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ABSTRACT

The Born-Oppenheimer approximation is used to obtain the oscillator strength
of copper ions in sodium chloride crystals, We obtain the wave functions for the
copper free ion corresponding to the states 3d'9 and 3d° 4s' using the Slater-Zener
rules. Thenceforth, by a second order perturbation method we obtain the wave
functions for the copper ion perturbed by a simplified lattice potential, Finally,
the matrix elements corresponding to the dipole moment are calculated, and these

are related to the oscillator strength at low temperatures.

RESUMEN

Se bhace un cdlculo del tipo Born-Oppenbeimer para determinar la intensidad

del oscilador para iones de Cobre en cristales de NaCl. Se obtienen las funciones
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de onda para el ién libre de Cu a partir de las relas de §later-Zener corres pondien-
tes a los estados 3d'°y 3d° 4s’. A continuacion por un cdlculo perturbativo a se-
gundo orden se obtienen las funciones para el ion de Cu perturbadas por el poten-

cial de la red simplificado. Finalmente se calculan los elementos de mairiz corres-

pondientes al momento dipolar para relacionarlas con la intensidad del oscilador

a bajas temperaturas.

INTRODUCTION

There exists already in the literature some calculations of the type we give
in this paper. Williams, Knox!and Dexter? have treated the optical absorption of
T! % ions in KC| in detail, Conway et al® have considered the optical absorption of

Ag ions in NaCl using a simplified model. Unfortunatelly there are many printing
errors in this paper, which makes it very difficult to follow., Usinga similar
method to the ones cited above, we have studied the absorption of Cu’ ions in
NaCl. The ground state of the Cu' free ion is assumed to be a 3d1° state, and the
excited state 3d? 4s’ state. We assume with Krumhamsel that the introduction of
a Cu' ion in NaCl lattice causes a mixing of the above mentioned states with the
states of the next level, i.e., the 4p states. To calculate the wave functions of
the Cu" free ion we used the Slater-Zenes rules* and for the lattice potential we
considered only the first six nearest neighbors. Using this potential we calculate
the wave functions perturbed by the lattice potential and with these wave functions
the dipolar matrix elements can be calculated. These are directly related to the

oscillator strength in the low temperature limit.

A. DETERMINATION OF THE WAVE FUNCTIONS OF THE FREE CU" ION

The perturbation theory is based on the use of the hydrogen-like orbitals in
the zero-order wave functions.

These functions have the form

- zr

L[Jnim = R’“-(r) e " Yim (6, )

202



For the present purpose they can be simplified into the form;

(z=5s)r
n*e1 " ¥

‘pn"lm =T e . Yim (6' (P)

Where n* and s are obtained by the Slater-Zener rules. For the 4s and 4p orbitals
the value obtained for § is §, = 24.45 and for the 3d orbital 5, = 21.15.
The values obtained for n* is n: = 7% n; = 3. So that, for Cuwith Z =29

we obtain:

¥ (radial) = r2*7 o~ 12

45 of 4p
and
‘l’zd (radial) = r* o287

In normalizing these functions we use the definition of ' (z);

it -
1Ly

Pt [

Thus, with the normalization condition:
c? jlllz rdr = 1

We obtain for the normalized wave-functions:

r2-7(-l-23'
qu(r) =

1

I'(8.4) ]i
[ (2.46)%*
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Gl"ld
2 _-2.87
e

Xght] = LB
[rm
(5.24)"

In the same way we obtain the wave functions corresponding to the normalized

angular parts®

L 1
1 &7 2 N wen
s = (4—[1“) ’ PI. = px = (ﬁ) sin U cos @

== (fﬁ)z sin & sin @, b=t = (fﬂ-)z cos &

d =_]iisi fcos Gcos «
(15)" sincos Ecos

_ 18 5 -
dx2.zz_ (Tgﬁ.) sin“fcos @ sin g

x4

1
= (41%) sin’f cos @ sin @

d - )2 (3cos?0=1)

5
2= (T

d. = (4%)2 sinfcos Osih g

B. THE LATTICE POTENTIAL

We consider now the potential experienced by a 3d electron of the Cu” ion
due to the six nearest neighbor (Cl ions) which are assumed to act as point

charges.
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We take the refereice frame in such a way that the Cu” ion is at the origin

and its displacement from this equilibrium position is denoted by w - the Cl”ions

are in the positions R T L L N A where a,a,a, are the basic

lattice vectors and the displacements of these ions are denoted respectively by
TR

the change in potential (A Vx) due to the displacement from equilibrium of the

:3 and ;_3 . If the position of the electron is denoted by r, then

Cl ion at ;1 and the Cu®ion is given by,

B & et s e
|a1+u1-(r+w)! Ia‘l-r|

Denoting w = —“_1 by 4 and expanding the first term, we have

N S =al"[l+a1.'+"1'd-;"7-
[a-(r+d)| o & &
LRy, &NED
20" gz .2 o
1 1 1
S o SRR
+381-r ‘3 '°d+g(a1.d) B
4 4 2 4
241 2:11 a
-3 (d1 £ J(r —a’_)_ (al°d)(r d)+3+(i+d2,)+ .]
& 2t 16 a2 a2
1 1 1 1




Since |d | << 1 all terms but the first may be neglected, thus
4

[:7087 1 B, G 0ED
2

A‘Vl=-e i - 8 -
& a® 2 g a’
1 1 2 | 1
-Mi—()*...]
3
a

1

We note that the first three terms do not involve electron-phonon interaction
since they contain d but not 7. Soif we multiply this result by the charge of the

Cu'ion and add to it the contribution of the six nearest neighbors (Cl ions) we

have,
o a[a DA R TR
a® al
1
N AT AT
a® a’
+3 (ds.r)as.(u3+“°3) _ ;‘.(;3 s ]
a® a’
Since{;‘= la | = la | = a
1 2 3

Now following Peierls ® notation for the lattice displacement we use

U = X q(f,s)exp(if *a)) V(f,s)
f,s

Where / is a vector within the basic cell of the reciprocal lattice.
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For each given / there are 3 different modes, corres ponding to different solutions

of the equation;

- _
W= X Gy () Yy
7

In general there are a number of solutions Vir(fo s) corresponding to fre
frequencies w (f, s) with§=1,2,3, ..., 3r and with the values of g satisfying the

equation
= 2
qf,s+{w(f"s)}qf,s= 0

Now let us take the first two terms of AV1 .

AR A IR RN

a® a’

' SYV(f, -
=3 3 7(f M {exp(:'/ 'ao) J:exp(s'f1 a) + exp(-:’[1 a)]}
fos aS

(xV, +yV, + zV,) exp (if - a_z{ exp(if a) * exp(=~if a)}

fes
‘,3

= i

Here we have taken into account that, a_"' - “_o + a_”, where ;0 is a vector from the
crystal origin of the unit cell in consideration, and a_" are vectors with origin at
the end of ;o and describes the equilibrium positions of the Cl ions, and alsoe,
that f = fl Zl & fzzz + fsz; where ?;1, ;2 and Ea define the reciprocal lattice.

The addition of the exponentials gives a term 2 cos (f, @) and the ~ther

four terms of AV gives a similar contribution. So we finally hav-
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2 =
AV==-2¢ 3 g _exp(if *a)) TxV;(fys)

a f,s
[2cos f,a = cos f.a =cos fa]

with i j#4 k=1,2,3

To simplify the latter expression we define;

3 R
Ar==2" 3 g exp(if *a)V.(f,s)
i 3 fis 0" ik

4> §s

[2cos f;a - cosfa -cosfyal

Thus

AV = leA)

C. WAVE FUNCTIONS PERTURBED BY THE LATTICE POTENTIAL

The ground state of the Cu'ion is the configuration 3d1%, and when ex-
cited the configuration is 3d°4s’ we suppose that the lattice potential can mix the
s and d orbitals with the 4p states, so that the perturbed functions o, and Pys
will be of the form:

; (B \x |d> ]
- + 3
%a [Xad : E

1,7 3d

A; (0; 1% 1) %,
T pl.
CP“S = [Y4s + 2 - F ]

4] 4s - 4p

where the letter d represents any of the five d functions given previously.
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The Born-Oppenheimer approximation is used when we suppose that the
wave function of the electron in the initial lattice configuration, as described by X,

can be expressed as the following product;
¥Y.(r,X) = 3d@a(x)

Where ®_ (X) represents the lattice configuration before the transition. In the same

manner, the final state of the electron is described by the function:
¥ (r,X) = ¢, 0,(X)

Where @B (X) represents the final configuration of the lattice.

D. EXPRESSION FOR THE OSCILLATOR STRENGTH IN THE LOW TEMPERA-
TURE LiMIT.

The oscillator strength fap o5 is obtained from the following expression:
2m* @
/abaﬁ = b—z JE| rﬂbaﬁ| Sabas (E) dE

Where m™ refers to the effective mass of the electron; a, a are referred to
the initial states of the electron and the lattice respectivelly, and b, 3 the final

states of the electron and lattice respectively. Sabas (E) refers to the absorption

line shape which can be approximated by:

-
“da

and Tabag = Jar [ (cp“@P(X)lr]cpjd@a(X)) dX
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Averaging over the initial states, and taking @ summation over the final states [3,

the final expression for fow takes the form:

fdb = Eﬁ"h}a fabaﬁ

That is
2m* 2
I A :; (By 5= Bag) &rawl

fb=
e

Taking into account that the energy due to the change in the lattice, con-
figuration is small with respect to the electronic transition energy, fap can be

written as
N 2
fap = =5 (Ep =Eg) A %"abaﬁl
then the problem reduces to the solving of:

2
Elr | = 2| [[ dXdr [,( + 3
B abaﬁ 8 id f

Y

(p; | x; I d) X”'i
E

A.

O (X) 7
1
3d- EAp ] i

A; ;1% |syx
[Y‘s+ b3 il . | ] @)'BD(H2

Wi E4s i EAp

Here d again represent any of the five possible 4 states.
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Taking into account that3

Oygl T Ix) = og,,ilﬂn,,f) =0

We obtain
— A oylx dy (x,, 1713, )
i e gy L T
8 B fi Byi =By
. 4 @ lx sy oxglrlx,y ?
0.0, + = = 8,008,
* i,j E4S'E4p g

To simplify the calculations let us define Y and m; in the following form;

(pi 11] ‘d)<y4p' |f|)(‘s>

%= 3
i ESd-E.l.p
@515y gl rlx,, 0
= % *
i E4s-Eap

in this case we have
2 2
%Irabmlgl = hz'l(G)‘lAjyj |®ﬁ) * (@)J]Afnflgﬁ) I
v]

Now B; can be defined in the following way

2¢2 = -
Br== Li-; exp(if *a ) Vity, s)[2cos f;a -cosfja - cos fpa]
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Also it is known® that q;, €an be stated in the following form,
*

4, = QUss)+ Q" (/= 5)

Where the Q's represent the elastic waves travelling in ppposite direction.
Now if the |®B) state is expanded in terms of the |®a) set of normal co-

ordinates, i.e.,

K]

=% (¢8,18:))[8,)

We have:

2 *
%lr‘”’aﬁl = 2 1(0]0,78; (8,0, 0. [8)
2 Blf&flsi-’l'

* 2
+(8+10,)7m,B; (8,10 + 0u s 16,0)]
* . .
Now, O(f,s) and Q' (f,- s) in the quantum representation are the annihilation and
creation operators respectively, and obey the following relations
i3

<@a19,,,5®;1>=(—*’—) N, 1

N a
2M qu'S

1
2

®,lel, 1o =2 )
s @, T i

the other matrix elements being zero.®
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Thus,

% 2
2 [8,lQ,.t 00,188y =

a, f

BN +1
- i el

N
: 2M wfts

2 ” 2
(0,185 * T N,(8,.,18,
S

b __@N+1)

N
2M w/.rs

Where we have made use of the fact that

2@, |8,y =2¢@ ., |0, =1
F +11 %3 P a=11%g

and also, N, (frs) = N_(f,=s) in thermal equilibrium. it can be shown® that at
T=0%, N =0.

a
So we have finally:

2 2
20,4l = = |l%B,(hs)+n,B,(fs)| —F
B e A 2N,

S

E. CALCULATION OF MATRIX ELEMENTS

For the radial part of the matrix elements, we have

L !'2 - “1.
g lrld = [ 222 61, PO e
(';‘(27:7 ) (T(8.4)/2.46%4)

and

o0 pS5e4 %2467 .3 g
B e
S 084246 ]
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For the angular part, let us take the function dxy i.e.,

sin & cos ¢
15

(dxy!'ibl)= (1_6[T)i JJ sin26cosgsing { sind sing x

cos &
(‘%)i sinfcosgpsinfdbfdg =

0

ik
= (45" Len/so
6411° 0

Where we have calculated simultaneously the three components. Also we

have

1
eyl 7 |2,y = ()7 (1611760
6411 "

@ |r: 8= (Lﬁ)z
) 2
6411

o o o o

1

@ llsy =(2)" (w3

2
161 0
0
‘ 0
@, lnlsy = (2 I
161° 5




F. FINAL EXPRESSION FOR THE OSCILLATOR STRENGTH

In expanding the expression
| 2
B, 71.8;
7B * 7;B; |

“ There are many terms that cancel out due to the fact that the matrix elements are

zero.
Also we have considered only one atom for unit cell, we have only one dis-

placement vector v (f,s), thus, by the symmetry of the crystal with respect fo the

three axis chosen, we have,
2 2
|B;| =18l

where the sub-indexes refers to the components of B along the different axis.
r . - g oo =1 2
Also from the normalization condition for the v, we have®|v | = 1 in the
case of one a form per unit cell.

Thus, we obtain

2 ; 2 %
S ltaposl = = 178t 78
B fos,i QMwa

S

_ 2% 1 x 1 )” 2 2
s o, x| sy d, lyley x
frs QMwa's ( E,, -E4p E4s_E4p *

; 2 2 2
B el 3 o e 8 |

Now, form the symmetry | v,



and

2 4 S 2
}Bll = fe_l|v\ [2cosfla-cosfza-cosfaa]

ab

If now we use the Debye approximation® the summation over s is the change
toa factor 3, w, _ = cf and the summation over f is changed into an integral, so
’

that taking into account the symmetry; we have

2
T 225 e 1
|7 | |7
and
il cosri_cos . i Cosricos s
|7 | |7 |
thence
2 2 2 2
> - 1 + 1 x d__|y|2
> rabasl MN(E,;'ESP E4S-E,p) %15y @y Lyl
-, 3
? 2 hg? d'r(2cosx=cosy=cosz)
ey e la 0y 2 Yo J]f et
4p 4s 3d 4p s (2[1)3 - dzCI"l

2

2 ’ .
where a® = v’ with v_ the volume of unity cell.

The terms v /(211)° appear because of the Debye approximation, and c is

the propagation velocity and is given by the equation® ¢ — B 3P
4lv
{cz

*

Finally, for a trapped electron, the effective mass is m"~ = m where m is

the mass of the free electron, so we have

2m_ g

2
5 o ol f

ey = — (B, E,) Av, 2|1yl
35 2
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This value fiven for £, is only for the function dxy , the other four d
functions are missing; but in evaluating the matrix elements corresponding to these
missing functions, it is found that the result is the same . Thus the final ex-

pression for I, is given by

Fab = Sfab
The numerical values obtained from these final expressions are:
E, - E,~ Sev Av = 2

a

B | [syex,, [rlx ) = 1.96

By 1)y eyl rle, ) = 019

11
i = IS (2cosx—iosy-c05z) r = 4110
-1 | 7]

Ead-Ew ~ 10ev 545 -E¢P: S5ev
a=281A

The propagation velocity is given in terms of Debye iemperature :..'JD ,which
is taking to be 300°K. All the values are given in atomic units* giving a value
for F., = 10 * which is typical of this type of calculation” the only matter left is

ab

to compare this value with that obtained experimentally.
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CONCLUSIONS

Complete calculations on realistic models of a lattice with an imperfection
are extremely involved, and so far they have not been carried out except in a formal
manner. During the last 50 years Physicists have made calculations on unrealistic
models hoping to gain some insight into the properties of phonons and phonon-
electron interactions. In calculations of the oscillator strength for absorption it is
necessary to obtain an expression for the local field, that is, the actual field at the
imperfection. At present no reliable theory exists. With respect to the applica-
bility of the Born-Oppenheimer approximation, Lax® has sufficiently justified it.

It must be noted that even if several works have been published”, where the local
lattice modes are taken into account, these have been carried out in one dimension-
al lattices only'’. Finally, about the validity of the multipole expansion of the
electromagnetic field, which has been used implicitly in the calculation of f, we
can say that it is always valid for wave functions whose extension is small com-
pared to the wave length of the radiation that can be absorbed''. This is the case

for an electron trapped in a crystal.
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