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ABSTRACT

It is shown that there is a close relation between the usual energy=aver-
aged scattering amplitude for elastic nuclear collisions and the Euclidean ex=-
pansion of the non-relativistic scattering amplitude, This expansion is the non-

relativistic analogue of the crossed-channel Regge analysis used in relativistic

particle physics.
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RESUMEN

Se muestra que hay una relacicn intima entre la amplitud de dispersicn, pro-
mediada sobre la energia en los metodos bhabituales, para colisiones eldsticas nu-
cleares y el desarrollo euclidiano de la amplitud de dispersicn, Este desarrollo
es la analogia no-relativista del andlisis tipo Regge en canales cruzados, el cual

se emplea en la fisica relativista de particulas elementales.

INTRODUCTION

1. Since Feshbach, Porter and Weisskopf’s' classical work, an ever in-
creasing interest has been devoted to the analysis of the averaged scattering
amplitude in low-energy nuclear physics. In such an analysis, the cross sections
obtained from experimental data taken with poor resolution in energy or the energy-
averaged cross sections correspond to the scattering of a wave packet sharply de-
fined in time. This cross section is described by an optical potential determined
as some kind of average over the nucleons of the target, since the sharp packet
stays a very short time near the nucleus?. For better resolution in energy the so-
called intermediate structure does appear and we may say that we are seeing the
structure produced by scattering processes with a longer time delay. This
structure has been explained in terms of the so-called doorway states®. |n a
simple model", the intermediate structure can be identified with the coherent exci-
tation of nucleon-hole pairs in the target. For an even better energy resolution a
finer structure appears. This fine structure may be due to more complicated
processes with longer time delays. In the limit of very good resolution one will
have the very narrow compound-nucleus resonances, corresponding to very long

time deluys.

2. A natural frame for the discussion of the averaged scattering amplitude
has been given in a previous paper’; this frame is the Euclidean representation of
the non-relativistic scattering amplitude, written as an expansion over the parame-

ter v characterising the exchanged objects. Each term in the expansion transforms
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irreducibly under the Galilei group.

For non-forward scattering the little group is E(2) and therefore one may
consider the exchange of E(2) poles. Such poles are labeled by the number v
which is the non-relativistic analogue of the parameter a which labels the 0(2,1)
poles in the Regge-Joos representation®. For forward scattering the little group
is E(3), and one may exchange E(3) poles, labeled by a parameter i which corre-
sponds to the o of Toller’ labeling the O (3,1) Lorentz poles.

The purpose of this note is to show that the analysis of the non-relativistic
amplitude by taking finer and finer averages is equivalent to taking into account
singularities in the y and v planes which are farther and farther away from the
origin. Such a feature suggests a parametrization of the gross averaged amplitude
by one or a few effective singularities near the origin of the yand v planes. This
parametrization, which is the non-relativistic analogue of the Regge=pole analy-
sis used with success in high-energy particle physics, might be a more convenient

description than the usual optical-model analysis of the averaged amplitude.

3. Let us consider the forward scattering of spinless particles. For
forward scattering the little group is E(3), which is the non-relativistic limit of

the homogeneous Lorentz group. The generators of E(3) are

(p 9 9
Ly=-ik - k
o8 == Uk G = ks ) ¥
B a
. 0
Lao = i 557 &, @B = 1,2,3 @

There are two invariant operators,

62 $ lf: 4 r.f2 - v}? (3)
1 2 3 .
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and

E o ik (4)

but (4) vanishes identically for forward scattering of spinless particles.
A complete set of labels for the vectors of an irreducible representation of
E(3) is provided by the eigenvalues of I.> and L,*

The simultaneous eigenfunctions of (3), L% and L, will be denoted by

Lim(K) O £, 1, By 6, 6),
€&+ EN m = 12 ytmr OSu< (5)
L i = WA fge 1= 0,1,2, ... (6)

ol (7)

{‘12 'f,u’m = mf#]ml m= = 1,-..,

In the case we are considering, the expansion of the scattering amplitude

in terms of such eigenfunctions gives us

AR) = Ap + [y a(u) SNk gy (8)
0 fl,k

where A(k) is the scattering amplitude and & is the wave number. The term Ap
gives the contribution of the discrete representation of E(3) and may be included
formally in the integral if we allow a (1) to be a distribution. Therefore we may

write



RA(K) = j:#a(#) sin pk du 9

hence

pa(u) = 2 [Tk A(R) sinpk dk (10)

In order to take into account only a certain region of the ;1 plane we intro-

duce a symmetric cut-off function f(;) and

1 fmf(#) cos kpu dp
7 ¥

BALS B = j:f(“),la(ﬂ) sin pk du (1

and recalling that A is a function of £*, we can define A(k) for negative values of

k as

A(k) = A(= k)

Then the integrals can be extended o =

EA(S, k) = | B(k=1)A(r)r dr (12)

-0

Therefore, the amplitude averaged with a weight function 3 with a width k,
corresponds to taking into account a region of the i plane up to a distance of the
origin of the order 'I/'k0 i

If we are interested in the gross features of the scattering amplitude, as is
the case in the optical-model analysis, it is enough to consider the region of the .
plane near the origin.
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4. Non-forward scattering. Let us consider now the non-forward elastic
scattering when momentum is exchanged. The relevant group is the little group
E(2), which leaves invariant the momentum transfer vector q.

The E(2) generators, which act in a two-dimensional plane perpendicular

to q, are
Lu=-;(klg€-?_(‘;k)z-fgg 13)
Li0=£gkiz £, da N5l (14)
The only invariant operator is
R e v;u_
A f%zz by 3& ol gé (15)

where

A complete set of labels for the vectors of an irreducible representation of
E(2) is provided by the eigenvalues of Ly #
The simultaneous eigenfunctions of (13) and (15) are denoted” by

kl. Y k2)

Vm(

*
The physical meaning of wand v has been discussed in ref. 5; these parameters can be

related to the time delay in the group velocity of cylindrical packets7*8,
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L,bp=mb , m=0,+t1,£2,. .. (16)

If we consider the scattering of spinless particles, the expansion of the

amplitude in these eigenfunctions gives us

o~

A(k..L' f]) = "1“ ((f) + jﬂ l'a("r q) ]ﬂ (L'kL) dv

[¥]

where 4 is the momentum transfer and 7 = kZL it (17)

is the wave number.
Again the term A, (¢) is the contribution of the discrete representation and

may be included formally in the integrand if one allows @ (1, g) to be a distri-

bution; we will then have

-

Alky . g) = [ vat, q) ] vk ) dv (18)

a(v,q) = j‘ki Alky o q) ] (k) dby (19)

0

As in the preceding case, if one is interested in those terms of the
scattering amplitude which have a weak energy dependence, it is enough to take
into account only the region of the ;» plane near the origin. |f we parametrize
such a region with one or a few effective singularities, the parameters will depend

on the momentum transfer ¢ and therefore one may study the motions of the singu-

larities in the i plane as functions of g.
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5. It has been shown in the previous paragraphs that the concept of Regge-
pole exchange, trajectories, etc., have a well-defined analogue in non-relativistic
scattering and that this decomposition constitutes a natural frame for the type of
analysis by finer and finer averaging used in nuclear physics. In particular, if
one is interested only in the rough features of the scattering.amplitude, it is
enough to consider the singularities in the region of the 1 plane near the origin,
and by parametrizing this region with one or a few effective poles or branch points
one would have a description of the averaged amplitude complementary to the opti-
cal model and perhaps more convenient in many cases. The application of this
type of parametrization to the analysis of nucleon-nucleus collisions will be con-
sidered elsewhere,

However, in order to say more about the dynamical mechanism, it is neces-
sary to know the analytical structure in a larger region of the v plane. If, asseems
to happen in the nuclear case, the different dynuﬁico[ mechanisms have different
characteristic times, this will show up as a clustering of the singularities in the
and v planes. Therefore the study of the analytical structure of the scattering
amplitude as a function of ;1 and 1 as well as the study of the restrictions that more
or less detailed dynamical assumptions impose on such analytical structure seem

to be interesting problems worth exploring.

We would like to thank Dr. J. Flores and Dr. P. Mello for he Ipful discussions

and remarks.
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