined by the following rule: Proceed as with ordinary matrix multiplication, but substitute every product by the corresponding logical conjunction, and every sum by the corres ponding logical alternation. ${ }^{8}$

As an illustration of (la) suppose an automaton of n binary states $\left(A_{1} A_{2} \ldots A_{n}\right)$, whose transitions $A_{i} \rightarrow A_{j}$ are produced by a set of binary stimuli $x_{j i}(i, j=1,2 \ldots n)$. (la) can then be written formally as

$$
\left(\begin{array}{c}
A_{1} \tag{3}\\
A_{2} \\
\vdots \\
A_{n}
\end{array}\right) \quad t+1 \quad\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\vdots & & \vdots \\
\dot{x}_{n_{1}} & x_{n 2} \ldots & \ldots & x_{n n}
\end{array}\right) \quad\left(\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{n}
\end{array}\right) t
$$

where the state vector at the left side corresponds to E^{1}, that of the right side to E of equation (la). if we designate the components of E^{1} with $A_{1}^{1}, A_{2}^{1} \ldots A_{n}^{1}$, the components of E with $A_{1}, A_{2} \ldots A_{n}$, equations (3) are written out by application of the rule of symbolic matrix multiplication " 0 " in the form:

$$
\begin{gather*}
A_{j}^{1}=x_{j 1} \cdot A_{1} \quad \vee x_{j 2} \cdot A_{2} \quad \vee=\ldots \vee x_{j n} \cdot A_{n} \tag{4}\\
(j=1,2 \ldots n)
\end{gather*}
$$

meaning that the automaton will be found at time $t+1$ in state A_{j} whenever it was at time t, one moment before: In state A_{1} and being stimulated by $x_{j_{1}}$, or in state A_{2} and stimulated by $x_{j_{2}}$, or $\ldots \ldots$, in state A_{n}, being stimulated by $x_{j n}$ (Note 1)

This statement is illustrated by the flow-diagram of Fig. 1.
The general invariance conditions ${ }^{7}$, holding at every time interval for every finite automaton, take the form:

$$
\begin{align*}
& A_{1} \vee A_{2} \vee \ldots \vee A_{n}=\Downarrow \\
& A_{i} \cdot A_{k}=Q \text { for } i \neq k(i, k=1,2 \ldots n) \tag{5}
\end{align*}
$$

which means that in every quantized time interval the automaton has to be found in some state, and can not be in two different states at the same time.

If we apply conditions (5) to the states at $t+i$, and substitute from (4) we get analogous conditions for the columns of the excitation matrix X, that is, for the transitions which are possible, starting from the same state A_{i} at moment $t_{\text {, }}$, $(i=1,2 \ldots n)$:

$$
\begin{align*}
& x_{1 i} \vee x_{2 i} \vee \ldots \vee x_{n i}=\mathbb{X} \\
& x_{j i} \cdot x_{k i}=Q \text { for } j \neq k(j, k=1,2 \ldots n) \tag{6}
\end{align*}
$$

expressing the above conditions in a dynamic form: Starting from A_{i}, the automaton has to go in the next moment to some of its states and cannot go to two different states at the same time.

As to the output equations (2), we introduce the following convention: Suppose an output signal composed of n simbols $a_{1}, a_{2} \ldots a_{n}$. Whenever the automaton is in state A_{i}, the symbol a_{i} appears in its output $(i=1,2 \ldots n)$. In

[^0]this manner the output sequence foilows the state sequence and need not to be treated separately.

GENERALISATION FOR PROBABILISTIC AUTOMATA

Equations (1a) and (3), valid for deterministic automata can now be written formally in an identical way as the system of algebraic equations, which determine the transitions of a stationary Markov process of a finite number n of discrete states, or the symbol sequences of a stationary Markov signal with a finite number n of discrete symbols $a_{1}, a_{2} \ldots a_{n}$. The difference between the probabilistic and the logic equation system-apart from the different algebra involved in each case lies in the fact, that the elements of the X matrix are in the probabilistic case the conditional probabilities of the transitions $A_{i} \rightarrow A_{j}$, caused by the stimuli $x_{j i}$.

The Markov signal of n symbois $a_{1}, a_{2} \ldots a_{n}$ is governed by equation system

$$
\begin{equation*}
E^{1}=X E \tag{1b}
\end{equation*}
$$

where the operation to be performed beiween X and E is, this time, ordinary matrix multiplication, and the elements of the X matrix are the conditional probabilities $p\left(a_{j} / a_{i}\right)$ of occurrence of symbol a_{j}, when symbol a_{i} has occurred at the moment immediately before. The components of the state vectors are here the absolute probabilities $p\left(a_{i}\right)$ of the individual symbols, independent of time for the stationary case.

If we assign now to every stimuius $x_{j i}$ a certain probability of assuming the value $1, p\left(x_{j i}=1\right)$, as well as a certain probability of assuming the value 0 , $p\left(x_{j i}=0\right)=1-p\left(x_{j i}=1\right)$, we can establish a $1: 1$ correspondence between the stimuli $x_{j i}$, which induce in the output of the automaton the sequence $a_{i} \rightarrow a_{j}$, and the elements of the Markov matrix $p\left(a_{j} / a_{i}\right)$, setting

$$
\begin{align*}
& p\left(x_{j i}=1\right)=p\left(a_{j} / a_{i}\right) \tag{7}\\
& p\left(x_{j i}=0\right)=1-p\left(a_{j} / a_{i}\right)
\end{align*}
$$

Writing, for brevity

$$
\begin{align*}
& p\left(x_{j i}=1\right)=p\left(x_{j i}\right) \tag{8}\\
& p\left(x_{j i}=0\right)=p\left(x_{j i}^{\prime}\right)
\end{align*}
$$

where $x_{j i}^{\prime}$ is the negation of $x_{j i},(7)$ becomes

$$
\begin{align*}
& p\left(x_{j i}\right)=p\left(a_{j} / a_{i}\right) \tag{7a}\\
& p\left(x_{j i}^{\prime}\right)=1-p\left(a_{j} / a_{i}\right)
\end{align*}
$$

Assignment (7a) introduces for the stimuli $x_{j i}$ a series of new conditions to be satisfied, in addition to conditions (6) deduced from general automata theory. It can be shown that this restriction leads to no contradiction. More over, the $x_{j i}$ can be selected in such a way, that conditions deduced from the the ory of Markov processes are automatically fulfilled, if the $x_{j i}$ satisfy conditions (6), deduced from general automata the ory.

CONDITIONS FOR THE INPUT SIGNALS

By definition of the Markov process we have

$$
\begin{equation*}
p\left(a_{j} / a_{1} a_{2} \ldots a_{i}\right)=p\left(a_{j} / a_{i}\right) \tag{9}
\end{equation*}
$$

for any sequence of symbols $a_{1}, a_{2} \ldots a_{i}$ of any length $i>1$. That is, the conditional probability of the occurrence of symbol a_{j} depends only of the symbol a_{i}, which had occurred immediately before, and not of the past history of the latter. The so-defined Markov process is called also "first order Markov process". Moreover, the elements of the Markov matrix have to fulfill the so-called marginal conditions:

$$
\begin{equation*}
\sum_{j} p\left(a_{j} / a_{i}\right)=1 \quad(i=1,2 \ldots n) \tag{10}
\end{equation*}
$$

To satisfy condition (9) the n^{2} stimuli $x_{j i}(j, i=1,2 \ldots n)$ have been organized so that every stimulus acts only on one single state of the automaton and has no influence on transitions starting from any other state. The n^{2} stimuli of the X matrix are partitioned in n sets of n stimuli each, every set $\left(x_{1 i}, x_{2 i} \ldots x_{n i}\right)$ being assigned to one state $A_{i}(i=1,2 \ldots n)$, and are effective only when the automaton is in state A_{i}. Figs. 2 and 3 illustrate this distribution of the $x_{j i}$ for $n=3$ and $n=4$. This way, the transition $A_{i} \rightarrow A_{j}$ depends of A_{i}, but not on the manner, how the automaton entered in state A_{i}.

As to the marginal conditions (10) they are fulfilled automatically in this case, due to conditions (6) holding for the stimuli assigned to the same state A_{i}. Since for every state A_{i} one and only one of the stimuli $x_{j i}(j=1,2 \ldots n)$ is acting at any time, we have

$$
\begin{equation*}
p\left(x_{1 i} \vee x_{2 i} \vee \ldots \vee x_{n i}\right)=\sum_{i} p\left(x_{j i}\right) \tag{11}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sum_{j} p\left(x_{j i}\right)=\sum_{j} p\left(a_{j} / a_{i}\right)=1 \tag{10a}
\end{equation*}
$$

Besides, to be able to equalize the probabilities $p\left(x_{j i}\right)$ to the corresponding elements of any given Markov Matrix, the $p\left(x_{j i}\right)$ have to be constant and adjustable in the interval $0 \leqslant p\left(x_{j i}\right) \leqslant 1$. The device, constructed to this purpose, will be described in a later chapter of this paper. For the moment, let us assume, that this has been achieved.

Having thus transformed every condition to be satisfied by probabilities of signals into the equivalent logical condition to be fulfilled by the signals themselves, the design problem is reduced to that of a special automaton and can be solved by standard methods of logical design.

The so introduced probabilistic X matrix can be considered, in a way, as a generalization of the logical excitation matrix in the sense, that the latter has
elements capable of assuming only the values 0 and 1 , whereas the former can, within the marginal restrictions, assume any value between 0 and 1 .

CONSTRUCTION OF THE X MATRIX

Every set of n stimuli $x_{j i}(j=1,2 \ldots n)$, assigned to the same state A_{i}, will be formed by the terms of the Alternative Canonic Form (ACF), the so-called "minterms" of a certain number r of binary, independent, poissonian signa is $m_{1}, m_{2} \ldots m_{r}$. The minterms t_{q} are logical conjunctions of the $m_{\vec{k}}$ or their negation

$$
\begin{equation*}
t_{q}=\bar{m}_{1} \cdot \bar{m}_{2} \ldots \bar{m}_{r} \tag{12}
\end{equation*}
$$

where \bar{m}_{k} stands for m_{k} or m_{k}^{\prime}.
The 2^{r} minterms of the $m_{k}(k=1,2 \ldots r)$ are mutually exclusive and exhaustive, so that

$$
t_{q} \cdot t_{p}=Q \text { if } q \neq p
$$

and

$$
\begin{equation*}
t_{1} \quad \vee \quad t_{2} \quad \vee \ldots \vee{ }_{2}{ }^{r}=X \tag{13}
\end{equation*}
$$

It can be shown that for $2^{r} \geqslant n$, the n stimuli $x_{j i}$ can always be represented by combinations of the minterms so that conditions (6) are satisfied. To this purpose the t_{q}, or logical alternations of some of them, have to be distributed over the set of the $x_{j i}$ in such a way, that these latter are exclusive two by two and contain, in conjoint, all the minterms of the m_{k}. This problem can, in general, be solved by various possible distributions of the t_{q}, all of them fulfilling conditions (6) for the $x_{j i}$, but not all of them being adequate to reproduce with the probabilities of the $x_{j i}$ the elements of an arbitrary given Markov matrix.

To this end, the number of independent signals m_{k}, cannot be smaller than the number of independent parameters contained in each column of a Markov matrix
of order n. With n elements in every column, satisfying 1 equation derived from the marginal restrictions, the number of independent parameters is $n-1$, for every column.

$$
\begin{equation*}
r=n-1 \tag{14}
\end{equation*}
$$

will thus be the smallest number of independent signals m_{k} necessary, to reproduce the stimuli of the ith column of an X matrix, which corresponds to an arbitrary chosen Markov matrix. For the automaton this means a minimum of $n(n-1)$ input signals $m_{k i}(k=1,2 \ldots n-1 ; i=1,2 \ldots n)$. It can be seen, that it is always easy to find one or more distributions of the minterms t_{q} over the column elements $x_{j i}$ which satisfy the logical conditions (6). But not all these possible distributions permit to reproduce the $x_{j i}$ with the probability values determined by an arbitrary Markov matrix.

The signals $m_{k i}$ being poissonian signals with probability $p\left(m_{k i}=1\right)=p\left(m_{k i}\right)$, their 0 and 1 values are uniformly distributed and the $p\left(m_{k i}\right)$ can be considered as constants. Because of their independence, no extra correlation is introduced by them in the generator signal apart from that determined by the Markov matrix. Their values have to be deduced from a system of n algebraic equations for each set of $n-1$ signals $m_{k i}$ assigned to the elements $x_{j i}(j=1,2 \ldots n)$ of column i of the X matrix. These equations are non linear in the general case and will not always have a solution for real, rational and positive values of the $p\left(m_{k i}\right)$.

Remembering that the $m_{k i}$ are independent by assumption, it follows that the $p\left(x_{j i}\right)$ will have the form of products of factors $p\left(\bar{m}_{k i}\right)$, where $p\left(\bar{m}_{k i}\right)=p\left(\bar{m}_{k i}\right)$ for $\bar{m}_{k i} \neq m_{k i}$, and $p\left(\bar{m}_{k i}\right) \neq 1-p\left(m_{k i}\right)$ for $\bar{m}_{k i} \neq m_{k i}^{\prime}$. The number of factors of every product depends of the particular combination of minterms chosen for every $x_{j i}$. The system of n algebraic equations for the $n-1$ unknown $p\left(m_{k i}\right)$ will have the form

$$
p\left(x_{j i}\right)=\prod_{k} p\left(\bar{m}_{k i}\right)(j=1,2 \ldots n)
$$

To solve it for acceptable values of the $p\left(m_{k i}\right)$ the following combination
rule has been adopted for the $x_{j i}$, making use of the circumstance, that the $x_{j i}$ of every column of the X matrix are exclusive and exhaustive, so that at every moment one and only one of them can assume the value 1 :

$$
\begin{align*}
& x_{1 i}= m_{1 i} \\
& x_{2 i}= m_{1 i}^{\prime} \cdot m_{2 i} \\
& x_{3 i}= m_{1 i}^{\prime} \cdot m_{2 i}^{\prime} \cdot m_{3 i} \tag{15}\\
& \cdot \cdot \\
& \cdot \cdot \\
& \cdot \cdot \tag{Note2}\\
& x_{n i}=m_{1 i}^{\prime} \cdot m_{2 i}^{\prime} \cdot{ }^{\prime} m_{3 i}^{\prime} \ldots \ldots m_{n=1, i}^{\prime}
\end{align*}
$$

For the probabilities this makes:

$$
\begin{array}{ll}
p\left(x_{1 i}\right) & =p\left(m_{1 i}\right) \\
p\left(x_{2 i}\right) & =\left[1-p\left(m_{1 i}\right)\right] p\left(m_{2 i}\right) \\
p\left(x_{3 i}\right) & =\left[1-p\left(m_{1 i}\right)\right]\left[1-p\left(m_{2 i}\right)\right] p\left(m_{3 i}\right) \tag{16}\\
p\left(x_{n-1, i}\right) & =\left[1-p\left(m_{1 i}\right)\right]\left[1-p\left(m_{2 i}\right)\right] \ldots\left[1-p\left(m_{n-2, i}\right)\right] p\left(m_{n-1, i}\right)
\end{array}
$$

the equation for $p\left(x_{n i}\right)$ being satisfied due to the marginal condition $\sum_{j} p\left(x_{j i}\right)=1$. From (16) the $p\left(m_{k i}\right)$ can easily be calculated from the known values of $p\left(x_{j i}\right)$. Progressing gradually from $j=1$ to $j=n-1$, only some simple algebraic operations have to be performed, as every following equation contains only one unknown variable more than the preceding one.

Note 2: The Veitch and Karnaugh diagram of Fig. 4 illustrates the combination rule (15) and show that the resulting $x_{j i}$ satisfy conditions (6). Using ordinary logic circuitry, the $x_{j i}$ can be mecanized from (15).

Making use of the marginal condition the $p\left(m_{k i}\right)$ take the form:

$$
\begin{equation*}
p\left(m_{k i}\right)=\frac{p\left(x_{k i}\right)}{p\left(x_{k i}\right)+p\left(x_{k+1, i}\right)+\ldots+p\left(x_{n i}\right)} \tag{17}
\end{equation*}
$$

It can easily be seen that each $p\left(m_{k i}\right)$ so obtained, is a real rational and positive number between 0 and 1 .

Simplified Models for Special Markov matrices.

In special cases the number of independent signals $m_{k i}$ can be reduced. Introducing, $\mathrm{f}_{\mathrm{i}} \mathrm{i}_{\text {, }}$, the extra condition, that the automaton can make only two allowed transitions from every state, these can be realized with a single signal and its negation, x_{i} and $x_{i}^{\prime}(i=1,2 \ldots n)$, reducing the total number of independent input signals from $n(n-1)$ to n. Conditions (6) are reduced in this case to

$$
\begin{equation*}
x_{i} \vee x_{i}^{\prime}=X \quad x_{i} \cdot x_{i}^{\prime}=Q \tag{6a}
\end{equation*}
$$

which is always true.
This special case has been discussed in an earlier work ${ }^{2}$.
Considering the rapid growth of the number of elements with the number of symbols n, the practical limitations of the method are quite serious, especially as long as only traditional electronic circuit elements are used for construction. But even the use of integrated circuits would not alliviate the difficulties of the high number of input signals necessary in the general case, so that realizations for simplified special Markov matrices are to be taken into account whenever the number of symbol is higher than 3 or 4 . These cases have been solved in our laboratory.

Input Signals with Constant and Adjustable Probabilities.
For the independent input signals $m_{k i}$ we used poissonian pulse trains, each one derived from the output of a Geigercounter system mounted around a radioactive sample adequately shielded, in order to obtain only a single kind of radiation.

Each one of these signals was fed into a device designed to achieve probability adjustment in steps of $1 / 10$ between 0 and 1 .

The device consists mainly of a 10 stage ringcounter and a bistable multivibrator. The ringcounter stages are switched "on" one by one, as the pulses of the Geigercounters reach the input. The sequence of the "on" stages follows thus a poissonian time series. The outputs of the 10 ringcounterstages are connected to the multivibrat.or inputs in such a way, that the multivibrator triggers to its " 1 " state, whenever the ringcounter has reached the first of its 10 stages, while the multivibrator triggers to its " 0 " state with the one of the remaining 9 stages of the ringcounter, which has been selected by a rotary switch placed ir. the instrument panel, and moved by hand. In this manner the relative time interval, during which the signal assumes the value 1 , is adjusted on the instrument panel, where it can be read off from the switch scale. The readings of all the switch scales permit to evaluate the elements of the Markov matrix of the generated signal or - for the simplified case - coincide with them. Block diagram and panel view of the device are shown in Figs. 5 and 6.

This simple solution of a rather complicated problem has been proposed by Ing. Fernando Camarena of our laboratory.

Design process for $n=3$
As an example the design method will be illustrated for the case $n=3$. The flow diagram of the automaton is shown in Fig. 7. The automaton has 3 states A_{1}, A_{2}, A_{3} and an output signal of 3 symbols a_{1}, a_{2}, a_{3}, corres ponding to the states designed with the same letter.

To each state $A_{i} 3$ stimuli are assigned: $x_{1 i}, x_{2 i}, x_{3 i}(i=1,2,3)$

The 3 stimuli assigned to the same state A_{i} are built as combinations of

$$
\begin{equation*}
n-1=2 \tag{14'}
\end{equation*}
$$

independent binary poissonian signals: $m_{1 i}, m_{2 i}(i=1,2,3)$, so that we need 6 input signals for the automaton.

Applying combination rule (15) we get:

$$
\begin{align*}
& x_{1 i}=m_{1 i} \\
& x_{2 i}=m_{1 i}^{\prime} \cdot m_{2 i} \tag{15'}\\
& x_{3 i}=m_{1 i}^{\prime} \cdot m_{2 i}^{\prime}
\end{align*}
$$

The probabilities of the stimuli $p\left(x_{j i}\right)$, equal to the corresponding elements of a given Markov matrix are substituted in equations (17) to obtain the probabilities $p\left(m_{k i}\right)$ for the adjustments of the 6 input signals:

$$
\begin{align*}
p\left(m_{1 i}\right) & =p\left(x_{1 i}\right) \quad p\left(m_{2 i}\right)=\frac{p\left(x_{2 i}\right)}{p\left(x_{2 i}\right)+p\left(x_{3 i}\right)} \tag{17'}\\
(i & =1,2,3)
\end{align*}
$$

The remaining steps corres pond to ordinary logical design methods: From (3) and (4) we get in our case:

$$
\begin{align*}
& A_{1}^{(1)}=x_{11} \cdot A_{1} \quad \vee \quad x_{12} \cdot A_{2} \quad \vee \quad x_{13} \cdot A_{3} \\
& A_{2}^{(1)}=x_{21} \cdot A_{1} \quad \vee \quad x_{22} \cdot A_{2} \quad \vee \quad x_{23} \cdot A_{3} \\
& A_{3}^{(1)}=x_{31} \cdot A_{1} \quad \vee \quad x_{32} \cdot A_{2} \quad \vee \quad x_{33} \cdot A_{3} \tag{4'}
\end{align*}
$$

where A_{i} represents state i at the moment $t, A_{i}^{(1)}$ the same state at $t+1$. The 3 states are represented now, in the usual way, by 2 binary state variables, called q_{1} and q_{2} for the states at moment t, Q_{1} and Q_{2} for the states at $t+1$. Combinations of the state variables are assignated to the 3 automate states as follows:

$$
\begin{array}{ll}
A_{1}=q_{1}^{\prime} \cdot q_{2} & A_{1}^{(1)}=Q_{1}^{\prime} \cdot Q_{2} \\
A_{2}=q_{1} \cdot q_{2} & A_{2}^{(1)}=Q_{1} \cdot Q_{2} \tag{18}\\
A_{3}=q_{1} \cdot q_{2}^{\prime} & A_{3}^{(1)}=Q_{1} \cdot Q_{2}^{\prime}
\end{array}
$$

while the combination $q_{1}^{\prime} \cdot q_{2}^{\prime}$ and $Q_{1}^{\prime} \cdot Q_{2}^{\prime}$ resp. does not occur so that

$$
Q=q_{1}^{\prime} \cdot q_{2}^{\prime} \quad Q=Q_{1}^{\prime} \cdot Q_{2}^{\prime}
$$

Substituting (18) in equations (4') and resolving the resulting logical equations for Q_{1} and Q_{2}, we get

$$
\begin{aligned}
& Q_{1}=\left(x_{21} \vee x_{31}\right) \cdot q_{1}^{\prime} \cdot q_{2} \vee\left(x_{22} \vee x_{32}\right) \cdot q_{1} \cdot q_{2} \vee\left(x_{23} \vee x_{33}\right) \cdot q_{2}^{\prime} \cdot q_{1} \\
& Q_{2}=\left(x_{11} \quad \vee x_{21}\right) \cdot q_{1}^{\prime} \cdot q_{2} \quad \vee\left(x_{12} \quad \vee x_{22}\right) \cdot q_{1} \cdot q_{2} \quad \vee \quad\left(x_{13} \quad \vee x_{23}\right) \cdot q_{2}^{\prime} \cdot q_{1}
\end{aligned}
$$

If the state variables are represented now (see Fig. 8) by $j-k$ memories, we get:

$$
\begin{aligned}
Q_{1}: j_{1} & =\left(\begin{array}{lll}
x_{13} & \vee & x_{23}
\end{array}\right) \cdot t \\
k_{1} & =\left(q_{2} \cdot x_{32} \vee q_{2}^{\prime} \cdot x_{31}\right) \cdot t
\end{aligned}
$$

$$
\begin{align*}
Q_{2}: j_{2} & =\left(\begin{array}{lll}
x_{21} & \vee & x_{31}
\end{array}\right) \cdot t \\
k_{2} & =\left(\begin{array}{lll}
q_{1} \cdot x_{12} & \vee & q_{1}^{\prime} \cdot x_{13}
\end{array}\right) \cdot t \tag{19}
\end{align*}
$$

where t are clockpulses fixing the duration of the symbols. Substituting from (15) we get the equations for the $j-k$ memories in terms of the input variables $m_{k i}$, the state variables q and the clockpulses t, from where the logical circuit diagram (Fig. 9) may be drawn:

$$
\begin{array}{ll}
Q_{1}: j_{1}=\left(m_{13} \vee m_{23}\right) \cdot t & k_{1}=\left(q_{2} \cdot m_{12}^{\prime} \cdot m_{22}^{\prime} \vee q_{2}^{\prime} \cdot m_{11}^{\prime} \cdot m_{21}^{\prime}\right) \cdot t \\
Q_{2}: j_{2}=m_{11}^{\prime} \cdot t & k_{2}=\left(q_{1} \cdot m_{12} \vee q_{1}^{\prime} \cdot m_{13}\right) \cdot t \tag{19a}
\end{array}
$$

For the correlation function practically the same result has been obtained as in the simplified case analized in a former work ${ }^{2}$. Its form depends exclusively of the Eigenvalues of the Markov matrix which can be controlled with the adjustable probabilities of the input'signals, corresponding to Fig . 10 if the Eigenvalues are real, and to Fig. 11 if two of them are imaginary. In case of two complex Eigenvalues, the more or less oscillatory character of the function depends of the relation between the real and imaginary part of the complex roots. Correlation is appreciable up to sequences of 4 symbols.

BIBLIOGRAPHY

1. Mealy G. H., A Method for Synthesizing Sequential Circuits. Bell Syst. Techn. J. 34, (1955)
2. Gertrudis Kurz de Delara y Antonio Elguézabal Buchanan, Diseño y Construcción de un Generador Markoffiano. Rev. Mex. Fís. XI., 4, 1962.
3. Swoboda J., Elektrische Erzeugung von Zufalls prozessen mit vorgegebenen statistischen Eigenschaften. A.E.Ue., 16, 1962.
4. H. Donko, A. Grassl, W. Wehrmann, H. Weinrichter, "Experimentelle Stochastische Prozesse." Forschungsberichte des Instituts f. Niederfrequenztechnik (Vst.Ing. Dr. G. Kraus), Technische Hochschule Wien, 1965-1966.
5. A. Blanc-Lapierre et R. Fortét, Théorie. des Fonctions Aléatoires. Mass on, Paris, 1953.
6. A.N. Kolmogorov, Foundations of the Theory of Probability. Che Isea, N. Y., 1956.
7. A. Medina, Logical Analys is of Organization in Finite Automata. Rev. Mex. Fís., XV., 1, 1966.
8. A. Medina, Time Dependent Logic. Laboratory Report 1962, Comisión Nacional de Energía Nuclear. México.

FIG. I

FIG. 2

FIG. 3

FIG. 4
Veitch \& Karnaugh
diagram for $n=4$

Fig. 6

[^0]: Note 1: Logical conjunction is designated here by ".", logical alternation (inclusive "or") by " v ", tautology by " K ", antitautology by " Q ", whereas the truth values of binary variables are written simply: 0,1 .

