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SUMMARY

1967

In tbis paper a derivation of a genera/iud Schroedinger equation va lid lar

velocity dependent forces. is presented. The physical assumptions invo/ved rest

on the hypothesis that a more general quantum mechanical description of a partie/e

may be constructed if we sJart from a Markoff process as described by Fokker-

Pianck's equation in phase space. lt is also shown that Ihe asymptotic limil kads

to the ardinary formalism of quantum mechanics in configuralion space togelher

wilh a new equation in velocily space which al/ows us lo generate quanlum numbers

which are tentatively associated with SOme of those characleristic ollhe portie/e.

This formulation leads to a lirst es tima te ollbe parameler j3 introduc('d in
pr('vious papers.

"Consultont. Comisión Nacional de Energía Nudear (México).
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En esle Irabajo se deduce una ecuación de Scbroedinger genna/izada, vá/i.

da para fuuzas dl'pendienles di' la velocidad. Las suposiciones de carácl('r físico

empkadas. se basan ('n la hipólesis de que una descripción cuánlica más general

d(' una parlícula pueJ(' conslruirse si partimos de un proceso Markof/iano descriJo

por una ecuación de Fokku-Planck en ('1 espacio fase. Se d('mueslTa lambién que

en el límilt' asinlólico SI" recupera elfOf'malismo usual d(' la mecánica cuánlica en

el f'spacio de configuración y además se obliene una nueva ecuación en el espacio

de fJf'/ocidades. la cual permilf' generar números cuánlicos que. lenlalivamenle.

pued(,'J St"r asociados a algunas de las caracteríslicas de la peirlícula. Esla frrl1Wa

lación. permúe obloler una primna eslimación del paráml'lro {3 inlroducido l'1l Ira.

bajos anleri(ffl's.

1. INTRODUCTION

This poper is a continuation of o series 1.2.3,4,5' devoted to o discussion of

the possibility of interpreting ordinory quontum mechonic.s OS O stochostic process.

In p'opers 1,11, III ,ond V the. connection between the theory of Morkoff processes

ond quontum mechanics, as characterized by Schroedinger's equotion together with

Heisenberg's principie, was discussed. On the other hand IV wos devoted to eXa

pIare the pass ibi lit Y of constructing o genero lized Schroed inger equotion from the

complete Fokker-Plonck equotion. Since this lotter one defines o Markoff process

in the whole phase spoce the former one would olso be volid in such phoseaspoce.

Assuming the volidity of this generolized equation, it will hold true far the complete

time intervol (from zero to infinity) thus leodlng to o violation of Heisenberg's timea

energy uncertointy reletion3,4. Likewise, one con recover the ordinary quantum

mechanics4 by toking the limit {31 -o 00 which corresponds, phys ica lIy, to the

achievement of en equiiibrium condition in velocity spoce, wnereas mothemoticolly

establishes the condition whereby one is a lIowed to substitute Fokker-Planck's

equation by the diffusion or Smoluchowski equotion in arder to describe the p-ocess •

• These po~rs w ¡II be hereo1ter denoted by I,n •In, IV ond V res pective Iy.
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In this paper we wont to cctnsider once more th~se last questions but from

a s lightly more general point of view as that used in our previous work. In roct,

in IV we considered only the case in which the externa I fCJ"ce K does not depend

on the velocity u. Clearly, this is suffícient if we want to study the motion of a

Brownian particle, but it is not so when deo ling with the general quontum-mecha-

nical problem.

Section Itwill be thus devoted to the derivatíon of the generalized
Schroedinger equotion without the restrictlon on K mentioned aboye. In secticn ID
we shall discuss the method follONed to recover in this case the ordinary quantum

mechanics ond as it will turn out it is of a more general nature. lndeed Schroedinger's

equation will appear to hold in configuration s pace but a similar equotion willstem

out in velocity space, and will be completely independent from the former one.

This equation will yield a se.t of quantum numbers which moy be tentatively as-

sociated to those characterizing the quantum particle. We propase to ldentify here

some of these quontum numbers with those defining the spin fOl"the case of me5ms *.

With this identiFication it Seems possible to perfarm a first estlmate of the arder of

magnitude of the para meter f3 •

11. THE GENERALlZED SCHROEDINGER EQUATION

In arder ro derive the generalized Schroedinger equotion we sholl follow o

method which is a stroightforward extension of thot used in I and IV. We start

from our fundamental eq~tion, i.e., Fokker-Plonck's equation6, nomely+,

-o A w+.!..oClB w
jJ.. 11. 2 11.v jJ..v (1 )

where Ji. refers to 011 coadinates rj ond uj of configuration and velociry spaces,

respectively. Furthermae, we COn write thot7

+ The theory in its present form con generote only quontum numbers that ore ¡ntegers.
Summotion over repeoted ¡ndices is understood.
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U¡ if ¡J belongs to r - s ~ce

(2)
A
Uj

= K¡ - j3u¡ if fJ. OOlong5to u- spoce

$ince in Eq. (1), u' s tonds fa o ~obobi litYdens ity it is o Iwoys pos ¡tive definite 000 rray

cost into the fam:

U' = exp 2R (3)

where R is o real functian of its orgurrents. Fa the sake of simplicity we shall consider

here only the isotropic cose, narrely, that fa which

if j.J. l:elongs to u- splce

(4)

o otherwise

With these considerotions, Eq. (1) takes fhe fam:

- a [(,\ - Il a R) w] = - a v w1L ¡.J. ¡.Lv v ¡.J. ¡.J.

where we hove defined

(5)

(6)

We nON restríet oll"selves to fhe cose where v' moy be written in the follONing way,u
rorre!y,

(7)

where ¡!J is a real function of u, l' ond t ond t... ore the elerreilts of o symrretric rrotrix
¡w

and they will be real ond in generol tirre deperdent.
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Let us now define an amplitude 't', where

'V = exp(R t ¡,l,) (8)

in terms of which w = 't'*q/. Our task is to construct the differential equation

satisfied by'V and this is easily accomplished in the following way: Rewriting

01 Eq. (5) ;n 'ermS 01 R ond ,l, wilh 'he o;d 01 Eqs. (3) ond (7), yields

oR __ "-. >.. o d ,l, - >.. o R <) ,l,-al - 2 11-1111- 11 Ji.1I Ji. 11
(9)

If we now multiply Eq. (9) by q', we express the derivatives of R and & through

Eq. (8) ond w. nol;ce Iho' >.. o Ro ,l, = \, o Ro ,l" bo'h be;ng .quol lo
Ji.1I 11 11- •.•.11 /J, V

v 'O R, we get that
" "

~'JIt = -"-.>.. o o 'JI t¡¡'JIo Ji.1I Ji. 11

where n is a rea 1 function of t, u and / defined by

(10)

Eq.(lO) is the generalized Schroedinger equation, written in phose S~ce and

which q' must satisfy. The function n should be thought off as the one playing a

role onolO9ou5 to that ossumed by the potentiol V in the ordinory cose, but stress

should be mode on the poim thot this onology is solely formol. Indeed, in the

next section we sholl see thot, at leost in 50me cases, n moy be reloted to the

Homiltonian of the system but the general discussion of this difficult question will

be deferred to o future poper. (For (J discussion of the meonillg of n in a very por.

ticulor representotion of 'A, we refer the reoder to poper IV). For the time being

we moy look into this question as follows: Suppose we ore given a priori the

Concrete, but cons istent form of A. (1) a nd n (u, t; 1) for some s pec ifie problem.
""
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Then, we muSt Solve Eq. (10) for tV, the probo bi Iity ompl¡tude whose mooulus sql.Ored

sotisfies Eq. (1). lf we now substitute the volues of R ond JJ found from tV, bock

into E'q.(11) we would recover the storting function 0*. Cleorly, the knowledge

of'P ollows uS to colculote A and in particular the force K which we must od-

"scribe to the quontum particle when treoted clasicolly, sub¡ected olso to the oction

of o stochastic force.

lll. THE REDUCTION TO USUAL QUANTUM MECHANICS

In arder to investigUe the conditions under which one can recover tJ1e con-

ventionol quontum mechonical theory, 1et uS write

ond

'1' = U(u, 1)'1'(', t)X(u, ,; 1)

0= F(u, 1) + G(r, 1) + E(u, r; 1)

(12)

(13 )

where it must be assumed that, in the general case,),' is a non-separable, non-

trivial function of all phase ¿pace coordinotes ond olso, thot E is the only term in

O containing the contributions in which both the r ond u spaces ore mixed.

Subs!i'u'ion 01 Eqs.(12) ond (13) in!o Eq.(lO) yields o dilferentiol eq",!ion

which in turn may be seporoted into the following set of equotions, nomely,

i".'f. = - -'- A.. o.o.'I' + G'I'di 2 11 1 1

i '!!!...= - -'- A d.o.U + FUal 2 Uj Uj I 1

(14 )

(15 )

.
It is o well known foet ,ho' in ordinory quon'um meehonies one eon express the poten'¡o!
energy \' ellplieitly in terms of the wove funetion re.f. L. Londou & E. Lifshitz, Quontum
Meehonics, Addison-Wesley Pub!. CO. 1958 Chopo nI J.
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+ A ....,
(16)

In these equations, the motrix 'A has becn expli citly separoted into the submatrice~

"'A'., i\. ond A.ju whose elernents belong to the configll'otion sPJce, velocity
'1 u i"j ;

Spoce ond the mixed components, respectively. Also, since U does not depend on

the configuration space coordinares \He hove written 'Ou. U ;;;:ajU •
•To occomplish the recovery of conventionol quontum mechonics, which is

possible only in the limit /31» 13.4 we must induce the separability af the con.

figll"otion ond velocity spaces, thus requiring that in this Iimit V equols oconstant.

According to Eq. (16) this is achieved through the condition

[
d.'j' d.U J¡im A.ju. _'__ 1_ - E(u, r, t) - O

/31 ...•"" 1 q> U
(17)

Under the ossumption that Eq. (17) is fulfilled, X may be token egua I to one in

Eq.(12). Therefore, the omplitude "1' will be equul to the product UCP where these

two functions ore independent ond sotisfy Eqs. (14) ond (15). Furthermore since

the motrix >,. is entirely ot our disposol we sholl choose it in such o woy thot the

,h,ee submat,;ces 11A;j 11. 11A•.•. 11 and 11A;..II ' 11A. ;11. a,e eaeh ane diagana l.
J t t t

It is now evident thot Eq. (14) will reduce to Schroedinger's equotion provided

thot the elements >"iJ' which moy be in general time dependent, reduce in this

limit to the volue 2D8ij with [) = ~/2m. Thus, we moy identify the function ~G,
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in this limit, with the potential V and obtain that

(18)

Here, the "diffusion coefficient" D is related, as usual,7 to the independent para-
2

meters q and J3through the relation vJ3 = q and its value -fJ/2m has already been

obtoined in previous workJ•4•

To round up our recovery of ordinary quantum mechanics let us introduce

the mocroscopic local velocity c (r, 1) *, in this asymptotic limit, through the ordi-

nary overaging process familiar in statistical mechanics, namely,

C (r, 1) Iuwdu
Iwdu

(19)

On the othe, hond, ¡,om Eqs. (2). (6) and (7) we have .ha.

(20)

where use has been made of the fact that 11 'A.;u.11 is diagonal wilh elements given

by A; = 2lJ/3'A.S .. , 'A. being u real, arbitrary lunction of time. Substitution of
u i '1

Eq.(20) boek inlo Eq.(19) yields the ,esult tha.

e(r,l) 21JVS (21)

where we have written él = S(r, 1) t Su(u, 1) ond mode use of the fact thot the con-

tribution from the term proportional to Vu Su is equal to zero as it will be shown

la'e, an [e. f. Eq. (23)]
Eq.(21) g;ves, indeed, the local macroscopic velocity in the ordinory

quantum mechonical theoryl.~.3. Following now the argument given in 11and III

'This quontity hos been denoted os v(r. t) in previous popers.
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we may assure ourselves thot we hove in foct recovered not only Schroed"inger's

equation but furthermcre the uncertainty relotions together with 011their implicatioos

Let us now make o briefdiscussion of Eqs.(15) ond (17). Recolling that

the matrix 1I i\ 11 has been chosen to be diagonal, we toke its elements to be
Il i Il¡

equol to o constont in this asymptotic ¡imit and hence write thot i\ = 2q ói .•u i u¡ I

FIXthermcre F(u, /) is the function which in Eq. (15) ploys a role onologous to the

role assumed by G in Eq.(14). Indeed, since this latter function expresses the

energy in configurotion spoce we can extropolate to the velocity spoce ond assume

that F e>c.presses the energy of the porticle in this spoce ond thus identify it with

the kinetic energy. Hence,

1;[' = I ,_ mu =,
,

!'-1J
4D

which in tIXn, when plugged into Eq.(l5), yield:

Ci "U -q'1U+!'-Ual = 4D
(22)

With these ossumptions, we moy give to b"O o very simple physicol content, nomely,

tlO = 1 mu2 + V + E(u,', /),.
where the function E(u, 'i /) represents the contribution to n oris ing from the velo-

city dependent force. This moy be seen directly from Eq. (17) if we reolize that
'1 U

the osymptotic volue of the term _"_ is given by 'V R which is equal to
U " "

(K" -f3u)/2q as il may be eosily verified using Eqs. (2). (6) and (7), ond ¡urlher.

more 'Vr.p is essentially o meosure of the local mocroscopic velocity occording to

~ -
ordinory quontum mechonics. Also, from the foct thot 'VuR = 04 the average volue

of B is equal fo zero, 000 hence ¡ro is, in the mean, equol to the total energy of the

system.
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F ¡no Ily, we observe thot Eq. (22) is un iverso I in the sense thot once the

separobility of the two spaces is ochieved, this sorne equation hokls fa 011~oblems

in configurotion spoce. Moreover, since the probobility density must be integrable

ond everywhere finite we must toke fOl' the solution of Eq. (22) the only one con-

sistent with these conditions, nomely, thot of the isotropic hormonic oscillotor.

Hence

u = Nvi- {exp [- jet lb - e 12] } ~i- F(- v. A+ 312 ; el Yi-~(eu' 'Pul

(23)

where l = au with a2 = (3/2q ene! the quontum numbers A, j.L, v belonging to

veloclty space, being integers. We recoll thot v ond A ore intependent whereos.

I j.L 1< .\.. 1he ground stote v= .\. = Ocorresponds to o goussion distribution with

o densityequol to exp(-j3u2/2q}ond has beendiscussed ino previous poper(IV).

However, in the genero I cose we hove mony more poss ibilities, ot leost in

principie, ond thus the question orises os to whot is the physicol interpretotion of

the U function, which as it is seen from Eq.(12) multiplies the uSLOISdreecllnger's

wove function. We propase here o tentotive scheme olong the follow.ing lines.

Recolling once more the fact thot we ore olreody dlscussing the osymptotic limit

and hence the function U is entirely independent of the configurotion spoce coordi-

notes, we ossume thot the quontum numbers v, A ond j.J. ore reloted to the pJrticle's

own internol quontum numbers. In particular, ond os lJ first proposition, one could

associote .\. ond j.l with the porticle's spin in which cose, with the oid of Eq.(23)

the construction of s pin••••••ove functions would follow far the cose of mesons,which

cons istently w ith ordinory quantum mechonics oppeor os foctas of the S chroedinger's

omplituele. This proposol thus identifies the usual spin spoce with the velocity

space when this loner one is athogonol to the configurotion space, which we

emphosile is the only one hoving a meoningful physicol contento Further clari-

ficotion of this point seems pertinent ot this stage. The physicol picture of the

present scheme conS ists of en initiol stoge in the motion of the portie le where both

,- ond u- spoces ore intimately releted ond thus contoin 011 the relevant physicol
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information. However as Soon os o time of order f3.1 is reached o seporotion is

achieved whereby the two spaces become orthogonal to eoch other ond from there

on all information concerning the system is accumuloted in the configl,l'OtiCJ'lSp:lce

through the us uO I Schroed inger eq uotion. The ve loe ity s poce becomes o formo I

one ond thus consistently with the procedure followed in ordinary quontum mecho.

nles it moy be used to construct the spin-wove omplitude '1'.
Pursuing the ideas set forth in the scheme described obove it is impa-tant

• to realize that during the initiol stage (j31 <. 1) of the particle's motion the fact

that the configuration ond veloeity s paces are intereloted implies that en inter.

aetion between the spin of the particle ond it'i angular momentum eould oeeur,

whieh occording to The interpretation given to thc quantum number t... would imply

in turn the possibility of o decay. Taking into aceount the foct that the meon

IHe times fet mesonic resonances ore of the order of 10.22 to 10.23 sec. a raugh

estimate of j3 is obtoined namely, /3"" 1022 to 1~Jsee.1. This value may be

estimated independently ifwe recall that ftom Eq.(23) the particle's energy in

velocity spoce is

E = fJ/3(2v • '-)

up to an additive constant. This energy l,eing an intrinsic characteristic of the

particle moy be consistently ossocioted with O mass termo This inference COfre.

sponds only quolitatively to experiment but once more, may serve to get o rough

estimate of /3. Indeed, comparing !"osses between mesons with the some quontum

numbers but whose spin differs by unity, the praduct ~f3turns out to be of the arder

of 300 to 400Mev which corresponds to the order of mognitude of j3 irdicoted aboYe.

As o concluding remork we would like to indicate that the connection

between this work with van Neummon's theorem on hidden voriables follCM's egoin

within the sorne lines of thought advanced in a previous paper (IV) to which the

interested reoder is referred.
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