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SUMMARY

In this paper a derivation of a generalized Schroedinger equation valid for
velocity de pendent forces, is presented. The physical assumptions involved rest
on the bypothesis that a more general quantum mechanical description of a particle
may be constructed if we siart from a Markoff process as described by Fokker=
Planck’s equation in phase space. It is also shown that the as ymptotic limit leads
to the ordinary formalism of quantum mechanics in configuration space together
with a new equation in velocity space which allows us to generate quantum numbers
which are tentatively associated with some of those characteristic of the particle,
This formulation leads to a first estimate of the parameter 3 introduced in

previous papers.
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RESUMEN

En este trabajo se deduce una ecuacion de Schroedinger generalizada, vdli-
da para fuerzas dependientes de la velocidad. Las suposiciones de cardcter fisico
empleadas, se basan en la bipitesis de que una descripcion cudntica mds general
de una particula puede conmsiruirse si partimos de un proceso Markoviano descrito
por una ecuacion de Fokker=Planck en elespacio fase. Se demuesira también que
en el limite asintdtico se recupera el formaiismo usual de la mecdnica cudntica en
el espacio de configuracicn y ademds se obtiene una nueva ecuacion en el espacio
de velocidades, la cual permite generar nidmeros cudnticos que, tentativamente,
pueden ser asociados a algunas de las caracteristicas de la particula, Esta formu-
lacion, permite oblener una primera estimacion del pardmetro [3 introducido en tra-

bajos anteriores.

I. INTRODUCTION

This paper is a continuation of a series 1.2,3.45" devoted to a discussion of
the possibility of interpreting ordinary quantum mechanics as a stochastic process.
In papers I,11,1Il ,and V the connection between the theory of Markoff processes
and quantum mechanics, as characterized by Schroedinger’s equation together with
Heisenberg's principle, was discussed. On the other hand IV was devoted to ex-
plore the possibility of constructing a generalized Schroedinger equation from the
complete Fokker=Planck equation. Since this latter one defines a Markoff process
in the whole phase space the former one would also be valid in such phase-space.
Assuming the validity of this generalized equation, it will hold true for the complete
time interval (from zero to infinity) thus leading to a violation of Heisenberg’s time-
energy uncertainty relation®*. Likewise, one can recover the ordinary quantum
mechanics* by taking the limit 3¢ = e which corresponds, physically, to the
achievement of an equilibrium condition in velocity space, whereas mathe matically
establishes the condition whereby one is allowed to substitute Fokker=Planck’s

equation by the diffusion or Smoluchowski equation in order to describe the process.

*These papers will be hereafter denoted by I,TI,1III,IV and V respectively.
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In this paper we want to censider once more these last questions but from
a slightly more general point of view as that used in our previous work. In fact,
in IV we considered only the case in which the external force K does not depend
on the velocity u. Clearly, this is sufficient if we want to study the motion of a
Brownian particle, but it is not so when dealing with the general quantum-mecha-
nical problem.

Section [l will be thus devoted to the derivation of the generalized

Schroedinger equation without the restriction on K mentioned above. In section III
we shall discuss the method followed to recover in this case the ordinary quantum

mechanics and as it will turn out it is of a more general nature. Indeed Schroedinger’s
equation will appear to hold in configuration space but a similar equation will stem
out in velocity space, and will be completely independent from the former one.
This equation will yield a set of quantum numbers which may be tentatively as-
sociated to those characterizing the quantum particle. We propose to identify here
some of these quantum numbers with those defining the spin for the case of mesons”.
With this identification it seems possible to perform a first estimate of the order of

magnitude of the parameter /3.

II. THE GENERALIZED SCHROEDINGER EQUATION

In order to derive the generalized Schroedinger equation we shall follow a
method which is a straightforward extension of that used in Iand IV. We start

from our fundamental equation, i~e., Fokker-Planck’s equation®, namely*,

dw _ _ i
— a A w+2 a# - M)

where . refers to all coordinates r;and u; of configuration and velocity spaces,

respectively. Furthermore, we can write that’

The theory in its present form can generate only quantum numbers that are integers.

* Summation over repeated indices is understood.
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A = w: if . belongs to r=space

Ay =K;=Bu, ity belongs to u= space
1

Since in Eq. (1), w stands for a probability density it is always positive definite and may

cast into the form:

w = exp 2R 3)

where R is a real function of its arguments. For the sake of simplicity we shall consider

here only the isotropic case, namely, that for which

B, = 2q 5#1) if . belongs to u= space

4)
=0 otherwise
With these considerations, Eq. (1) fakes the form:
Ow + _
e B#[(A'u B#VBD Ryw] = B#v#w (5)
where we have defined
v =A =B 2R (6)
M H uY v

We now restrict ourselves to the case where v#: may be written in the following way,

namely,

v =X 3 & 7)
7 |72V

where & is areal function of u, rand ¢ and }\W are the elements of a symmetric matrix

and they will be real and in general time dependent.
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Let us now define an amplitude ¥, where

W= exp(R+id) (8)

in terms of which w = ¥ W. OQur task is to construct the differential equation
satisfied by W and this is easily accomplished in the following way: Rewriting
of Eq.(5) in terms of R and & with the aid of Eqs.(3) and (7), yields

2R _ _1 -
S xwaﬂ"ayé ’\,wa# R avé 9
If we now multiply Eq.(9) by ¥, we express the derivatives of fl and & through
Eg.(8) and we notice that P\M)BVR B’uz?n - /\Waﬂ Rapé, both being equal to
v 3 R, we get that

HOH

; ¥ _ .1
igh=-1r,0,3,v 0y (10)

where () is a real function of r, v and  defined by
Q-=-2%4+1) [33R+3RIR-2 43 8] an
3f 2 wmtpv w v wo Ty

Eq.(10) is the generalized Schroedinger equation, written in phase space and
which ¥ must satisfy. The function () should be thought off as the one playing a
role analogous to that assumed by the potential ¥ in the ordinary case, but stress
should be made on the point that this analogy is solely formal. Indeed, in the
next section we shall see that, at least in some cases, (i may be related to the
Hamiltonian of the system but the general discussion of this difficult question will
be deferred to a future paper. (For a discussion of the meaning of () in a very par-
ticular representation of A, we refer the reader to paper IV). For the time being
we may look into this question as follows: Suppose we are given a priori the

concrete, but consistent form of '\ﬁw“) and QU (u, r; t) for some specific problem.
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Then, we must solve Eq.(10) for ¥, the probability amplitude whose modulus squared
satisfies Eq.(1). |f we now substitute the values of R and & found from ¥, back
into Eq.(11) we would recover the starting function o, Clearly, the knowledge
of ¥ allows us to calculate A and in particular the force K which we must ad-
scribe to the quantum particle when treated clasically, subjected also to the action

of a stochastic force.

IIl. THE REDUCTION TO USUAL QUANTUM MECHANICS

In order to investigate the conditions under which one can recover the con-

ventional quantum mechanical theory, let us write

V= Uy, t)o(r, t)x(u,r;t) (12)
and

Q=F(ut)+t G(r, t) + E{u, r; ¢) (13)

where it must be assumed that, in the general case, X is a non-separable, non-

trivial function of all phase space coordinates and also, that E is the only term in

Q containing the contributions in which both the r and v spaces are mixed.
Substitution of Eqs.(12) and (13) into Eq.(10) yields a differential equation

which in turn may be separated inio the following set of equations, namely,

. B ot .

aTcP L 639,90 + 69 (14)

iU _ 21\ 323.U+FU (15)
it R "i"j 1]

; OX ’ -
i =-;_A,.,.a,.a’.x-%)\“iu_a,,_amx-‘\. Bl X

or o S M

*If is a well known fact that in ordinary quantum mechanics one can express the potential
energy V explicitly in terms of the wave function [c.f. L. Landau & E. Lifshitz, Quantum
Mechanics, Addison-Wesley Publ. Co. 1958 Chap. III ]«
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3.9 o,U 99
w | K, AL R i Al + A B3
if @ ]Y u‘-ui U aul.)( }\m]. P u]. X
2.U 9.9 .U
+)\""f ;i e |= A""j _:P_LU_ il Rl
(16)

In these equations, the matrix A has been explicitly separated into the submatrices
)\l.]. i ’\"i“ ~and >\"",‘ whose elements belong to the configuration space, velocity
space and the mixed components, respectively. Also, since U does not depend on
the configuration space coordinates we have written B“i U=79,U.

To accomplish the recovery of conventional quantum mechanics, which is
possible only in the limit /3#>> 134 we must induce the separability of the con-
figuration and velocity spaces, thus requiring that in this limit X equals a constant.

According to Eq. (16) this is achieved through the condition

22
P
)

LU
G | &, 2 gwE ey | 20 (17)

Bt = i ¥

Under the assumption that Eq. (17) is fulfilled, ¥ may be taken equal to one in
Eq.(12). Therefore, the amplitude W will be equal to the product U¥ where these
two functions are independent and satisfy Eqs.(14) and (15). Furthermore since
the matrix A is entirely at our disposal we shall choose it in such a way that the

three submatrices | P\,.’. I, | - | and | Niu I=1 ')\u,i” , are each one diagonal,
i i ]
It is now evident that Eq. (14) will reduce to Schroedinger’s equation provided

that the elements A:‘; , which may be in general time dependent, reduce in this

limit to the value 2D§,.}. withD = #/2m. Thus, we may identify the function #G,
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in this limit, with the potential V and obtain that

1%
Yo 18
2m + (18)

Here, the “diffusion coefficient” D is related, as usual,’ to the independent para-
meters g and /3 through the relation DBz = g and its value #/2m has already been
obtained in previous work3: 4,

To round up our recovery of ordinary quantum mechanics let us introduce

the macroscopic local velocity ¢ (r, £)", in this asymptotic limit, through the ordi-

nary averaging process familiar in statistical mechanics, name ly,

c(r, t) = M

(19)
fwdu
On the other hand, from Eqs.(2),(6) and (7) we have that
v=20V3 + 2DBAV, B (20)

where use has been made of the fact that | P\'-u.H is diagonal with elements given

by A, = 2!)[3’}\5’.1. , A being u real, arbitrary fJunction of time. Substitution of
]
Eq.(20) back into Eq.(19) yields the result that

c(r, t) = 2DVS (21)

where we have written & = S(r, 1) + 5, (v, 1) and made use of the fact that the con-
tribution from the term proportional to VV_ §_ is equal to zero as it will be shown

later on [c.f. Eq.(23) ]
Eq.(21) gives, indeed, the local macroscopic velocity in the ordinary

quantum mechanical theory!*43, Following now the argument given in Il and III

*
This quantity has been denoted as v(r, t) in previous papers.
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we may assure ourselves that we have in fact recovered not only Schroedinger’s
equation but furthermore the uncertainty relations together with all their implications
Let us now make a brief discussion of Eqs.(15) and (17). Recalling that
the matrix || )\“'u.H has been chosen to be diagonal, we take its elements to be
equal to a cons‘mnf in this asymptotic limit and hence write that A = 2¢ 8.
Furthermore F(u, ) is the function which in Eq. (15) plays a role analogous to the
role assumed by G in Eq.(14). Indeed, since this latter function expresses the
energy in configuration space we can extrapolate to the velocity space and assume
that F expresses the energy of the particle in this space and thus identify it with

the kinetic energy. Hence,

2
PF =L mu? - ¥ ¥
2 D

£

which in turn, when plugged into Eq.(15), yield:

;W Vs Ly 2
$ 2 Ty 2 2)

[<¥)

With these assumptions, we may give to #() a very simple physical content, namely,
5 = % mut +V +E(urt)

where the function E(u, r; t) represents the contribution to (1 arising from the velo-
city dependent force. This may be seen directly from Eq. (17) if we realize that

U
u

the asymptotic value of the term is given by Vuﬂu which is equal to

(K, =/u)/2q as it may be easily verified using Egs. (2), (6) and (7), and further-
Ve

more * T is essentially a measure of the local macroscopic velocity according to
¢ — 4
ordinary quanfum mechanics. Also, from the fact that VuR = 0" the average valve

of E is equal to zero, and hence #(] is, in the mean, equal to the total energy of the

system.
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Finally, we observe that Eq.(22) is universal in the sense that once the
separability of the two spaces is achieved, this same equation halds for all problems
in configuration space. Moreover, since the probability density must be integrable
and everywhere finite we must take for the solution of Eq.(22) the only one con-
sistent with these conditions, namely, that of the isotropic harmonic oscillator.
Hence

U= N {exp[-ict/b-£2/2]1}E" Pl=v,N+3/2; €7) Yy, (6 )

(23)

where E: auwith a® = 3/2q and the quantum numbers A, 12, v belonging to
velocity space, being integers. We recall that v and A are intependent whereas
I,ul < A. The ground state v= A = ('corresponds to a gaussian distribution with
a density equal to exp (=34 /2q) and has been discussed in a previous paper (IV).
However, in the general case we have many more possibilities, at least in
principle, and thus the question arises as to what is the physical interpretation of
the U function, which as it is seen from Eq.(12) multiplies the usual Schroedinger’s
wave function. We propose here a tentative scheme along the following lines.
Recalling once more the fact that we are already discussing the asymptotic limit
and hence the function U is entirely independent of the configuration space coordi-
nates, we assume that the quantum numbers 1/, A and . are related to the particle’s
own internal quantum numbers. |n particular, and as a first proposition, one could
associate A and p with the particle’s spin in which case, with the aid of Eq.(23)
the construction of spin-wave functions would follow for the case of mesons, which
consistently with ordinary quantum mechanics appear as factors of the S chroedinger’s
amplitude. This proposal thus identifies the usual spin space with the velocity
space when this latter one is orthogonal to the configuration space, which we
emphasize is the only one having a meaningful physical content. Further clari-
fication of this point seems pertinent at this stage. The physical picture of the
present scheme consists of an initial stage in the motion of the particle where both

r- and v- spaces are intimately related and thus contain all the relevant physical
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information. However as soon as a time of order 3" is reached a separation is
achieved whereby the two spaces become orthogonal to each other and from there
on all information concerning the system is accumulated in the configuration space
through the usual Schroedinger equation. The velocity space becomes a formal
one and thus consistently with the procedure followed in ordinary quantum mecha-
nics it may be used to construct the spin-wave amplitude ¥,

Pursuing the ideas set forth in the scheme described above it is important
torealize that during the initial stage (31 < 1) of the particle’s motion the fact
that the configuration and velocity spaces are interelated implies that an inter-
action between the spin of the particle and its angular momentum could occur,
which according to the interpretation given to the quantum number A would imply
in turn the possibility of a decay. Taking into account the fact that the mean
life times for mesonic resonances are of the order of 107*? to 107 %* sec. a rough
estimate of 3 is obtained namely, 2~ 10 to 10* sec™'. This valve may be
estimated independently if we recall that from Eq. (23) the particle’s energy in

velocity space is

E= #2220 +\)

up to an additive constant. This energy being an intrinsic characteristic of the
particle may be consistently associated with a mass term. This inference corre-
sponds only qualitatively to experiment but once more, may serve to get a rough
estimate of 5. Indeed, comparing masses between mesons with the same quantum
numbers but whose spin differs by unity, the product #3 turns out to be of the order
of 300 to 400Mev which corresponds to the order of magnitude of /3 indicated above.
As a concluding remark we would like to indicate that the connection
between this work with von Neumman’s theorem on hidden variables follows again
within the same lines of thought advanced in a previous paper (IV) to which the

interested reader is referred.
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